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Abstract We investigate the behavior of data structures when the input and oper-
ations are generated by an event graph. This model is inspired by Markov chains.
We are given a fixed graph G, whose nodes are annotated with operations of the
type insert, delete, and query. The algorithm responds to the requests as it encoun-
ters them during a (random or adversarial) walk in G. We study the limit behavior
of such a walk and give an efficient algorithm for recognizing which structures can
be generated. We also give a near-optimal algorithm for successor searching if the
event graph is a cycle and the walk is adversarial. For a random walk, the algorithm
becomes optimal.

Keywords Successor searching · Markov Chain · Low entropy · Data Structure

1 Introduction

In contrast with the traditional adversarial assumption of worst-case analysis, many
data sources are modeled by Markov chains (e.g., in queuing, speech, gesture, protein
homology, web searching, etc.). These models are very appealing because they are
widely applicable and simple to generate. Indeed, locality of reference, an essential
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pillar in the design of efficient computing systems, is often captured by a Markov
chain modeling the access distribution. Hence, it does not come as a surprise that this
connection has motivated and guided much of the research on self-organizing data
structures and online algorithms in a Markov setting [1, 7–11, 15–18]. That body of
work should be seen as part of a larger effort to understand algorithms that exploit
the fact that input distributions often exhibit only a small amount of entropy. This
effort is driven not only by the hope for improvements in practical applications (e.g.,
exploiting coherence in data streams), but it is also motivated by theoretical questions:
for example, the key to resolving the problem of designing an optimal deterministic
algorithm for minimum spanning trees lies in the discovery of an optimal heap for
constant-entropy sources [2]. Markov chains have been studied intensively, and there
exists a huge literature on them (e.g., [12]). Nonetheless, the focus has been on state
functions (such as stationary distribution or commute/cover/mixing times) rather than
on the behavior of complex objects evolving over them. This leads to a number of
fundamental questions which, we hope, will inspire further research.

Let us describe our model in more detail. Our object of interest is a structure T (X)

that evolves over time. The structure T (X) is defined over a finite subset X of a uni-
verse U . In the simplest case, we have U = N and T (X) = X. This corresponds to the
classic dictionary problem where we need to maintain a subset of a given universe.
We can also imagine more complicated scenarios such as U = R

d with T (X) being
the Delaunay triangulation of X. An event graph G = (V ,E) specifies restrictions
on the queries and updates that are applied to T (X). For simplicity, we assume that
G is undirected and connected. Each node v ∈ V is associated with an item xv ∈ U
and corresponds to one of three possible requests: (i) insert(xv); (ii) delete(xv);
or (iii) query(xv). Requests are specified by following a walk in G, beginning at a
designated start node of G and hopping from node to neighboring node. We consider
both adversarial walks, in which the neighbors can be chosen arbitrarily, and random
walks, in which the neighbor is chosen uniformly at random. The latter case corre-
sponds to the classic Markov chain model. Let vt be the node of G visited at time
t and let Xt ⊆ U be the set of active elements, i.e., the set of items inserted prior to
time t and not deleted after their last insertions. We also call Xt an active set. For any
t > 0, Xt = Xt−1 ∪{xvt } if the operation at vt is an insertion and Xt = Xt−1 \{xvt } in
the case of deletion. The query at v depends on the structure under consideration (suc-
cessor, point location, ray shooting, etc.). Another way to interpret the event graph is
as a finite automaton that generates words over an alphabet with certain cancellation
rules.

Markov chains are premised on forgetting the past. In our model, however, the
structure T (Xt ) can remember quite a bit. In fact, we can define a secondary graph
over the much larger vertex set V × 2U|V , where U|V = {xv|v ∈ V } denotes those
elements in the universe that occur as labels in G, see Fig. 1. We call this larger graph
the decorated graph, dec(G), since the way to think of this secondary graph is to
picture each node v of G being “decorated” with the subsets X ⊆ U|V . (We define
the vertex set using 2U|V in order to allow for every possible initial subset X.) Let n

be the number of nodes in G. Since |U|V | ≤ n, an edge (v,w) in the original graph
gives rise to up to 2n edges (v,X)(w,Y ) in the decorated graph, with Y derived from
X in the obvious way. A trivial upper bound on the number of states is n2n, which is
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Fig. 1 An event graph over four vertices and the associated decorated graph. Each node of the event graph
is replaced by four nodes decorated with the subsets of {1,2}

essentially tight. If we could afford to store all of dec(G), then any of the operations
at the nodes of the event graph could be precomputed and the running time per step
would be constant. However, the required space might be huge, so the main question
is

Can the decorated graph be compressed with no loss of performance?

