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Abstract

Applying standard dimensionality reduction techniques, we show how to perform approximate range searching in higher dimen-
sion while avoiding the curse of dimensionality. Given n points in a unit ball in R

d , an approximate halfspace range query counts
(or reports) the points in a query halfspace; the qualifier “approximate” indicates that points within distance ε of the boundary of
the halfspace might be misclassified. Allowing errors near the boundary has a dramatic effect on the complexity of the problem.

We give a solution with Õ(d/ε2) query time and dnO(ε−2) storage. For an exact solution with comparable query time, one needs
roughly �(nd) storage. In other words, an approximate answer to a range query lowers the storage requirement from exponential
to polynomial. We generalize our solution to polytope/ball range searching.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A staple of computational geometry [1,2], range searching is the problem of preprocessing a set P of n points in R
d

so that, given a region R (the range) chosen from a predetermined class (e.g., all d-dimensional boxes, simplices, or
halfspaces), the points of P ∩R can be counted or reported quickly. The case of halfspaces is noteworthy because many
range searching problems with “algebraic” ranges can be reduced to it through linearization-via-lifting. The counting
version can be solved in O(logn) query time and O(nd/ logd n) storage, while the reporting case can be handled in
O(logn + k) query time and O(n�d/2�polylog(n)) storage, where k is the number of points to be reported [1]. In both
cases, the exponential dependency on d—the so-called curse of dimensionality—is a show-stopper for large d . Lower
bound work in a variety of highly reasonable models suggests that the curse of dimensionality is inevitable [4,5].

Inspired by recent work on approximate nearest neighbor searching [8–10], we seek the mildest relaxation of the
problem that will break the curse of dimensionality. Without loss of generality we assume that all the points of P lie
in a unit ball of �d

2 . Let Sh be a halfspace, with h denoting its bounding hyperplane. Given ε > 0, the fuzzy boundary
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of Sh is the slab formed by all points within distance ε of h (Fig. 1). Approximate halfspace range searching refers to
counting (or reporting) the points of P ∩ Sh, making allowance for errors regarding the points in the fuzzy boundary;
in other words, the output should be the size of a set whose symmetric difference with P ∩Sh lies entirely in the fuzzy
boundary.

Approximate range searching is relevant in situations where the data is inherently imprecise and points near the
boundary cannot be classified as being inside or outside with any certainty. In the case of reporting, of course, one
can always move the boundary by ε to ensure that the output contains every point of P ∩ Sh, which then allows us to
retrieve the right points by filtering out the outsiders.

Theorem 1.1. Approximate halfspace range searching can be solved with query time Õ(d/ε2) and dnO(ε−2) storage.1

Any given query is answered correctly with arbitrarily high probability.

Our algorithm beats the lower bound for the exact version of the problem. Indeed, it is known that in the arithmetic
model if only dnO(ε−2) storage is available, then the query time must be �(n1−O(1/dε2)) [4]. Our algorithm generalizes
to ranges formed by polytopes bounded by a fixed number of hyperplanes and to (Euclidean) ball range searching.

We also propose an alternative algorithm for approximate halfspace range searching with a query time of
Õ((d/ε)2 + dn1/(1+ε)ε−2) and storage Õ(dnε−2 + n1+1/(1+ε))—and a slightly different definition of approxima-
tion. Again, the query time is better than the solution for the exact problem, since by [4] �(n1−O(1)/d) query time is
necessary when we have close to O(n2) space.

Approximate range searching does not originate with this paper. Arya and Mount [3] gave an algorithm for the
problem that uses optimal O(dn) storage but provides a query time of O(logn+ε−d), which is exponential in d . Their
algorithm is based on space partition techniques, which is very different from our dimension reduction approach.

2. Approximate halfspace range searching

In this section we show how to reduce approximate halfspace range searching to an approximate variant of ball
range searching in the Hamming cube. Initially, we make the “homogeneous” assumption that the hyperplanes bound-
ing the query halfspaces pass through the origin and that all of the n points lie in the Euclidean ball ‖x‖2 � 1. We
relax the homogeneous condition later by lifting to one dimension higher.

