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Abstract

Let 2 be a simple polygon with A" vertices, cach being assigned a
weight € {0.1}. and let C. the weight of P be the added weight of all
vertices, We prove that it is possible, in O(N) time. to find two vertices
abin P, such that the scgment ab lics entirely inside the polygon P and
partitions it into two polygons, cach with a weight not exceeding 2¢7/3.
This computation assumes that all the vertices have been sorted along
some axis, which can be done in O(Mog N) time. We use this result to

derive a numbcr of efficient divide-and-conquer algorithms for:
1. Triangulating an N-gon in b(Mog N) time.

2. Decomposing an N-gon into (few) convex pieces in
O(Mog N) time.

3. Given an O(Mog N) preprocessing. computing the shortest
distance between two arbitrary points inside an N-gon (i.e.,
the internal distance), in O(N) time.

4. Computing the longest internal path in an N-gon in O(Nz)
time.
In all cases, the algorithms achieve significant improvements over

previously known methods, either by displaying betier performance or
by gaining in simplicity. In particular, the best algonithms for Problems
2,3.4. known so far, performed respectively in O(Nz). O(Nz). and O(N‘)

time.

1. Introduction

Lipton and Tarjen's plinar separator theorem (11771177} is a
notable example of a systematic technigue for introducing a
computational 1ool. Lc., divide-and-conguer, in1o a wii0l¢ class of refated
prodlems, ... planar graoph problenis. Drawing its inspiration from this
philosophy, this paper presents a theoretical result on polygon
decompaosition which can be applied to derive a number of cfficient
algorithms for geometric problems. in particular. problems of convex
decompositions, triangulation, visibility, and internal distance.
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2. The Polygon-cutting Theorem

Let P be a simple (i.c., not self-intersecting) polygon with vertices

reference. Wiog, we can always assume that no two vertices have the
same X-coordinate. We define a (vertical) relation bet-
ween edges of P as follows: two edges of P are said

to be vertically related iff there exists a line seg-
ment parallel to the Y-axis which intersects both
edges without intersecting any other edge of P (fig.1)
Note that it is easy to set up the list LV of all
pairs of related edges in O(Nlog N) time, using a
method developed in [SH76]. Sweep a vertical line L
from left to right, maintaining the vertical order

of the edges L currently intersects in a dynamic
balanced search tree (e.g., AVL-tree). The line L
starts at the leftmost vertex and proceeds to visit
all of them in ascending X-order. If the current
vertex is the left endpoint of an edge, this edge is
inserted into the tree, otherwise it is deleted. We

nay omit the details.
Throughout this paper, we will assume that along with a

description of the boundary of P, provided by a doubly-linked list LP,
a doubly-linked list LH of all the
vertices sorted by X-coordinates [KN73]. The preprocessing involved

we have available

in sctting up thesc lists requires O(Mog N) time and O(N) space. The
decomposition algorithm which we will descrnibe lat. - on runs in lincar
Lime, with this preprocessing in hand. Note that it is legitimate to
scparate both tasks, since in the applications which we will mention, the
decompaosition algorithm will be calied recursively several times, while
the preprocessing will be needed initially, once and for all. “The goal of

this section is o prove the following theorem:

‘Theorem 1: The Polygun-cutting Theorem. 1ot P be a
simple polygon with N vertices Vs Vpe Citch assigned a
weight ¢, (¢;=0.1). Let C(P) denote the ol weight of P,
defined as the sum Ot top and assumc that C()>2.
With the lists LLLH.L Y in hand, it is possible 10 find. in
O(N) time, a pair of vertices vy, such thi the segment vy
lics envirely inside the polypon P and partitions it into two




sunple polygons 1.0, satislying:

Cr) < CUry) < 203

‘The weights of the vertices in 2 and P, are the same as in P, except
for v and o for which we will assume that in both £, and P,. these
weights become 0. This assumption is made only for the sake of
simplicity, and other conventions (c.g.. keeping the same weights ci.cj in
bath I’l and Pz) arc indeed acceptable. if we are ready to add a term
+2 10 2C(P)/3 in the incquality of Theorem 1. “l'o facilitate our task, in
a first stage, we will prove the theorem with slightly relaxed

requirements.