This seems a difficult question to answer in general. In fact, even counting the pos-
sible active sets in decorated graphs seems highly nontrivial, as it reduces to counting
words in regular languages augmented with certain cancellation rules. Hence, in this
paper we focus on basic properties and special cases that highlight the interesting be-
havior of the decorated graph. Beyond the results themselves, the main contribution
of this work is to draw the attention of algorithm designers to a more realistic input
model that breaks away from worst-case analysis.

Our Results The paper has two main parts. In the first part, we investigate some
basic properties of decorated graphs. We show that the decorated graph dec(G) has
a unique strongly connected component that corresponds to the limiting phase of a
walk on the event graph G, and we give characterizations for when a set X ⊆ U|V
appears as an active set in this limiting phase. We also show that whether X is such
an active set can be decided in linear time (in the size of G).

In the second part, we consider the problem of maintaining a dictionary that sup-
ports successor searches during a one-dimensional walk on a cycle. We show how to
achieve linear space and constant expected time for a random walk. If the walk is ad-
versarial, we can achieve a similar result with near-linear storage. The former result
is in the same spirit as previous work by the authors on randomized incremental con-
struction (RIC) for Markov sources [3]. RIC is a fundamental algorithmic paradigm
in computational geometry that uses randomness for the construction of certain ge-
ometric objects, and we showed that there is no significant loss of efficiency if the
randomness comes from a Markov chain with sufficiently high conductance.
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2 Basic Properties of Decorated Graphs

We are given a labeled, connected, undirected graph G = (V ,E). In this section, we
consider only labels of the form ix and dx, where x is an element from a finite
universe U and i and d stand for insert and delete. We imagine an adversary
that maintains a subset X ⊆ U while walking on G and performing the corresponding
operations on the nodes. Since the focus of this section is the evolution of X over time,
we ignore queries for now.

Recall that U|V denotes the elements that appear on the nodes of G. For technical
convenience, we require that for every x ∈ U|V there is at least one node labeled ix

and at least one node labeled dx. The walk on G is formalized through the decorated
graph dec(G). The graph dec(G) is a directed graph on vertex set V ′ := V × 2U|V .
The pair ((u,X), (v,Y )) is an edge in E′ if and only if {u,v} is an edge in G and
Y = X ∪ {xv} or Y = X\{xv} depending on whether v is labeled ixv or dxv , see
Fig. 1.

By a walk W in a (directed or undirected) graph, we mean any finite sequence
of nodes such that the graph contains an edge from each node in W to its suc-
cessor in W (in particular, a node may appear multiple times in W ). Let A be
a walk in dec(G). Recall that the nodes in A are tuples, consisting of a node in
G and a subset of U|V . By taking the first elements of the nodes in A, we ob-
tain a walk in G, the projection of A, denoted by proj(A). For example, in Fig. 1,
the projection of the walk (i1,∅), (i2, {2}), (i1, {1,2}), (d1, {2}) in the decorated
graph is the walk i1,i2,i1,d1 in the event graph. Similarly, let W be a walk
in G with start node v, and let X ⊆ 2U|V . Then the lifting of W with respect to
X is the walk in dec(G) that begins at node (v,X) and follows the steps of W

in dec(G). We denote this walk by lift(W,X). For example, in Fig. 1, we have
lift((i1,i2,i1,d1),∅) = ((i1,∅), (i2, {2}), (i1, {1,2}), (d1, {2})).

