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ABSTRACT

Algorithms offer a rich, expressive language for modelers of
biological and social systems. They lay the grounds for nu-
merical simulations and, crucially, provide a powerful frame-
work for their analysis. The new area of natural algorithms
may reprise in the life sciences the role differential equa-
tions have long played in the physical sciences. For this to
happen, however, an “algorithmic calculus” is needed. We
discuss what this program entails in the context of influ-
ence systems, a broad family of multiagent models arising
in social dynamics.

1. INTRODUCTION
The gradual elevation of “computational thinking” within

the sciences is enough to warm the heart of any computer
scientist. Yet the long-awaited dawning of a new age may
need to wait a little longer if we cannot move beyond the
world of simulation and build a theory of natural algorithms
with real analytical heft. By “natural algorithms,” I mean
the myriad of algorithmic processes evolved by nature over
millions of years. Just as differential equations have given us
the tools to explain much of the physical world, so natural
algorithms will help us model the living world and make
sense of it. At least this is the hope and, for now, I believe,
one of the most pressing challenges facing computer science.

Science or engineering?

To draw a fine line between science and engineering is a fool’s
errand. Unrepentant promiscuity makes a clean separation
neither wise nor easy. Yet a few differences bear mentioning.
If science is the study of the nature we have, then engineering
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is the study of the nature we want: the scientist will ask how
the valley was formed; the engineer will ask how to cross it.
Science is driven by curiosity and engineering by need: one
is the stuff of discovery, the other of invention. The path of
science therefore seems more narrow. We want our physical
laws to be right and our mousetraps to be useful. But there
are more ways to be useful than to be right. Engineering
can “negotiate” with nature in ways science cannot. This
freedom comes at a price, however. Any mousetrap is at the
mercy of a better one. PageRank one day will go; the Second
Law of thermodynamics never will. And so algorithms, like
mousetraps, are human-designed tools: they are engineering
artifacts.

Or are they? Perhaps search engines don’t grow on trees,
but leaves do, and a sophisticated algorithmic formalism, L-
systems, is there to tell us how [20]. It is so spectacularly
accurate, in fact, that the untrained eye will struggle to pick
out computer-generated trees from the real thing. The algo-
rithmic modeling of bird flocking has been no less successful.
Some will grouch that evolution did not select the human
eye for its capacity to spot fake trees and catch avian im-
postors. Ask a bird to assess your computer-animated flock,
they’ll snicker, and watch it cackle with derision. Perhaps,
but the oohs and ahhs from fans of CGI films everywhere
suggest these models are on to something. These are hardly
isolated cases. Natural algorithms are quickly becoming the
language of choice to model biological and social processes.
And so algorithms, broadly construed, are both science and
engineering.

It’s all about language

The triumph of 20th-century physics has been, by and large,
the triumph of mathematics. A few equations scattered on
a single page of paper explain most of what goes on in the
physical world. This miracle speaks to the organizing princi-
ples of the universe: symmetry, invariance, and regularity—
precisely the stuff on which mathematics feasts. Alas, not
all of science is this tidy. Biology = physics + history; but
history is the great, unforgiving symmetry breaker. Instead
of identical particles subject to the same forces, the life sci-
ences feature autonomous agents, each one with its own idea
of what laws to obey. It is a long way, scientifically speaking,
from planets orbiting the sun in orderly fashion to unruly
slime molds farming bacterial crops. Gone are the symme-
try, invariance, and clockwork regularity of astronomy: what
we have is, well, sludge. But the sludge follows a logic that
has its own language, the language of natural algorithms.



The point of departure with classical mathematics is in-
deed linguistic. While differential equations are the native
idiom of electromagnetism, no one believes that cancer has
its own “Maxwell’s equations.” Yet it may well have its own
natural algorithm. The chain of causal links, some deter-
ministic, others stochastic, cannot be expressed solely in the
language of differential equations. It is not just the diver-
sity of factors at play (genetic, infectious, environmental,
etc); nor is it only their heterogeneous modes of interac-
tion. It is also the need for a narrative of collective behavior
that can be expressed at different levels of abstraction: first-
principles; phenomenological; systems-level; etc. The issue
is not size alone: the 3-body problem may be intractable but,
through the magic of universality, intricate phase transitions
among 1030 particles can be predicted with high accuracy.
The promise of agent-based natural algorithms is to deliver
tractable abstractions for descriptively complex systems.

What is complexity?

Such is the appeal of the word “complexity” that it comes
in at least four distinct flavors.

• Semantic: What is hard to understand. For 99.99% of
mankind, complex means complicated.

• Epistemological: What is hard to predict. An inde-
pendent notion altogether: complex chaotic systems
can be simple to understand while complicated mech-
anisms can be easy to predict.

• Instrumental: What is hard to compute, the province
of theoretical computer science.

• Linguistic: What is hard to describe. Physics has low
descriptive complexity—that’s part of its magic.1 By
contrast, merely specifying a natural algorithm may re-
quire an arbitrarily large number of variables to model
the diversity present in the system. To capture this
type of complexity is a distinctive feature of natural
algorithms.

Beyond simulation

Decades of work in programming languages have produced
an advanced theory of abstraction. Ongoing work on re-
active systems is attempting to transfer some of this tech-
nology to biology [9]. Building on years of progress in au-
tomata theory, temporal logic, and process algebra, the goal
has been to build a modeling framework for biological sys-
tems that integrate the concepts of concurrency, interaction,
refinement, encapsulation, modularity, stochasticity, causal-
ity, etc. With the right specifications in place, the hope is
that established programming language tools, such as type
theory, model checking, abstract interpretation, and the pi-
calculus can aid in verifying temporal properties of biosys-
tems. The idea is to reach beyond numerical simulation to
analyze the structure and interactions of biological systems.