2.1. The homogeneous case

Let vh be the unit vector normal to h pointing inside Sh. Any point p1 in Sh outside the fuzzy boundary is at a dis-
tance from h at least ε (Fig. 1). It follows that the angle between Op1 and vh is less than π/2− ε. (We assume that ε <

Fig. 1. Approximate halfspace range searching.

1 The notation Õ(f ) stands for O(f polylog(f · n)).
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π/2.) Similarly, for a point p2 not in Sh and outside the fuzzy boundary, the angle between Op2 and vh is greater than
π/2 + ε. This provides a separation criterion to distinguish between points we must include and those we must not.

Let Sd−1 denote the unit (d − 1)-sphere in R
d and let sign(t) be 1 if t � 0 and −1 otherwise. Let x and y be

two vectors in R
d and let 0 � θx,y � π be the angle between them. We use Ex,y to denote the event: sign(x · u) =

sign(y · u). If u is uniformly distributed over Sd−1, then it is well known that Prob[Ex,y] = 1 − θx,y/π . It follows that
Prob[EOp1,vh

] > 1/2 + ε/π and Prob[EOp2,vh
] < 1/2 − ε/π .

Following Kleinberg’s approach [9] to nearest neighbor searching, we invoke VC-dimension theory [5,11] to show
the existence of a small number of unit vectors that can be used to distinguish between p1 and p2. Let Wx,y denote
the subset of Sd−1 for which Ex,y happens. Let R be the collection of Wx,y , for all x, y ∈ R

d . We consider the
range space (Sd−1,R). Each range Wx,y is a Boolean combination of four halfspaces; therefore the exponent of
its (primal) shatter function is 2d + 2. A finite subset A of Sd−1 is said to be a γ -approximation for the range
space (Sd−1,R) if, for all R ∈ R, ||R ∩ A|/|A| − μ(R)| � γ . Here μ(R) is the measure of R in the space Sd−1. It
follows from VC dimension theory [5] that the range space (Sd−1,R) admits of an (ε/(2π))-approximation A of size
O(dε−2 log(dε−1)). Moreover, a randomly chosen set A of that size is good with high probability.

Thus, |Wvh,Op1
∩ A|/|A| � μ(Wvh,Op1

) − ε/(2π) > 1/2 + ε/(2π). Similarly, |Wvh,Op2
∩ A|/|A| < 1/2 − ε/(2π).

For any vector x let x̂ ∈ {+1,−1}|A| be defined as follows: the ith coordinate of x̂ is sign(x · ui), where ui is the
ith vector in A according to a fixed ordering. Recall that |Wx,y ∩ A| is the number of vectors u ∈ A such that
sign(x · u) = sign(y · u). So |Wx,y ∩ A| = |A| − dH (x̂, ŷ) where dH (·, ·) is the Hamming distance. We thus have
dH (v̂h, Ôp1) < (1/2 − ε/(2π))|A| and dH (v̂h, Ôp2) > (1/2 + ε/(2π))|A|.

It immediately follows that approximate halfspace range searching (under the homogeneous condition) reduces to
approximate ball range searching in the Hamming cube: Preprocess n points in {+1,−1}|A| so that, given any v̂h,
the points in the Hamming ball centered at v̂h with radius |A|/2 can be approximately counted (or reported) quickly.
The term “approximately” means that all points within distance (1/2 − ε/(2π))|A| must be included while all points
further than (1/2 + ε/(2π))|A| must be excluded.

2.2. The general case

To remove the homogeneous condition, we lift the problem into R
d+1. First of all, we may assume that the input

point set lies in the Euclidean ball ‖x‖2 � 1. Now, map each point p = (p1, . . . , pd) to p′ = (p1, . . . , pd,1) ∈ R
d+1.