Since dec(G) is a directed graph, it can be decomposed into strongly connected
components that induce a directed acyclic graph D. We call a strongly connected
component of dec(G) a sink component (also called essential class in Markov chain
theory), if it corresponds to a sink (i.e., a node with out-degree 0) in D. First, we
observe that every node of G is represented in each sink component of dec(G), see
Fig 2.

Lemma 2.1 Let C be a sink component of dec(G). For each vertex v of G, there
exists at least one subset Y ⊆ U|V such that (v,Y ) is a node in C. In other words, v is
the first element of at least one node in C.

Proof Let (w,X) be any node in C. Since G is connected, there is a walk W in G

from w to v, so lift(W,X) ends in a node in C whose first element is v. �

Next, we show that to understand the behaviour of a walk on G in the limit, it
suffices to focus on a single sink component of dec(G).

Lemma 2.2 In dec(G) there exists a unique sink component C such that for every
node (v,∅) in dec(G), C is the only sink component that (v,∅) can reach.
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Fig. 2 The decomposition of
the decorated graph from Fig. 1
into strongly connected
components. There is a unique
sink component in which each
node from the event graph is
represented

Proof Suppose there is a node v in G such that (v,∅) can reach two different sink
components C and C′ in dec(G). By Lemma 2.1, both C and C′ must contain at least
one node with first element v. Call these nodes (v,X) (for C) and (v,X′) (for C′).
Furthermore, by assumption dec(G) contains a walk A from (v,∅) to (v,X) and a
walk A′ from (v,∅) to (v,X′). Let W := proj(A) and W ′ := proj(A′). Both W and
W ′ are closed walks in G that start and end in v, so their concatenations WW ′W
and W ′W ′W are valid walks in G, again with start and end vertex v. Consider the
lifted walks lift(WW ′W,∅) and lift(W ′W ′W,∅) in dec(G). We claim that these two
walks have the same end node (v,X′′). Indeed, for each x ∈ U|V , whether x appears
in X′′ or not depends solely on whether the label ix or the label dx appears last on
the original walk in G. This is the same for both WW ′W and W ′W ′W . Hence, C and
C′ must both contain (v,X′), a contradiction to the assumption that they are distinct
sink components. Thus, each node (v,∅) can reach exactly one sink component.

Now consider two distinct nodes (v,∅) and (w,∅) in dec(G) and assume that they
reach the sink components C and C′, respectively. Let W be a walk in G that goes
from v to w and let W ′ := proj(A), where A is a walk in dec(G) that connects w

to C′. Since G is undirected, the reversed walk WR is a valid walk in G from w to v.
Now consider the walks Z1 := WWRWW ′ and Z2 := WRWW ′. The walk Z1 begins
in v, the walk Z2 begins in w, and they both have the same end node. Furthermore,
for each x ∈ U|V , the label ix appears last in Z1 if and only if it appears last in Z2.
Hence, the lifted walks lift(Z1,∅) and lift(Z2,∅) have the same end node in dec(G),
so C = C′. The lemma follows. �

Since the unique sink component C from Lemma 2.2 represents the limit behaviour
of the set X during a walk in G, we will henceforth focus on this component. Let us
begin with a few properties of C. First, we characterize the nodes in C.
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Lemma 2.3 Let v be a node of G and X ⊆ U|V . We have (v,X) ∈ C if and only if
there exists a closed walk W in G with the following properties:

1. the walk W starts and ends in v:
2. for each x ∈ U|V , there is at least one node in W with label ix or dx;
3. we have x ∈ X if and only if the last node in W referring to x is an insertion and

x �∈ X if and only if the last node in W referring to x is a deletion.

We call the walk W from Lemma 2.3 a certifying walk for the node (v,X) of C. For
example, as we can see in Fig. 2, the sink component of our example graph contains
the node (d2, {2}). A certifying walk for this node is d2,i2,d1,i2,d2.

Proof First, suppose there is a walk with the given properties. By Lemma 2.1, there
is at least one node in C whose first element is v, say (v,Y ). The properties of W

immediately imply that the walk lift(W,Y ) ends in (v,X), which proves the “if”-
direction of the lemma.