1Descriptive complexity is an established subfield of theoretical
computer science and logic. Our usage is a little different, but
not different enough to warrant a change of terminology.

Such an approach, however, can only be as powerful as
the theory of natural algorithms behind it. To illustrate
this point, consider classifying all possible sequences x, Px,
P 2x, P 3x, etc, where x is a vector and P is a fixed stochas-
tic matrix. Simulation, machine learning, and verification
techniques can help, but no genuine understanding of the
process can be achieved without Perron-Frobenius theory.
Likewise, natural algorithms need not only computers but
also a theory. The novelty of the theory will be its reliance
on algorithmic proofs—more on this below.

Algorithms from nature

If living processes are powered by the “software” of nature,
then natural selection is the ultimate code optimizer. With
time and numbers on their side—billions of years and 1030

living specimens—bacteria have had ample opportunity to
perfect their natural algorithm. No wonder computer scien-
tists are turning to biology for algorithmic insight: neural
nets and DNA computing, of course, but also ant colony op-
timization [3], shortest path algorithms in slime molds [2];
maximal independent sets in fly brain development [1], etc.
Consensus, synchronization, and fault tolerance are concepts
central to both biology and distributed computing [15, 17].
The trade of ideas promises to be flowing both ways. This
article focuses on the outbound direction: how algorithmic
ideas can enrich our understanding of nature.

2. INFLUENCE SYSTEMS
A bad, fanciful script will make a good stage-setter. One

fateful morning, you stumble out of bed and into your kitchen
only to discover, crawling on the floor, a swarm of insects
milling around. Soon your dismay turns to curiosity, as you
watch the critters engage in a peculiar choreography. Each
insect seems to be choosing a set of neighbors (living or
inert) and move either toward or away from them. From
what you can tell, the ants pick the five closest termites;
the termites select the nearest soil pellets; the ladybugs pick
the two ants closest to the powdered sugar that is not in the
vicinity of any termite; etc. Each insect seems equipped with
its own selection procedure to decide how to pick neighbors
based on their species and the local environment. Once the
selection is made, each agent invokes a second procedure,
this time to move to a location determined entirely by the
identities and positions of its neighbors. To model this type
of multiagent dynamics, we have introduced influence sys-
tems [6]: the model is new, but only new to the extent that
it unifies a wide variety of well-studied domain-dependent
systems. Think of influence systems as a brand of networks
that perpetually rewire themselves endogenously.

Definition and examples

An influence system is specified by two functions f and G:
it is a discrete-time dynamical system,2 x 7→ f(x) in (Rd)n,

2A dynamical system generates an orbit by starting at a point
x and iterating the function f to produce f(x), f2(x), etc. The
goal is to understand the geometry of these orbits. We write the
phase space Rdn as (Rd)n to emphasize that the action is on the
n agents embedded in d-space.



where n is the number of agents, d is the dimension of the
ambient space (d = 2 in the example above), and each“coor-
dinate” xi of the state x = (x1, . . . , xn) ∈ (Rd)n is a d-tuple
encoding the location of agent i in Rd. With any state x
comes a directed “communication” graph, G(x), with one
node per agent. Each coordinate function fi of the map
f = (f1, . . . , fn) takes as input the neighbors of agent i in
G(x), together with their locations, and outputs the new lo-
cation fi(x) of agent i in Rd. The (action) function f and
(communication) function G are evaluated by deterministic
or randomized algorithms. An influence system is called
diffusive if f keeps each agent within the convex hull of its
neighbors. Diffusive systems never escape to infinity and
always make consensus (x1 = · · · = xn) a fixed point. The
system is said to be bidirectional if the communication graph
always remains undirected.

While f and G can be arbitrary functions, the philosophy
behind influence systems is to keep f simple so that emer-
gent phenomena can be attributed not so much to the power
of individual agents, but to the flow of information across the
communication network G(x). By distinguishing G from f ,
the model also separates the syntactic (who talks to whom?)
from the semantic (who does what?) It is no surprise then
to see recursive graph algorithms play a central role and pro-
vide a dynamic version of renormalization, a technique used
in quantum mechanics and statistical physics.

• Bounded-confidence systems: In this popular model of
social dynamics [10], d = 1 and xi is a real number
denoting the “opinion” of agent i. That agent is linked
to j if and only if |xi − xj | ≤ 1. The action function
f instructs each agent to move to the mass center of
their neighbors. This is the prototypical example of a
bidirectional diffusive influence system.

• Sync: An instance of Kuramoto synchronization, this
diffusive influence system links each of n fireflies to the
other fireflies whose flashes it can spot. Every critter
has its own flashing oscillator, which becomes coupled
with those of its neighbors. The function f specifies
how the fireflies adjust their flashings in reaction to
the graph-induced couplings [3, 23]. The model has
been applied to Huygens’s pendulum clocks as well to
circadian neurons, chirping crickets, microwave oscil-
lators, yeast cell suspensions, and pacemaker cells in
the heart [25].

• Swarming: The agents may be fish or birds, with states
encoding positions and velocities (for rigid 3D animal
models, d = 9). The communication graph links every
agent to some of its nearest neighbors. The function f
instructs each agent to align its velocity with that of
its neighbors, to move toward their center of gravity,
and to fly away from its perilously close neighbors [21,
24].

• Chemotaxis: Some organisms can sense food gradients
and direct their motion accordingly. In the case of
bacterial chemotaxis, the stimuli are so weak that the
organisms are reduced to performing a random walk
with a drift toward higher food concentrations. Influ-
ence systems can model these processes with the use of
both motile and inert agents.3 Chemotaxis is usually

3Some living systems (eg, ants, termites) exchange information

treated as an asocial process (single agents interact-
ing only with the environment). It has been observed,
however, that schooling behavior can facilitate gradi-
ent climbing for fish, a case where living in groups
enhances foraging ability [19].