2.1. An existence theorem
To begin with, we prove the existence, not of two vertices, but of two
points on the boundary of P, satisfying the inequalities of Theorem 1.

Theorem 2: Same assumptions as Theorem 1. There
exists a pair of points 4,8 on the boundary of P, such that
the segment AB is parallcl to the Y-axis, lies entirely in the
polygon P, and partitions it into two simple polygons P,.P,
satisfying:

C(P) < C(P) < 2C(P)/3

If A and B are not vertices of P, for consistency, we assign them a
0-weight. We introduce a distance function d(4,B). dcfined between
two points 4.8 on the boundary of P as the minimum path weight
between A and 8. More precisely, let Vv, (resp. Wiy 1) be the edge of
P containing A (resp. B). If A (resp. B) is a vertex of P, it is assumed to
be v, (resp. "J)' We introduce the function h, defined as follows:
(arithmetic on indices done mod N)

h(A.B3) = e

from which wc can define d(A.B):

d(A.B) = min[hAB) . CP) = NAB)]

Starting at the cdge ¥ vy We label cach edge of £ recursively, as

l+c

J4_2+ +Ci.

follows: )\(vl v2)=cl
Alv.v.

i HI) = A(v't-lvl) + ci
Note that this Libeling gives us an alternate way of defining the distance

between two boundary points A.8:

dit = min [|A(vy, P A Wy M C(I')‘I}\(\’l\'

it

)‘M'}VJH)”

We are now in a position first to prove the existence of the segment
AB. as defined in Theorem 2, then to describe an efficient method for
finding it. As we will sce, the first step is not superfluous; it is an
essential ingredient in ensuring the correctness of the algorithm,
Choose the leftmost point of P as the starting point of the left-to-right
sweep of a vertical segment S= A8 (4 below B). § will always stretch

vertically so as to keep its endpoints A, B in pcrmanent contact with the
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boundary of P. It will thus be able to move continuously to the right,
until it must cither expand (fig.2 ) or split{fig. 3 ). Atany time during
the course of the motion, S will be assigned a value A=h(A4.B) to
indicate how close it is to being the desired segment. We observe that
initially, A=C(P). and that as long as S moves continuously, &
decreases monotonously by unit steps. When either situation depicted
in Figures 2,3ariscs, we can always write (1) A= h(4.8)=
h(4.C)+h(C.B), from which we can decrive a decision procedurs for
redefining S.

Starting from the lefimost vertex of P, move S from left w
right. stretching or shrinking this segment so that it enurely
lics in P, and its endpoints always lie on the boundary of P.
As long as the motion of S is continuous, check whether
A>2C(P)/3, in which case continue, else stop. When falling
in cither casc of fig.23reset S'to AC if h(A4.0)>h(C,B), or &
(B otherwise. Note that if S is resct to CB in the case of
fig.2. , thc motion must reverse its direction.

Relation (1) shows that every discontinuity causes A to decrease by at
most half, while othcrwisc A decreases at most by unit steps, since we
have assumed that no two vertices may lic on the sume vertical line.
Since A cventually vanishes and C(£)>2. it must tuke on some value in
the interval [C(£)/3 , 2C(£)/3), at which point the procedure will stop
and rcturn the desired segment 5.
Theorem 2. O

This complctes the proof of

2.2. A relaxed version of the polygon-cutting theorem

Unfortunately. theorem 2 fulls short of providing an cfficient
algorithm for computing A8, We can. however, graft 10 it a binary
scarch-like  structure to

improne the performance of a naive

unpiementation.  ‘the purpose of this scction is thus to prove the

following result:

Theorem 3:  Same assumptions as Theorem 1. It is
possible, in O(N) time, o find a pair of points A.B on the
boundary of £, such that the segment A8 lies entirely in the
polygon P, and partitions it into two simple polygons Pl.P2
sausfying:

(P < C(P) < 20(P)/3

Since the edges supporting A and B must be vertically
related, we can try out all pairs of LV, checking for
the inequalities to hold and for the proper orienta-
tion of the edges relative to the interior of P.
Theorem 2 ensures that we will thus find the desired
nair of edges, hence AB.