Now suppose that (v,X) is a node in C. Since C is strongly connected, there exists
a closed walk A in C that starts and ends at (v,X) and visits every node of C at least
once. Let W := proj(A). By Lemma 2.1 and our assumption on the labels of G, the
walk W contains for every element x ∈ U|V at least one node with label ix and one
node with label dx. Therefore, the walk W meets all the desired properties. �

This characterization of the nodes in C immediately implies that the decorated
graph can have only one sink component.

Corollary 2.4 The component C is the only sink component of dec(G).

Proof Let (v,X) be a node in dec(G). By Lemmas 2.1 and 2.3, there exists in C a
node of the form (v,Y ) and a corresponding certifying walk W . Clearly, the walk
lift(W,X) ends in (v,Y ). Thus, every node in dec(G) can reach C, so there can be no
other sink component. �

Next, we give a bound on the length of certifying walks, from which we can de-
duce a bound on the diameter of C.

Theorem 2.5 Let (v,X) be a node of C and let W be a corresponding certifying walk
of minimum length. Then W has length at most O(n2), where n denotes the number
of nodes in G. There are examples where any certifying walk needs Ω(n2) nodes. It
follows that C has diameter O(n2) and that this is tight.

Proof Consider the reversed walk WR . We subdivide WR into phases: a new phase
starts when WR encounters a node labeled ix or dx for an x ∈ U|V that it has not
seen before. Clearly, the number of phases is at most n. Now consider the i-th phase
and let Vi be the set of nodes in G whose labels refer to the i distinct elements of U|V
that have been encountered in the first i phases. In phase i, the walk WR can use only
vertices in Vi . Since W has minimum cardinality, the phase must consist of a shortest
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Fig. 3 The lower bound example for m = 4. The shortest certifying walk for (v, {1,3}) goes from v to i3,
then to d2, then to i1, and then back to v

walk in Vi from the first node of phase i to the first node of phase i + 1. Hence, each
phase consists of at most n vertices and the length of W is O(n2).

We now describe the lower bound construction. Let m ≥ 2 be an integer. The event
graph P is a path with n = 2m + 1 vertices. The first m vertices are labeled im,

i(m − 1), . . . ,i1, in this order. The middle vertex is labeled dm, and the remaining
m vertices are labeled d1,d2, . . . ,dm, in this order, see Fig. 3. Let v be the middle
vertex of P and C be the unique sink component of dec(P ). First, note that (v,X)

is a node of C for every X ⊆ {1, . . . ,m − 1}. Indeed, given X ⊆ {1, . . . ,m − 1}, we
can construct a certifying walk for X as follows: we begin at v, and for k = m − 1,

m − 2, . . . ,1, we walk from v to ik or dk, depending on whether k lies in X or not,
and back to v. This gives a certifying walk for X with 2(m−1)+2(m−2)+· · ·+2 =
Θ(m2) steps. Now, we claim that the length of a shortest certifying walk for the node
(v, {2k + 1 | k = 0, . . . , 
m/2� − 1}) is Θ(m2) = Θ(n2). Indeed, note that the set
Y = {2k+1 | k = 0, . . . , 
m/2�−1} contains exactly the odd numbers between 1 and
m−1. Thus, a certifying walk for Y must visit the node i1 after all visits to node d1,
the node d2 after all visits to i2, etc. Furthermore, the structure of P dictates that
any certifying walk performs these visits in order from largest to smallest, i.e., first
comes the last visit to the node for m − 1, then the last visit to the node for m − 2,
etc. To see this, suppose that there exist i < j such that the last visit to the node
for i, wi , comes before the last visit to the node for j , wj . Then the parity of i and
j must differ, because otherwise the walk must cross wi on the way from wj to v.
However, in this case, on the way from wj to v, the certifying walk has to cross the
node with the wrong label for i (insert instead of delete, or vice versa), and
hence it could not be a certifying walk. It follows that any certifying walk for (v,Y )

has length Ω(n2).
We now show that any two nodes in C are connected by a walk of length O(n2).