Other examples of influence systems include the Ising model,
neural nets, Bayesian social learning, protein-protein inter-
action networks, population dynamics, etc.

How expressive are influence systems?

If agent i is viewed as a computing device, then the d-
tuple xi is its memory. The system is Markovian in that
all facts about the past with bearing on the future are en-
coded in x. The communication graph allows the function
f to be local if so desired. The procedure G itself might be
local even when appearance suggests otherwise: for exam-
ple, to identify your nearest neighbor in a crowd entails only
local computation although, mathematically, the function
requires knowledge about everyone. The ability to encode
different action/communication rules for each agent is what
drives up the descriptive complexity of the system. In re-
turn, one can produce great behavioral richness even in the
presence of severe computational restrictions.

(i ) Learning, competition, hierarchy: Agents can imple-
ment game-theoretic strategies in competitive environ-
ments (e.g., pursuit-evasion games) and learn to co-
operate in groups (e.g., quorum sensing). They can
self-improve, elect leaders, and stratify into dominance
hierarchies.

(ii ) Coarse-graining: Flocks are clusters of birds that main-
tain a certain amount of communicative cohesion over
a period of time. We can view them as “super-agents”
and seek the rules governing interaction among them.
Iterating in this fashion can set the stage for dynamic
renormalization in a time-changing analog of the renor-
malization group of statistical mechanics (see §6).

(iii ) Asynchrony and uncertainty: In the presence of de-
layed or asynchronous communication, agents can use
their memory to implement a clock for the purpose of
time stamping. Influence systems can also model un-
certainty by limiting agents’ access to approximations
of their neighbors’ states.

A few words about our agent-based approach. Consider
the diffusion of pollen particles suspended in water. A Eu-
lerian approach to this process seeks a differential equation
for the concentration c(x, t) of particles at any point x and
time t. There are no agents, just density functions evolving
over time [18]. An alternative approach, called Lagrangian,
would track the movement of all the individual particles and
water molecules by appealing to Newton’s laws. Given the
sheer number of agents, this line of attack crashes against a
wall of intractability. One way around it is to pick a single

by stigmergy: instead of communicating directly with signals,
they leave traces such as pheromones in the environment, which
others then use as cues to coordinate their collective work. Al-
though lacking autonomy, inert components can still be modeled
as agents in an influence system.



imaginary self-propelled agent and have it jiggle about ran-
domly in a Brownian motion. This agent models a typical
pollen particle—typical in the “ergodic” sense that its time
evolution mimics the space distribution of countless parti-
cles caught on film in a snapshot. Scaling plays a key role:
our pollen particles indeed can be observed only on a time
scale far larger than the molecular bumps causing the jig-
gling. Luckily, Brownian motion is scale-free, meaning that
it can be observed at any scale. As we shall see in §6, the
ability to express a dynamical process at different scales is
an important feature of influence systems.

The strength of the Eulerian approach is its privileged ac-
cess to an advanced theory of calculus. Its weakness lies in
two commitments: global behavior is implied by infinites-
imal changes; and every point is subject to identical laws.
While largely true in physics, these assumptions break down
in the living world, where diversity, heterogenity, and au-
tonomy prevail. Alas, the Lagrangian answer, agent-based
modeling, itself suffers from a serious handicap: the lack of
a theory of natural algorithms.

What could go wrong?

There are two arguments against the feasibility of a domain-
independent theory of natural algorithms. One is an intrin-
sic lack of structure. But the same can be said of graphs, a
subject whose ties to algebra, geometry, and topology have
met with resounding success, including the emergence of uni-
versality. A more serious objection is that, before we can an-
alyze a natural algorithm, we must be able to specify it. The
bottom-up, reductionist approach, which consists of specify-
ing the functionality and communicability of each agent by
hand (as is commonly done in swarming models), won’t al-
ways work. Sometimes, only a top-down, phenomenological
approach will get us started on the right track. We’ve seen
this before: the laws of thermodynamics were not derived
as abstractions of Newton’s laws—though that’s what they
are—but as rules governing observable macrostates (P, V, T ,
and all that). Likewise, a good flocking model might want
to toss aside anthropomorphic rules (“stay aligned,” “don’t
stray,” etc) and choose optimized statistical rules inferred
experimentally. The specs of the natural algorithm would
then be derived algorithmically. This is why we have placed
virtually no restriction on the communication function G in
our present analysis of diffusive influence systems.

Outline

We open the discussion in §3 with the total s-energy, a key
analytical device used throughout. We turn to bird flocking
in §4, which constitutes the archetypical nondiffusive influ-
ence system. We take on the diffusive case in §5, with the
notion of algorithmic calculus discussed in §6.4 General dif-
fusive influence systems are Turing-complete, yet the mildest
perturbation creates periodic behavior. This is disconcert-
ing. Influence systems model how people change opinions
over time as a result of human interaction and knowledge
acquisition. Instead of ascending their way toward enlight-
enment, however, people are doomed to recycle the same

4Unless noted otherwise, the results discussed are from: [5] for
§3; [4] for §4; [6] for §5,6.

opinions in perpetuity—there is a deep philosophical insight
there, somewhere...

3. THE S-ENERGY
This section builds the tools needed for the bidirectional

case and can be read separately from the rest. Let (Pt)t≥0 be
an infinite sequence of n-by-n stochastic matrices; stochastic
means that the entries are nonnegative and the rows sum up
to 1. Leaving aside influence systems for a moment, we make
no assumption about the sequence, not even that it is pro-
duced endogenously. We ask a simple question about matrix
sequences: under what conditions does P<t := Pt−1 · · ·P0

converge as t→∞? Certainly not if

Pt =

(
0 1
1 0

)
.