Note that the new point set in R
d+1 lies in the Euclidean ball ‖x‖2 �

√
2. Given a query halfspace: q1x1 +· · ·+qdxd �

qd+1, first we compute the distance from O to its bounding hyperplane. If it exceeds 1, then all of the n points are
on one side of the hyperplane and we return the exact answer (either 0 or n). Otherwise, q2

d+1 �
∑

i q
2
i . We map the

query to a new halfspace in R
d+1: q1x1 + · · · + qdxd − qd+1xd+1 � 0. Note that the new query passes through the

origin. Moreover, it is straightforward to verify that: (i) all point-halfspace incidence relations are preserved by the
map; and (ii) point-hyperplane distances are preserved to within a factor of

√
2 because of the upper bound on q2

d+1.
The problem is now reduced to the homogeneous case after suitable rescaling of ε.

3. Approximate ball range searching in the Hamming cube

We give two solutions for approximate ball range searching in the k-dimensional Hamming cube Hk , where
k = |A| = O(dε−2 log(dε−1)). Recall that the problem is to preprocess a set S of n points so that, given any q ∈ Hk ,
we can quickly count (or report) approximately the points of S within distance k/2 to q .

3.1. A high-storage solution

We adapt to the problem at hand Kushilevitz et al.’s solution to approximate nearest neighbor searching in the Ham-
ming cube [10]. Fix two parameters m and t to be determined later. The search structure S consists of m substructures
T1, . . . ,Tm, all of them constructed in the same way but independently of one another. Fix i ∈ {1, . . . ,m}. The sub-
structure Ti is built by picking t coordinates of Hk at random (out of k). Project each point x ∈ Hk onto the subspace
spanned by these t coordinates. The resulting vector ti (x) ∈ {0,1}t is called the trace of x. Each Ti consists of a table
of 2t entries, one for each trace. Each entry stores a number (for range counting) or a pointer to a list of points (for
range reporting), to be specified below. The intuition is that, as long as t is large enough, say t = �(ε−2 logn), by a
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discrete analogue of Johnson and Lindenstrauss’s theorem [7], the random projections preserve inter-point distances
in appropriate range within a relative error of ε.

We say that a substructure Ti fails at query q ∈ Hk if there exists p ∈ S such that either of the following holds:

• dH (p,q) < (1/2 − ε/(2π))k but dH (t (p), t (q)) > (1/2 − ε/(3π))t ;
• dH (p,q) > (1/2 + ε/(2π))k but dH (t (p), t (q)) < (1/2 + ε/(3π))t .

Lemma 3.1. The probability that Ti fails at q is at most ne−�(ε2t).

Let 0 < c < 1 be a constant to be specified later. We say that the structure S fails at q if more than cm sub-structures
Ti fail at q .

Lemma 3.2. For any γ > 0 if we set m = (k + logγ −1)/c, then for some t = O(ε−2 ln (2en/c)), S fails nowhere with
probability at least 1 − γ .

The proofs of Lemmas 3.1 and 3.2 follow from standard applications of the Chernoff bounds and can be found
in [10]. We don’t repeat them here. Lemma 3.2 implies that, with high probability, for any query q ∈ Hk and any p ∈ S,
there are at least (1 − c)m substructures Ti that provide the following guarantees: (i) if dH (p,q) < (1/2 − ε/(2π))k

then dH (t (p), t (q)) � (1/2 − ε/(3π))t ; (ii) if dH (p,q) > (1/2 + ε/(2π))k then dH (t (p), t (q)) � (1/2 + ε/(3π))t .
In the preprocessing stage, for each entry ti (x) in the table associated with Ti , we store the number of points p ∈ S