Let (u,X) and (v,Y ) be two such nodes and let Q be a shortest walk from u to v

in G and W be a certifying walk for (v,Y ). Then lift(QW,X) is a walk of length
O(n2) in C from (u,X) to (v,Y ). Hence, the diameter of C is O(n2). Again, the
lower bound example from the previous paragraph applies: the length of a shortest
walk in C between (v,∅) and (v, {2k + 1 | k = 0, . . . , 
m/2� − 1}) is Θ(n2), as can
be seen by an argument similar to the argument for the shortest certifying walk. �

Next, we describe an algorithm that is given G, a node v ∈ V , and a set X ⊆ U|V
and then decides whether (v,X) is a node of the unique sink or not. For W ⊆ V , let
U|W denote the elements that appear in the labels of the nodes in W . For U ⊆ U , let
V|U denote the nodes of G whose labels contain an element of U .
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Fig. 4 An intermediate stage of the algorithm while deciding whether the node (v, {3,4}) lies in the
unique sink of the given event graph. At this point, the nodes v and i4 have been processed. Since the
elements 3 and 4 have been encountered, the corresponding nodes have been colored blue. The nodes for
the other elements still have the original color. We have B = {d1,d2}, R2 = {i2}, and R1 = R3 = R4 = ∅.
Suppose that in the next step, the algorithm processes d2. Then the node i2 is colored blue and added to B ,
and i1 is added to R1

Theorem 2.6 Given an event graph G, a node v of G and a subset X ⊆ U|V , we can
decide in O(|V | + |E|) steps whether (v,X) is a node of the unique sink component
C of dec(G).

Proof The idea of the algorithm is to construct a certifying walk for (v,X) through
a modified breadth first search.

In the preprocessing phase, we color a vertex w of G blue if w is labeled ix and
x ∈ X, or if w is labeled dx and x �∈ X. Otherwise, we color w red. If v is colored
red, then (v,X) cannot be in C, and we are done. Otherwise, we perform a directed
breadth first search that starts from v and tries to construct a reverse certifying walk.
Our algorithm maintains several queues. The main queue is called the blue fringe B .
Furthermore, for every x ∈ U|V , we have a queue Rx , the red fringe for x. At the
beginning, the queue B contains only v, and all the red fringes are empty.

The main loop of the algorithm takes place while B is not empty. We pull the
next node w out of B , and we process w as follows: if we have not seen the element
xw ∈ U|V for w before, we color the set V|{xw} of all nodes whose label refers to xw

blue, append all the nodes of Rxw to B , and we delete Rxw . Next, we process the
neighbors of w as follows: if a neighbor w′ of w is blue, we append it to B if w′ has
not been inserted into B before. If w′ is red and labeled with the element xw′ , we
append w′ to Rxw′ , if necessary, see Fig. 4.

The algorithm terminates after at most |V | iterations. In each iteration, the cost is
proportional to the degree of the current vertex w and (possibly) the size of one red
fringe. The latter cost can be charged to later rounds, since the nodes of the red fringe
are processed later on. Let Vred be the union of the remaining red fringes after the
algorithm terminates.
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If Vred = ∅, we obtain a certifying walk for (v,X) by walking from one newly
discovered vertex to the next inside the current blue component and reversing the
walk. Now suppose Vred �= ∅. Let A be the set of all vertices that were traversed
during the BFS. Then G \ Vred has at least two connected components (since there
must be blue vertices outside of A). Furthermore, U|A ∩ U|Vred = ∅. We claim that a
certifying walk for (v,X) cannot exist. Indeed, suppose that W is such a certifying
walk. Let xw ∈ U|Vred be the element in the label of the last node w in W whose label
refers to an element in U|Vred . Suppose that the label of w is of the form ixw; the other
case is symmetric. Since W is a certifying walk, we have xw ∈ X, so w was colored
blue during the initialization phase. Furthermore, all the nodes on W that come after
w are also blue at the end. This implies that w ∈ A, because by assumption a neighor
of w was in B , and hence w must have been added to B when this neighbor was
processed. Hence, we get a contradiction to the fact that U|A ∩ U|Vred = ∅, so W

cannot exist. Therefore, (v,X) �∈ C. �

The proof of Theorem 2.6 gives an alternative characterization of whether a node
appears in the unique sink component or not.