The problem here is lack of self-confidence: the two agents in
the system don’t trust themselves and follow their neighbors
blindly. So let’s assume that the diagonal entries of Pt are
positive. Alas, this still does not do the trick: the matrices1 0 0

0 1 0
0 2/3 1/3

 and

 1 0 0
0 1 0

2/3 0 1/3


grant the agents self-confidence, yet composing them in al-
ternation exchanges the vectors (0, 1, 1/4) and (0, 1, 3/4)
endlessly. The oscillation is caused by the lack of bidirec-
tionality: for example, the recurring link from agent 3 to
agent 1 is never reciprocated. The fix is to require the
graphs to be undirected or, equivalently, the matrices to
be type-symmetric,5 which instills mutual confidence among
the agents. With both self-confidence and bidirectionality
in place, the sequence P<t always converges [12, 14, 16].
(Interestingly, this is not true of forward products P0 · · ·Pt
in general.) With nothing keeping (Pt)t≥0 from “stalling”
by featuring arbitrarily long repeats of the identity matrix,
bounding the convergence rate is obviously impossible. Yet
an analytical device, the total s-energy [5], allows us to do
just that for bidirectional diffusive influence systems. The
trick is to show that they cannot stall too long without dying
off.

Preliminaries

Fix a small ρ > 0 and let (Pt)t≥0 be a sequence of stochastic
matrices such that ρ ≤ (Pt)ii ≤ 1 − ρ and (Pt)ij > 0 ⇒
(Pt)ji > 0. Let Gt be the (undirected) graph whoses edges
are the positive entries in Pt. With x(t + 1) = Pt x(t) and
x(0) = x ∈ [0, 1]n, the total s-energy is defined as:

E(s) =
∑
t≥0

∑
(i,j)∈Gt

|xi(t)− xj(t)|s . (1)

We use the s-energy in much the same way one uses Cher-
noff’s inequalities to bound the tails of product distribu-
tions. Being a generalized Dirichlet series, the s-energy can
be inverted and constitutes a lossless encoding of the edge
lengths. Why this unusual choice? Because, as with the

5The zero-entries of a type-symmetric matrix and its transpose
occur at the same locations.



most famous Dirichlet series of all, the Riemann zeta func-
tion

∑
n−s, the system’s underlying structure is multiplica-

tive: indeed, just as n is a product of primes, xi(t) − xj(t)
is a product of the form vTPt−1 · · ·P0 x. Let En(s) denote
the maximum value of E(s) over all x ∈ [0, 1]n. One should
expect the function En(s) to encode all sorts of symme-
tries. This is visible in the case n = 2 by observing that
it can be continued meromorphically in the whole complex
plane (Fig.1).

Figure 1: The analytic continuation of |E2(s)|.

The sequence formed by (Pt)t≥0 is called reversible if Gt is
connected and there is a probability distribution (π1, . . . , πn)
such that πi(Pt)ij = πj(Pt)ji for any t; see detailed defini-
tion in [5]. This gives us a way to weight the agents so that
their mass center never moves. The notion generalizes the
concept of reversible Markov chains, with which it shares
some of the benefits, including faster convergence to equi-
librium.

Bounds

The s-energy measures the total length of all the edges for
s = 1 and counts their number for s = 0; the latter is
usually infinite, so it is sensible to ask how big En(s) can
be for 0 < s ≤ 1. On the lower bound front, we have
En(1) = Ω(1/ρ)bn/2c and En(s) = s1−n(1/ρ)Ω(n), for any
n large enough, s ≤ s0, and any fixed positive s0 < 1. Of
course, the s-energy is useful mostly for its upper bounds [5]:

En(s) ≤

{
(1/ρ)O(n) for s = 1;

s1−n(1/ρ)n
2+O(1) for 0 < s < 1.

(2)

For reversible sequences and any 0 < s ≤ 1,

n−2En(s) ≤ EDn (s) ≤ 2n

s

(2n

ρ

)s/2+1

, (3)

where EDn (s) =
∑
t≥0 diams{x1(t), . . . , xn(t)}. This is es-

sentially optimal. Fix an arbitrarily small ε > 0. A step
t is called trivial if |xi(t) − xj(t)| < ε for each (i, j) ∈ Gt.
The maximum number Cε of nontrivial steps is bounded by
ε−sEn(s); hence,

Cε(n) ≤ min{ 1
ε

( 1
ρ
)O(n) , (log 1

ε
)n−1( 1

ρ
)n

2+O(1) }, (4)

which is optimal if ε is not too small. Convergence in the re-
versible case is polynomial: if ε < ρ/n, then ‖x(t)−πTx‖2 ≤
ε, for t = O(ρ−1 n2|log ε|). This bound is optimal. In par-
ticular, we can specialize it to the case of random walks in
undirected graphs and retrieve the usual mixing times.

We briefly mention two examples of diffusive influence sys-
tems for which the s-energy readily yields bounds on the
convergence time [5]. HK systems track opinion polariza-
tion in a population [10]: in the bounded-confidence version
(mentioned earlier), the agents consist of n points in Rd. At
each step, each agent moves to the mass center of the agents
within distance 1 (Fig.2).

Figure 2: Randomly placed agents evolve to form shapes

of dimension 2, then 1, and finally 0.

Truth-seeking systems assume a “cognitive division of la-
bor” [11]. We fix one agent, the truth, and keep the n − 1
others mobile. A “truth seeker” is a mobile agent that is
joined to the truth in every Gt. All the other mobile agents
are “ignorant,” meaning that they never join to the truth
through an edge, although they might indirectly communi-
cate with it along a path. Any two mobile agents are joined
in Gt whenever their distance is less than 1.