such that dH (ti(x), ti(p)) � (1/2 − ε/(3π))t (for range reporting, we store a pointer to a list of such points). To
answer a query q , we pick one substructure Ti ∈ S uniformly at random. We compute ti (q) and use it to index the
table of Ti . We output the answer stored at that entry. By Lemma 3.2, with probability at least 1 − c, the substructure
Ti does not fail at q , and so we get a correct answer for approximate ball range queries. It is easy to see that the storage
requirement is Õ(nd + m2t ) in terms of the number of bits: O(nd) for the set of n input points; m2t logn for m2t

table entries each storing an answer (a number between 0 and n) for some queries; mt logk for m substructures each
defined by t (random) coordinates out of k. For reporting, the last term above is m2t n. The query time is essentially
the time needed to compute ti (q) (plus the output size for reporting). There are t coordinates to be computed and
each takes time O(d) by doing an inner product between the query and a vector from the (ε/(2π))-approximation in
Section 2.1. So the query time is O(dt). In view of Lemma 3.2 and the reduction shown in the last section, this proves
Theorem 1.1.

We claim that the above algorithm, after some suitable modification, also works when each query is the intersection
of a set of halfspaces. For a halfspace Sh, we use Sε

h to denote its fuzzy boundary. We use S−
h = Sh\Sε

h to denote the
part of Sh outside the fuzzy boundary. Similarly, we use S+

h = Sh\Sε
h to denote the part of Sh (the complement of Sh)

outside the fuzzy boundary. Given a set H of l halfspaces with common intersection Q, we define Q− = ⋂
Sh∈H S−

h

and Q+ = ⋃
Sh∈H S+

h . We require that all points in Q− must be included while all points in Q+ must be excluded.
The region bounded by ∂Q+ and ∂Q− is the query’s fuzzy boundary. Unlike the convention in [3], the width of
the fuzzy boundary here is not related to the size of the query range but to the diameter of the point set. Using the
reduction in the previous section, this problem is reduced to the following multiple-ball approximate range searching
in the Hamming cube: Preprocess a set of n points in Hk so that, given any q1, . . . , ql all in Hk , we can quickly count
(or report) approximately the points within distance k/2 to each qj (1 � j � l). The term “approximately” means that
all points within distance (1/2− ε/(2π))k to every qj must be included, while all points further than (1/2+ ε/(2π))k

from at least one qj must be excluded.
It is straightforward to modify the algorithm in this section to incorporate such multiple-ball queries. For example,

we combine l traces (ti(q1), . . . , ti(ql)) of Ti together to form a single vector in dimension lt . We also modify each Ti

so that its table has 2lt entries, one for each possible l-tuple of traces. For each entry (ti(q1), . . . , ti(ql)) in the table,
we store the number of points p such that dH (ti(qj ), ti(p)) � (1/2 − ε/(3π))t holds for each qj . Answering a query
is the same as before: We pick one substructure Ti uniformly at random. We compute (ti(q1), . . . , ti(ql)) and use it
to index the table of Ti . We output the answer stored at that entry. The definitions and lemmas in this section only
need to be changed slightly for the analysis to work. In particular, the values of m and t in Lemma 3.2 are changed to
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(lk + logγ −1)/c and O(ε−2 ln (2enl/c)) respectively. As long as the number of halfspaces l is constant, the time and
space bounds of Theorem 1.1 remain the same.

3.2. A low-storage solution

The storage achieved in the previous section is polynomial in n but with an exponent of O(ε−2). We propose another
solution that uses roughly quadratic space and still provides sublinear query time. For this purpose, however, we need
to relax the meaning of approximation further. If Nr(q) denotes the number of points of S in the Hamming ball
centered at q of radius r , then we output a number N such that (1 − α)N(1−o(ε))k/2(q) � N � (1 + α)N(1+o(ε))k/2(q),
for any fixed α > 0. In Section 3.6 of [6], it is shown that computing such a number N can be reduced to the (1 + ε)-
PLEB problem (stands for “Point Location in Equal Balls”) with a multiplicative overhead of α−3 log2 n in both query
time and storage. The (1 + ε)-PLEB problem is defined as follows [6,8]: given a set P of n points in the Hamming
cube Hk and a fixed r � k, preprocess P such that, given any query q ∈ Hk ,

• if there exists a point p ∈ P such that dH (p,q) � r , then answer “yes” and return a point p′ ∈ P such that
dH (p′, q) � (1 + ε)r ;

• if dH (p,q) > (1 + ε)r for any p ∈ P then answer “no”.