Corollary 2.7 The node (v,X) does not appear in C if and only if there exists a set
A ⊆ V (G) with the following properties:

1. G\A has at least two connected components.
2. U|A ∩ U|B = ∅, where B denotes the vertex set of the connected component of

G \ A that contains v.
3. For all x ∈ U , A contains either only labels of the form ix or only labels of the

form dx (or neither). If A has a node with label ix, then x �∈ X. If A has a node
with label dx, then x ∈ X.

A set A with the above properties can be found in polynomial time.

Lemma 2.8 Given k ∈N and a node (v,X) ∈ C, it is NP-complete to decide whether
there exists a certifying walk for (v,X) of length at most k.

Proof The problem is clearly in NP. To show completeness, we reduce from Hamil-
tonian path in undirected graphs. Let G be an undirected graph with n vertices, and
suppose the vertex set is {1, . . . , n}. We let U = N and take two copies G1 and G2

of G. We label the copy of node i in G1 with ii and the copy of node i in G2 with di.
Then we add two nodes v1 and v2, and we connect v1 to v2 and to all nodes in G1

and G2, We label v1 with i(n + 1) and v2 with d(n + 1). The resulting graph G′ has
2n + 2 nodes and meets all our assumptions about an event graph. Clearly, G′ can
be constructed in polynomial time. Finally, since by definition a certifying walk must
visit for each element i either ii or di, it follows that G has a Hamiltonian path if
and only if the node (v1, {1, . . . , n+1}) has a certifying walk of length at most n+2.
This completes the reduction. �
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3 Successor Searching on Cycle Graphs

We now consider the case that the event graph G is a simple cycle v1, . . . , vn, v1 and
the item xvi

at node vi is a real number. Again, the structure T (X) is X itself, and
we now have three types of nodes: insertion, deletion, and query. A query at time t

asks for succXt (xvt ) = min{x ∈ Xt |x ≥ xvt } (or ∞). Again, an example similar
to Fig. 3 shows that the decorated graph can be of exponential size: let n be even.
For i = 1, . . . , n/2, take xvi

= xvn+1−i
= i, and define the operation at vi as ixvi

for
i = 1, . . . , n/2, and dxvn+1−i

for i = n/2 + 1, . . . , n. It is easy to design a walk that
produces any subset of {1, . . . , n/2} at either v1 or vn, which implies a lower bound
of Ω(2n/2) on the size of the decorated graph.

We consider two different walks on G. The random walk starts at v1 and hops
from a node to one of its neighbors with equal probability. The main result of this
section is that for random walks, maximal compression is possible.

Theorem 3.1 Successor searching in a one-dimensional random walk can be done
in constant expected time per step and linear storage.

First, however, we consider an adversarial walk on G. Note that we can always
achieve a running time of O(log logn) per step by maintaining a van Emde Boas
search structure dynamically [5, 6], so the interesting question is how little storage
we need if we are to perform each operation in constant time.

Theorem 3.2 Successor searching along an n-node cycle in the adversarial model
can be performed in constant time per operation, using O(n1+ε) storage, for any
fixed ε > 0.

Before addressing the walk on G, we must consider the following range searching
problem (see also [4]). Let Y = y1, . . . , yn be a sequence of n distinct numbers, and
consider the points (k, yk), for k = 1, . . . , n. A query is given by two indices i and j ,
together with a type. The type is defined as follows: the horizontal lines x �→ yi and
x �→ yj divide the plane into three unbounded open strips R1, R2, and R3, numbered
from top to bottom. For a = 1,2,3, let Sa = {k ∈ {1, . . . , n} | (k, yk) lies inside Ra}.
The type is specified by the number a together with a direction → or ←. The former
is called a right query, the latter a left query. Let us describe the right query: if Sa = ∅,
the result is ∅. If Sa contains an index larger than i, we want the minimum index in
Sa larger than i. If all indices in Sa are less than i, we want the overall minimum
index in Sa . The left query is defined symmetrically. See Fig. 5 (left) for an example.

Thus, there are six types of queries, and we specify a query by a triplet (i, j, σ ),
with σ to being the type. We need the following result, which, as a reviewer pointed
out to us, was also discovered earlier by Crochemore et al.[4]. We include our proof
below for completeness.