Why the s-energy?

Let convP denote the convex hull of the points formed by
the rows of the matrix P . We have the“Russian doll”nesting
structure (Fig.3):

convP<t ⊆ · · · ⊆ convP1P0 ⊆ convP0 ⊂ Rn.

The literature on stochastic matrices features a variety of
coefficients of ergodicity to help us measure how quickly
the Russian dolls deflate: eigenvalues, joint spectral radius,
width, diameter, volume, etc [22]. This is how the conver-
gence of products of stochastic matrices, which includes the
whole subject of Markov chain mixing, is established. By
seeking progress at each step, however, these methods can-
not cope with stalling. The total s-energy gets around this
by factoring time out (as a Fourier transform would with a
time series) and producing a global deflation measure inte-
grated over the whole time horizon.

The s-energy is controlled by a single parameter s, which
we can adjust at will to get the most out of the inequality
Cε ≤ ε−sE(s), typically choosing s so that (dE/ds)|s =
E ln ε. We sketch the proof of (2), beginning with the case
s < 1. The argument relies on an importance device: the
flow tracker. Think of it as breadth-first search in a dynamic
graph. A little imagery will help. Pick agent 1 and dip it in
water, keeping all the other agents dry. Whenever an edge
of Gt links a dry agent to a wet one, the dry one gets wet.
As soon as all the agents become wet (if ever), dry them all
except agent 1; repeat.



Figure 3: The deflating matrix polytope.

Flow tracker (5)

[1] t0 ← 0.

[2] Repeat forever:

[2.1] Wt0 ← {1}.
[2.2] For t = t0, t0 + 1, . . . ,∞:

Wt+1 ←Wt ∪ { i | ∃ (i, j) ∈ Gt & j ∈Wt }.
[2.3] If |W∞| = n then t0 ← min{ t > t0 : |Wt| = n }

else stop.

Let Wt denote the set of wet agents at time t, which always
includes agent 1. The assignments of t0 in step [2.3] divide
the timeline into epochs, time intervals during which either
all agents become wet or, failing that, the flow tracker comes
to a halt (breaking out of the repeat loop at “stop”). Take
the first epoch: it is itself divided into subintervals by the
coupling times t1 < · · · < t` at which the set of wet agents
grows: Wtk ⊂ Wtk+1. If ‖Wt‖ denotes the length of the
smallest interval enclosing Wt, it can be shown by induction
that ‖Wtk+1‖ ≤ 1− ρk. It then follows that E1(s) = 0 and,
for n ≥ 2,

En(s) ≤ 2nEn−1(s) + (1− ρn)sEn(s) + n3,

which implies (2) for s < 1.
The case s = 1 features a fundamental concept in the

study of natural algorithms, that of an algorithmic proof.
Think of the agents as car drivers: the 1-energy then mea-
sures the total mileage. Fill the gas tank of each car with
an initial amount determined by some formula (whose de-
tails are immaterial for our purposes). Since we do not know
ahead of time how much gas any given car will need, we set
up a gas trading mechanism: a refueling tanker hovers over
the cars, ready to provide (or take) gas to (or from) any
car that needs it. The needs come in two ways: first, a car
needs gas to move; second, the trading mechanism specifies
how much gas any car must have at any time, so any excess
supply must be handed over to the refueling tanker. Any
car in need of gas (for driving or simply complying with the
rules) is free to help itself from the fuel tanker. The trick
is to show that the system can run forever without the fuel
tanker ever running out of gas and being unable to meet the
drivers’ needs.

Dynamicists might think of this as a kind of distributed
Lyapunov function. This would be missing the point. Algo-
rithmic proofs of the type found in the amortized analysis of
algorithms—often expressed, as above, via the trading rules
of a virtual economy—are meant to cope with the sort of de-
scriptive complexity typically absent from low-dimensional

dynamics. The benefits come from the richer analytical lan-
guage of algorithmic proofs: indeed, it’s all about language!

4. BIRD FLOCKING
We briefly discuss a classic instance of a nondiffusive in-

fluence system, bird flocking, and report the results from [4].
The alignment model we use [8, 13, 24] is a trimmed-down
version of Reynolds’s original model [21]. In this influence
system, d = 6 and each bird i is specified by its position zi
and velocity vi. The undirected communication graph G(x)
joins any two birds within a certain fixed distance of each
other. The birds in any connected component form a flock.
Reordering the coordinates of the 6n-dimensional state vec-
tor x as (z,v), we specify the dynamics as

x
f7−→
(
P (x)⊗ I3

)
x :=

{(
In In
0 Q(x)

)
⊗ I3

}
x ,

where Q(x) is the n-by-n “velocity” stochastic matrix of a
(lazy) random walk on the graph G(x) and ⊗ is the Kro-
necker product that distributes the action along each co-
ordinate axis. The matrix P is 2n-by-2n, so each entry is
multiplied not by a single coordinate in x but by a 3-tuple; in
other words, P (x) acts not on R2n but on (R3)2n. Although
the velocities can be inferred from the positions, they need
to be included in the phase space to keep the system Marko-
vian.

Figure 4: The bird at the center of the circle is influ-

enced by its two neighbors in it.

The system always converges in the following sense: after
an initial period when the behavior can be fairly arbitrary,
the birds aggregate in flocks which, from that point on, can
only merge together. If we wait long enough, the flocks will
eventually stabilize. The communication graph will remain
forever fixed and the flocks will each move at a constant
speed and never meet again. The fragmentation period is
at most exponential in the bit length of the input. The
convergence of birds’ velocities requires the use of the total
s-energy and various geometric considerations. One of them
is to show that some virtual bird must necessarily fly almost
along a straight line after a while. This addresses the issue
of whether all birds can keep flying in spirals.

