TECHNICAL PERSPECTIVE;

FINDING A GOOD NEIGHBOR, NEAR AND FAST

by Bernard Chazelle

ou haven't read it yet, but you can already tell this article is going to be one long jumble of

words, numbers, and punctuation marks. Indeed, but look at it differently, as a text classifier

would, and you will see a single point in high dimension, with word frequencies acting as
coordinates. Or take the background on your flat panel display: a million colorful pixels teaming up
to make quite a striking picture. Yes, but also one single point in 10°-dimensional space—that is, if
you think of each pixel's RGB intensity as a separate coordinate. In fact, you don’t need to look hard
to find complex, heterogeneous data encoded as clouds of points in high dimension. They routinely
surface in applications as diverse as medical imaging, bioinformatics, astrophysics, and finance.

Why? One word: geometry. Ever since Euclid pondered what he
could do with his compass, geometry has proven a treasure trove for
countless computational problems. Unfortunately, high dimension
comes at a price: the end of space partitioning as we know it. Chop up
a square with two bisecting slices and you get four congruent squares.
Now chop up a 100-dimensional cube in the same manner and you get
2190 Jigtle cubes—some Lego set! High dimension provides too many
places to hide for searching to have any hope.

Just as dimensionality can be a curse (in Richard Bellman’s words),
so it can be a blessing for all to enjoy. For one thing, a multitude of ran-
dom variables cavorting together tend to produce sharply concentrated
measures: for example, most of the action on a high-dimensional sphere
occurs near the equator, and any function defined over it that does not
vary too abruptly is in fact nearly constant. For another blessing of
dimensionality, consider Wigner's celebrated semicircle law: the spectral
distribution of a large random matrix (an otherwise perplexing object)
is described by a single, lowly circle. Sharp measure concentrations and
easy spectral predictions are the foodstuffs on which science feasts.

But what about the curse? It can be vanquished. Sometimes.
Consider the problem of storing a set S of # points in R (for very large
d) in a data structure, so that, given any point ¢, the nearest p € S (in
the Euclidean sense) can be found in a snap. Trying out all the points
of S is a solution—a slow one. Another is to build the Voronoi diagram
of S. This partitions R? into regions with the same answers, so that
handling a query g means identifying its relevant region. Unfortunately,
any solution with the word “partition” in it is likely to raise the specter
of the dreaded curse, and indeed this one lives up to that expectation.
Unless your hard drive exceeds in bytes the number of particles in the
universe, this “precompute and look up” method is doomed.

What if we instead lower our sights a little and settle for an approx-
imate solution, say a point p € S whose distance to ¢ is at most ¢ =
1 + & times the smallest one? Luckily, in many applications (for exam-
ple, data analysis, lossy compression, information retrieval, machine

Biography
Bernard Chazelle (chazelle@cs.princeton.edu) is a professor of com-
puter science at Princeton University, Princeton, NJ.

learning), the data is imprecise to begin with, so erring by a small fac-
tor of ¢ > 1 does not cause much harm. And if it does, there is always
the option (often useful in practice) to find the exact nearest neighbor
by enumerating all points in the vicinity of the query: something the
methods discussed below will allow us to do.

The pleasant surprise is that one can tolerate an arbitrarily small
error and still break the curse. Indeed, a zippy query time of O(d log
1) can be achieved with an amount of storage roughly 2%, No curse
there. Only one catch: a relative error of, say, 10% requires a prohibi-
tive amount of storage. So, while theoretically attractive, this solution
and its variants have left practitioners unimpressed.

Enter Alexandr Andoni and Piotr Indyk [1], with a new solution that
should appeal to theoretical and applied types alike. It is fast and eco-
nomical, with software publicly available for slightly earlier incarnations
of the method. The starting point is the classical idea of locality-
sensitive hashing (LSH). The bane of classical hashing is collision: too
many keys hashing to the same spot can ruin a programmer’s day. LSH
turns this weakness into a strength by hashing high-dimensional points
into bins on a line in such a way that only nearby points collide. What
better way to meet your neighbors than to bump into them? Andoni and
Indyk modify LSH in critical ways to make neighbor searching more
effective. For one thing, they hash down to spaces of logarithmic
dimension, as opposed to single lines. They introduce a clever way of
cutting up the hashing image space, all at a safe distance from the
curse’s reach. They also add bells and whistles from coding theory to
make the algorithm more practical.

Idealized data structures often undergo cosmetic surgery on their
way to industrial-strength implementations; such an evolution is likely
in this latest form of LSH. But there is no need to wait for this. Should
you need to find neighbors in very high dimension, one of the current
LSH algorithms might be just the solution for you.

Reference

1. Andoni, A. and Indyk, P. 2006. Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions. In Proceedings of
the 47th Annual IEEE Symposium on the Foundations of Computer
Science (FOCS'06).

115

COMMUNICATIONS OF THE ACM January 2008/Vol. 51, No. |