Lemma 3.3 Any query can be answered in constant time with the help of a data
structure of size O(n1+ε), for any ε > 0.
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Fig. 5 Left: the query (i, j, (2,→)), we want the leftmost point to the right of yi in the strip R2; right:
the successor data structure. The squares at the bottom represent the vertices of the cycle, split at the edge
vnv1 to obtain a better picture. The dots above the cycle nodes represent the elements xvi

. The node vt is
the current node, and Xt the active set. We maintain pointers between each element x ∈ Xt and the closest
clockwise and counterclockwise node such that the successor in Xt of the corresponding element is x

Using Lemma 3.3, we can prove Theorem 3.2.

Proof of Theorem 3.2 At any time t , the algorithm has at its disposal: (i) a sorted
doubly-linked list of the active set Xt (augmented with ∞); (ii) a (bidirectional)
pointer to each x ∈ Xt from the first node vk on the circle clockwise from vt , if
it exists, such that succXt (xvk

) = x (same thing counterclockwise)—see Fig. 5
(right). Assume now that the data structure of Lemma 3.3 has been set up over
Y = xv1, . . . , xvn . As the walk enters node vt at time t , succXt (xvt ) is thus read-
ily available and we can update Xt in O(1) time. The only remaining question is how
to maintain (ii). Suppose that the operation at node vt is a successor request and that
the walk reached vt clockwise. If x is the successor, then we need to find the first
node vk on the cycle clockwise from vt such that succXt (xvk

) = x. This can be han-
dled by two range search queries (i, j, σ ): for i, use the index of the current node vt ;
and, for j , use the node for x in the first query and the node for x’s predecessor in Xt

in the second query. An insert can be handled by two such queries (one on each side
of vt ), while a delete requires pointer updating, but no range search queries. �

Proof of Lemma 3.3 We define a single data structure to handle all six types simulta-
neously. We restrict our discussion to the type (2,→) from Fig. 5 (left) but kindly in-
vite the reader to check that all other five types can be handled in much the same way.
We prove by induction that with scn1+1/s storage, for a large enough constant c, any
query can be answered in at most O(s) table lookups. The case s = 1 being obvious
(precompute all queries), we assume that s > 1. Sort and partition Y into consecutive
groups Y1 < · · · < Yn1/s of size n1−1/s each. We have two sets of tables:

– Ylinks: for each yi ∈ Y , link yi to the highest-indexed element yj to the left of i

(j < i) within each group Y1, . . . , Yn1/s , wrapping around the strip if necessary (left
pointers in Fig. 6 (left)).

– Zlinks: for each yi ∈ Y , find the group Y�i
to which yi belongs and, for each k,

define Zk as the subset of Y sandwiched between yi and the smallest (resp. largest)
element in Yk if k ≤ �i (resp. k ≥ �i ). Note that this actually defines two sets
for Z�i

, so that the total number of Zk’s is really n1/s + 1. Link yi to the lowest-

Author's personal copy



1018 Algorithmica (2015) 71:1007–1020

Fig. 6 Left: the recursive data structure: The Ylinks (dashed) point to the rightmost point to the left of
yi in each strip. The ZLinks point to the leftmost point in each block defined by yi and a consecutive
sequence of strips; right: a query (i, j) is decomposed into a part handled by a ZLink and a part that is
handled recursively

indexed yj (j > i) in each Zk (right pointers in Fig. 6 (left)), again wrapping
around if necessary.

– Prepare a data structure of type s − 1 recursively for each Yi .

Given a query (i, j) of type (2,→), we first check whether it fits entirely within
Y�i

and, if so, solve it recursively. Otherwise, we break it down into two subqueries:
one of them can be handled directly by using the relevant Zlink. The other one fits
entirely within a single Yk . By following the corresponding Ylink, we find yi′ and
solve the subquery recursively by converting it into another query (i′, j) of appro-
priate type (Fig. 6 (right)). By induction, it follows that this takes O(s) total lookups
and storage

dn1+1/s + (s − 1)cn1/s+(1−1/s)(1+1/(s−1)) = dn1+1/s + (s − 1)cn1+1/s ≤ scn1+1/s,

for some constant d and for c large enough, since

(
1 − 1

s

)(
1 + 1

s − 1

)
= s − 1

s

s

s − 1
= 1. �

Using Theorem 3.2 together with the special properties of a random walk on G,
we can quickly derive the algorithm for Theorem 3.1.