What is a virtual bird? Imagine the presence of one ba-
ton in the system. At any given time, a single bird holds
the baton and may pass it on to any of its neighbors in the
communication graph. Whoever holds the baton is the vir-
tual bird at that instant (virtual because its identity keeps



Figure 5: The virtual bird can hold on to the baton or

pass it to any neighbor.

changing). Is there a baton-passing protocol that will keep
the virtual bird flying in (almost) a straight line? (A ques-
tion whose answer can only be an algorithmic proof.) This
is key to determining whether two flocks flying away from
each other can be brought together by other flocks. The
design of a protocol involves the geometric analysis of the
flight net (Fig.6), which is the unfolding of all neighboring
relations in four-dimensional spacetime. This is a tree-like
geometric object in R4 with local convexity properties, which
encodes the exponentially large number of influences among
birds. The position of each bird can be expressed by a path
integral in that space. Examining these integrals (actually
sums) and the geometry that produces them allows us to
answer the question above [4].

Figure 6: The flight net and path integrals in R4.

While flocks cease to fragment reasonably rapidly (thus
ensuring quick physical convergence), it might take very long
for them to stop merging. How long? A tower-of-twos of
height logarithmic in the number of birds. Surprisingly, this
result is tight! To prove that, we regard the set of birds
as forming a computer and we ask a “busy-beaver” type of
question: What is the smallest nonzero angle between any
two stationary velocities? The term “stationary” refers to
the fact that each flock is a coupled oscillator with constant
stationary velocity (the lowest mode of its spectrum). These
velocity vectors form angles between them. How small can
they get short of 0? (Zero angles correspond to flocks flying
in parallel.) To answer this question requires looking at the
flocks of birds as a circuit whose gates, enacting flock merges,
produce a redistribution of the energy among the modes
called a spectral shift. It is remarkable that the busy-beaver
function of this exotic computing device can be pinned down
almost exactly: the logarithmic height of the tower-of-twos
is known up to a factor of 4.

5. DIFFUSIVE INFLUENCE SYSTEMS
We set f(x) = (P (x) ⊗ Id )x ∈ (Rd)n, where P (x) is a

stochastic matrix whose positive entries correspond to the
edges of G(x) and are rationals assumed larger than some
arbitrarily small ρ > 0. We grant the agents a measure of
self-confidence by adding a self-loop to each node of G(x).
Agent i computes the i-th row of P (x) by means of its own
algebraic decision tree; that is, on the basis of the signs of
a finite number of dn-variate polynomials evaluated at the
coordinates of x. This high level of generality allows G(x) to
be specified by any first-order sentence over the reals.6 Note
how the descriptive complexity resides in the communication
algorithm G, which can be arbitrarily expressive: the action
f is confined to diffusion (with different weights for each
agent if so desired).

By taking tensor powers (no details needed here), we can
linearize the system and reduce the dimension to d = 1, so
f(x) = P (x)x, where P (x) = Pc, for any x ∈ c, and c is an
atom (open n-cell) of an arrangement of hyperplanes in Rn,
called the switching partition SP (Fig.7). We assume self-
confidence but not mutual confidence, ie, positive diagonal
entries but not necessarily bidirectionality.

Figure 7: The atom c of the SP maps via f to a cell

intersecting two atoms.

In spite of having no positive Lyapunov exponents, diffu-
sive systems can be chaotic and even Turing-complete. Per-
turbations wipe out their computational power, however, by
making them attracted to periodic orbits. Such systems, in
other words, are clocks in disguise.7 This dichotomy re-
quires a subtle bifurcation analysis, which we sketch in the
next section.

Theorem 1: [6] Given any initial state, the orbit of a diffu-
sive influence system is attracted exponentially fast to a limit
cycle almost surely under an arbitrarily small perturbation.
The period and preperiod are bounded by a polynomial in the
reciprocal of the failure probability. In the bidirectional case,

6This is the language of geometry and algebra with state-
ments specified by any number of quantifiers and polynomial
(in)equalities. It was shown to be decidable by Tarski and
amenable to quantifier elimination and algebraic cell decompo-
sition by Collins [7].
7To perturb the system means randomly perturbing the switching
partition and making exceptions for infinitesimal and indefinitely
disappearing edges. The conditions are easy to enforce and, in
one form or another, required. Note that we do not perturb the
matrices or the initial states.



the system is attracted to a fixed point in time nO(n)|log ε|,
where n is the number of agents and ε is the distance to the
fixed point.

The number of limit cycles is infinite but, if we measure
distinctness the right way (ie, by factoring out foliations),
there are actually only a finite number of them.8 The critical
region of parameter space is where chaos, strange attractors,
and Turing completeness reside. It is still very mysterious.9

This does not mean it is difficult to identify at least some
of critical points. Here is a simple example of a chaotic
diffusive influence system with n = 4 and d = 1: the first
two agents stay on opposite sides of the origin; at any time,
the one further from the origin moves to their midpoint, ie,

(x1, x2)
f7−→ 1

2

{
( 2x1, x1 + x2 ) if x1 + x2 ≥ 0

(x1 + x2, 2x2 ) else.

Agent 3 is fixed at x3 = 1. Agent 4 moves midway to-
ward agent 1 if the latter is moving and midway toward
agent 3 if agent 2 is the one moving. To see why the system
has positive topological entropy (the usual sign of chaos), it
suffices to consider the infinite bit string s0s1s2 · · · , where
st = 0/1 depending on whether agent 1 or 2 is moving at
time t. If agent 2 is initialized at x2 = 1 and agent 1 any-
where in (−1, 0), the string matches the binary expansion of
1/(1− x1); in other words, predicting the t-th step requires
knowing the initial placement of agent 1 with an error ex-
ponentially small in t.