It is shown in [8] that (1+ε)-PLEB in the Hamming cube Hk can be solved with query time O(kn1/(1+ε)) and stor-
age (kn + n1+1/(1+ε)). Therefore approximate ball range searching can be solved with query time Õ(dn1/(1+ε)ε−2)

and storage Õ(dnε−2 + n1+1/(1+ε)), following the above reduction and k = O(dε−2 log(dε−1)). This leads to
an algorithm for approximate halfspace range searching with query time Õ(d2ε−2 + dn1/(1+ε)ε−2) and storage
Õ(dnε−2 + n1+1/(1+ε)), as claimed in the introduction.

4. Approximate ball range searching in Euclidean space

Another problem we can solve is approximate ball range searching in Euclidean space. Given a ball B(q, r) in R
d

with center q and radius r , approximate ball range searching includes all points inside the smaller ball B(q, r − sε)

while excluding all points outside the larger ball B(q, r + sε), for some parameter s = s(r). Points in the annulus
B(q, r + sε)\B(q, r − sε) may be misclassified. In the Hamming cube, the technique described in previous section
solves approximate ball range searching for s = �(r). On the other hand, in such a solution the width of the annulus
(the fuzzy region) grows with r . When r is large, it might be too big to provide an estimation of the true answer. We
give another solution in which s is bounded even when r is large. Moreover, it works in Euclidean space.

Given n points in R
d in the unit ball ‖x‖2 � 1 and a query ball B(q, r), we first compute the distance from

q = (q1, . . . , qd) to the origin. If this distance is greater than r + 1, then the query ball contains no points. So from
now on we assume that ‖q‖2 � r + 1, or,

d∑
1

q2
i � (r + 1)2 (1)

The query ball is given by the following equation:

d∑
1

2qixi −
d∑
1

x2
i + r2 −

d∑
1

q2
i � 0

By a standard lifting map, it is mapped to a halfspace Sq,r in R
d+1:

2q1x1 + · · · + 2qdxd − xd+1 +
(

r2 −
d∑
1

q2
i

)
� 0

A point p = (p1, . . . , pd) in R
d is mapped to p′ = (p1, . . . , pd,

∑
i p

2
i ) in R

d+1. Note that the new point set lies
in the Euclidean ball ‖x‖2 �

√
2. Moreover, it is easy to check that p ∈ B(q, r) if and only if p′ ∈ Sq,r . It remains to
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show that if p is outside the annulus B(q, r + sε)\B(q, r − sε) then p′ is outside a fuzzy boundary of Sq,r with width
�(ε). Given p ∈ B(q, r − sε) we have:

r2 −
∑

i

(qi − pi)
2 � 2rsε − s2ε2 � rsε (2)

The distance from p′ to the boundary of Sq,r is:

r2 − ∑
i (qi − pi)

2√
1 + 4

∑
i q

2
i

� rsε√
1 + 4(r + 1)2

� 1√
5

· rsε

r + 1

Note that the first inequality above follows from Eqs. (1) and (2). Using similar arguments, we can show that, for
p /∈ B(q, r + sε), the distance from p′ to the boundary of Sq,r is at least (2rsε)/(

√
5(r + 1)). Setting s = (r + 1)/r

keeps p′ outside a fuzzy boundary of width �(ε) and hence properly classified by the algorithm for halfspace. In
this solution s = O(1) when r = �(1), and so the fuzzy region does not grow with r . The time and space bounds
are essentially the same as those for approximate halfspace range searching; in particular, the bounds of Theorem 1.1
apply to approximate ball range searching as well.
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