Proof of Theorem 3.1 The idea is to divide up the cycle into
√

n equal-size paths
P1, . . . ,P√

n and prepare an adversarial data structure for each one of them right
upon entry. The high cover time of a one-dimensional random walk is then invoked to
amortize the costs. De-amortization techniques are then used to make the costs worst-
case. The details follow. As soon as the walk enters a new Pk , the data structure of
Lemma 3.3 is built from scratch for ε = 1/3, at a cost in time and storage of O(n2/3).
By merging Lk = {xvi

|vi ∈ Pk } with the doubly-linked list storing Xt , we can set up
all the needed successor links and proceeds just as in Theorem 3.2. This takes O(n)

Author's personal copy



Algorithmica (2015) 71:1007–1020 1019

Fig. 7 The parallel tracks on
the cycle

time per interpath transition and requires O(n2/3) storage. There are few technical
difficulties that we now address one by one.

– Upon entry into a new path Pk , we must set up successor links from Pk to Xt ,
which takes O(n) time. Rather than forcing the walk to a halt, we use a “parallel
track” idea to de-amortize these costs (Fig. 7). Cover the cycle with paths P ′

i shifted
from Pi clockwise by 1

2

√
n. and carry on the updates in parallel on both tracks. As

we shall see below, we can ensure that updates do not take place simultaneously
on both tracks. Therefore, one of them is always available to answer successor
requests in constant time.

– Upon entry into a new path Pk (or P ′
k), the relevant range search structure must

be built from scratch. This work does not require knowledge of Xt and, in fact,
the only reason it is not done in preprocessing is to save storage. Again, to avoid
having to interrupt the walk, while in Pk we ensure that the needed structures for
the two adjacent paths Pk−1,Pk+1 are already available and those for Pk−2,Pk+2
are under construction. (Same with P ′

k .)
– On a path, we do not want our range queries to wrap around as in the original

structure. Thus, if a right query returns an index smaller than i, or a left query
returns an index larger than i, we change the answer to ∅.

– The range search structure can only handle queries (i, j) for which both yi and
yj are in the ground set. Unfortunately, j may not be, for it may correspond to
an item of Xt inserted prior to entry into the current Pk . There is an easy fix:
upon entering Pk , compute and store succLk

(xvi
) for i = 1, . . . , n. Then, simply

replace a query (i, j) by (i, j ′) where j ′ is the successor (or predecessor) in Lk .

The key idea now is that a one-dimensional random walk has a quadratic cover
time [13]; therefore, the expected time between any change of paths on one track and
the next change of paths on the other track is Θ(n). This means that if we dovetail
the parallel updates by performing a large enough number of them per walking step,
we can keep the expected time per operation constant. This proves Theorem 3.1. �

4 Conclusion

We have presented a new approach to model and analyze restricted query sequences
that is inspired by Markov chains. Our results only scratch the surface of a rich body
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of questions. For example, even for the simple problem of the adversarial walk on
a path, we still do not know whether we can beat van Emde Boas trees with linear
space. Even though there is some evidence that the known lower bounds for successor
searching on a pointer machine give the adversary a lot of leeway [14], our lower
bound technology does not seem to be advanced enough for this setting. Beyond paths
and cycles, of course, there are several other simple graph classes to be explored, e.g.,
trees or planar graphs.

Furthermore, there are more fundamental questions on decorated graphs to be
studied. For example, how hard is it to count the number of distinct active sets (or
the number of nodes) that occur in the unique sink component of dec(G)? What can
we say about the behaviour of the active set in the limit as the walk proceeds ran-
domly? And what happens if we go beyond the dictionary problem and consider the
evolution of more complex structures during a walk on the event graph?
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