Energy vs. Entropy

As in the Ising model, the system mediates a clash be-
tween two opposing “forces”: one, caused by the map’s dis-
continuities, is “entropic” and leads to chaos; the other one,
related to the Lyapunov exponents, is energetic and pulls the
system toward an attracting set within which the dynamics
is periodic. The goal is to show that, outside a vanishingly
small “critical” region in parameter space, entropy always
loses. What does it mean? If, unlike in Fig.7, the iterated
image of any ball b never intersected the SP hyperplanes,
it would merrily bounce around until eventually periodicity
kicked in. In the figure, f3(b) does not oblige and splits into
two smaller bodies. Both will bounce around until possi-
bly splitting again and so on. If this branching process gets
out of control, chaos will ensue. To squelch this entropic
process and induce periodicity, we have the stochasticity of
the matrices on our side: it causes the ball b to shrink and
dissipate energy. Unlike the classical Ising model, however,
the system has a single phase outside the critical region.

Entropy against energy: which one will win? For entropy
to lose out, the ball b must avoid splitting up too frequently.
This can be expressed by an (infinite) system of linear in-
equalities. Feasibility hinges on a type of matrix rigidity
question: in this case, given a certain matrix, how many
rows must be removed before we can express the first col-
umn as a linear combinations of the others? Periodicity
requires that this number be high. The matrix in question

8A limit cycle is an attracting periodic orbit, eg, {−1, 1} where
x(t) = (−1)t + 2−tx(t− 1) and x(0) ∈ R.
9I only know that the critical region has measure zero and looks
like a Cantor set.

is extracted from the system’s stochastic matrices and the
SP equations, hence is highly structured.

Our sketchy explanation skipped over the main source of
difficulty. The ball b in fact does not shrink in all directions.
Take (1, . . . , 1)T : it is a principal right-eigenvector for the
eigenvalue 1, so we won’t see much contraction in that di-
rection. Worse, the noncontracting principal eigenspace can
have arbitrarily high dimension dt. To prove that the crit-
ical region has measure zero requires a firm analytical grip
on dt. At time t, the dimension dt is equal to the num-
ber of essential communicating classes in the Markov chain
P (f t(x)). To keep track of dt, a number that can change
constantly, we extend the flow tracker to dynamic directed
gaphs.

6. AN ALGORITHMIC CALCULUS
As the system evolves, we are in a position to isolate cer-

tain subsystems and treat them recursively. If, during a
certain time interval, the communication network consists
of two dynamic subgraphs A,B with no directed edges from
B to A, then we can break down the system during that
period into B and C, where C consists of A together with
the contraction of B into a single vertex. This recursive
treatment (“dynamic renormalization”) can only be accom-
plished algorithmically since we don’t know the structure of
the recursive systems ahead of time—what with edges com-
ing and going all the time. (Observe the difference with
the Ising model, where the particles sit on a lattice and the
coarse-graining can be structured prior to action.) We men-
tion another difference, this time with classical algorithms.
The decision tree of influence systems (called the coding
tree) is infinite, so any perturbation has rippling effects that
translate into infinitely many conditions; this explains the
need to deal with infinite series such as the total s-energy or
infinite sets of algebraic conditions as in the matrix rigidity
problem mentioned earlier.

By scale invariance and convexity, we may confine the
phase space to [0, 1]n. Let Mδ denote the union of all the
SP hyperplanes shifted by a small δ. It is useful to classify
the initial states by how long it takes their orbits to hit
Mδ, if ever. With f0 = In and min ∅ = ∞, we define the
label `(x) of x ∈ [0, 1]n as the minimum integer t such that
f t(x) ∈ Mδ. The point x is said to vanish at time `(x) if
its label is finite. The points that do not vanish before time
t form the set St: we have S0 = [0, 1]n; and, for t > 0,

St = S0 \
t−1⋃
k=0

f−k(Mδ) .

Each of St’s connected components is specified by a set of
strict linear inequalities in Rn, so St is a union of disjoint
open n-cells, whose number we denote by #St. Each cell of
St+1 lies within a cell of St. The limit set S∞ =

⋂
t≥0 St

collects the points that never vanish. We say that the system
is nesting at t if St = St+1. The minimum value of t (or ∞)
is called the nesting time ν of the system. Labels cannot be
skipped: if k is a label, then so is k − 1. It follows that the
nesting time ν is the minimum t such that, for each cell c
of St, f t(c) lies within an atom. If c is a cell of Sν , then
f(c) intersects at most one cell of Sν and Sν = S∞. Any
nonvanishing orbit is eventually periodic and the sum of its
period and preperiod is bounded by #Sν .



We define the directed graph F with one node per cell c of
Sν and an edge from (c, c′), where c′ is the unique cell of Sν ,
if it exists, that intersects f(c). The edge (c, c′) is labeled
by the linear map f|c defined by the matrix Pa, where a
is the unique atom a ⊇ c. The graph defines a sofic shift
(ie, a regular language) of the functional kind, meaning that
each node has exactly one outgoing edge, possibly a self-
loop, so any infinite path leads to a cycle. Periodicity follows
immediately. The trajectory of a point x is the string s(x) =
c0c1 · · · of atoms that its orbit visits: f t(x) ∈ ct for all
0 ≤ t < `(x). It is infinite if and only if x does not vanish,
so all infinite trajectories are eventually periodic.

The coding tree

This infinite rooted tree T encodes into one geometric ob-
ject the set of all orbits. (It is the natural-algorithm equiv-
alent of the decision tree of classical algorithms.) It is em-
bedded in [0, 1]n × N, with the last dimension representing
time. The atoms are redefined as the n-dimensional cells
in [0, 1]n \Mδ. Each child v of the root is associated with
an atom Uv. The phase tube (Uv, Vv) of each child v is the
“time cylinder” whose cross-sections at times 0 and 1 are Uv
and Vv = f(Uv), respectively. The tree is built recursively
by subdividing Vv into the cells c formed by its intersection
with the atoms, and attaching a new child w for each c: we
set Vw = f(c) and Uw = Uv ∩ f−tv (c), where tv is the depth
of v (Fig.8). We denote by Pw the matrix of the map’s re-
striction to c. The phase tube (Uv, Vv) consists of all the
cylinders whose cross-sections at t = 0, . . . , tv are, respec-
tively, Uv, f(Uv), . . . , f tv (Uv) = Vv. Intuitively, T divides
up the atoms into maximal regions over which the iterated
map is linear.

Figure 8: A phase tube (Uw, Vw) of length two.

Let ww′w′′ · · · denote the upward, tw-node path from w
to the root (but excluding the root). Using the notation
P≤w = PwPw′Pw′′ · · · , we have the identities Vw = P≤w Uw
and Sk =

⋃
w{Uw | tw = k }. Labeling each node w by

the unique atom that contains the cell c above allows us to
interpret any path as a word of atom labels and define the
language L(T ) of all such words. The coding tree is the
system’s Rosetta stone, from which everything of interest
can be read. To do that, we need to define a few parameters:

• The nesting time ν = ν(T ) is the minimum depth at
which any node has at most one nonvanishing child. A
node v is shallow if tv ≤ ν.

• The word-entropy h(T ) captures the growth rate of
the language L(T ): it is defined as the logarithm of

the number of shallow nodes; #Sν ≤ 2h(T ).

• The period p(T ) is the maximum (prime) period of any
word in L(T ).

The arborator

We assemble the coding tree by glueing together smaller
coding trees defined recursively. We entrust this task to
the arborator, a recursive algorithm expressed in a language
for “lego-like” assembly. The arborator needs two (infinite)
sets of parameters to do its job, the coupling times and the
renormalization scales. To produce these numbers, we use
an extension of the flow tracker (§3) to directed graphs. The
arborator relies on a few primitives that we briefly sketch.
The direct sum and direct product are tensor-like operations
that we use to assemble the coding tree from smaller pieces.
We can also compile a dictionary to keep track of the tree’s
parameters (nesting time, word-entropy, etc) as we build it
up one piece at a time.

Figure 9: The two tensor operations.

Direct sum. The coding tree T = T1 ⊕T2 models two inde-
pendent systems of size n1 and n2. The phase space of the
direct sum is of dimension n = n1 + n2. A path w0, w1, . . .
of T is a pairing of paths in the constituent trees: the node
wt is of the form (ut, vt), where ut (resp. vt) is a node of T1

(resp. T2) at depth t. The direct sum is commutative and
associative; furthermore, Uw = Uu ×Uv, Vw = Vu × Vv, and
Pw = Pu ⊕ Pv.

Direct product. Consider two systems S1 and S2, governed
by different dynamics yet evolving in the same phase space
[0, 1]n. Given an arbitrary region Λ ⊂ [0, 1]n, define the
hybrid system S with the dynamics of S2 over Λ and S1

elsewhere. Suppose we had complete knowledge of the cod-
ing tree Ti of each Si (i = 1, 2). Could we then combine
them in some ways in cut-and-paste style to assemble the
coding tree T of S? The direct product T1⊗T2 provides the
answer. The operation is associative but not commutative.
It begins by marking certain nodes of T1 as absorbed and
pruning the subtrees below. This operation is called absorp-
tion by analogy with the absorbing states of a Markov chain:
any orbit reaching an absorbed leaf comes to a halt, broken
only after we reattach a copy of T2 at that leaf. The copy
must be properly cropped.



Dynamic Renormalization

Directs sums model independent subsystems through par-
allel composition. Direct products model sequential compo-
sition. What are the benefits? In pursuit of some form
of contractivity, the generalized flow tracker classifies the
communication graphs by their connectivity properties and
breaks up orbits into sequential segments accordingly. It
partitions the set of stochastic matrices into classes and de-
compose the coding tree T into maximal subtrees consisting
of nodes v with matrices Pv from the same class. The power
of this“renormalization”procedure is that it can be repeated
recursively. We classify the communication graphs by their
block-directionality type: G(x) is of type m→ n−m if the
agents can be partitioned into A,B (|A| = m) so that no
B-agent ever links to an A-agent; if in addition, no A-agent
links to any B-agent, G(x) is of type m ‖n−m. If we de-
fine the renormalization scale wk = |Wtk+1| − n + m for
k = 1, . . . , ` − 1 (where Wt denotes the set of wet nodes),
any path of the coding tree can be expressed as

Tm→n−m =⇒ Tm ‖n−m | t1
⊗

{ `−1⊗
k=1

Twk→n−wk | tk+1−tk−1

}
⊗ Tm→n−m .

The subscripts indicate the lengths of the (underlined) renor-
malized subsystems. Varying the shift δ may change the
coding tree, so we extend all the previous definitions to the
global coding tree T ∆ with phase space [0, 1]n×∆, for a tiny
interval ∆ centered at the origin. We have all the elements
in place for the algorithmic proof of Theorem 1 to proceed;
see [6] for details.

Figure 10: The algorithmic calculus.
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[24] Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet,
O. Novel type of phase transition in a system of self-driven
particles, Physical Review Letters 75 (1995), 1226–1229.

[25] Winfree, A.T. Biological rhythms and the behavior of
populations of coupled oscillators, J. Theoret. Bio. 16, 1
(1967), 15–42.