2.3. Complcting the proof of the polygon-cutting theorem

We may now wrn our attention back to Theorem 1. 1.ct LA

L be the edges of P that contain the points 4 and B of Theorem 3.

and

respectively. To prove the desired result, one-may be tempted to slide A

and B towards the endpoints of v, and v respectively, until one

J i+l

of the configurations AR LTSRN 0T VY

Unfortunately, obstacles may prevent this from ever happening (fig.4),

has been reached.

$0 our next step will be to take a closer look at these possible obstacles.

Since the quadrilatcral Y 1%+ 1Y contains the segment 4B, itis a

simple polygon, and AB panitions it into

Q,= AlevJBA and Q,= ABvJHv‘A. As a corollary of the Jordan

Curve Theorem, which states that a closed curve in the plane partitions

two polygons

the plane into two connected regions [HS55], it appears that the only
obstacles encountered in Q1 (resp. 'QZ) are vertices in the set
{le,sz,...,v).} (resp. {Vj+l'vj+2"""'i})' Morcover, the scgment
5= A8 can encounter only vertices on the convex hull H, (resp. Hz) of
the vertices of P lying inside Ql (resp. Qz) (fig.4), as is shown in
following result.

Lemma 4: The segment 4B intersects any edge of P
(outside of A or B) if and only if it intersccts the boundary
of cither H1 or Hz'

Proof: Since H, (resp. H,) lies entirely inside Q, (resp.
Q,). AB interseets any edge of P lying in Q iff the infinite
line passing through A8 docs, hence iff AB lics outside of
Hl and H,. O

The next task is to compute the convex hulls H1 and Hz' We only
give the details of the algorithm for Hl‘ the other case being strictly
similar. Since we cannot afford to usc a standard O(Mog N) algorithm
to simply computc the convex hull of the vertices of P in Ql. we must
exploit the fact that these vertices lic on a polygonal linc in order to
achicve lincar time. To begin with, let us give an informal description
of the algorithm. The goal is, in a first stage, to produce a polygon l(l
which lics entircly in Ql, and whose convex hull is cxactly IIY Ieta
polygunal chain be a non-intersecting connected sequence of scgments.

A'l consists essentially of polygonal chains /‘1 made of consecutive edges

from the set:

L={v v}

e N2 N2V e Y

+XV)' n

two points, Uk and Vr Morcover, no two segments Uk Vk overlap

Each chain has the property that it lies in Q, and inlerscets v,

(fig.5.1). To compute these chains, we must distinguish between two
types of edges in L. An cdge LA is said to be entering (resp. exiting)
if it intersects LTLR
algorithm proceeds as follows:

and v, lies inside (resp. outside) Q. The
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Wlog, assume that there is at least one vertex Vie2 from Viel

Traverse L from Vielhea 10 Y1% Stopping at

to Y in
clockwise order.
entering and exiting edges and taking the following actions. If the
current edge is entering, it may be the endpoint Ux of a new chain Lk
To decide onthis, look at the next exiting edge in L: if it intersects

et in a point ¥, on the segment Uk"y we have indeed a new chain

L, from U, o Vk. Otherwise, not only don't we have a new chain L.
but the chain just visited may enclose previousty computed chains,
which must then be deleted. For that purpose, we use a stack to hold
the pairs (Uk Vk R Ll), so that deletions may be done efficiently. The
algorithm is straightforward, so we omit the details.

Initially. the stack is empty, and the current edge eis the first
entering cdge of L.
hegin
I.ct fbe the next exiting edge in 1. following e. and lct U,V be
respectively the intersections of e and fwith Vi1
if Vlies on Uy,
]

then

let /., be the chain between eand fin L.

Push (UV . I.u) onto stack.

Go to next enrering cdge ¢ in 1., whosc intersection

withv v licson Vv . then iterate.

i+1) j+1i

clse
Go w next entering edge ¢ whose intersection U

with Y lics on L V.
Pop all pairs (U} off the stack as long as ¥, lics on U‘vj,
lterate.

¢nd

‘To prove the correctness of the algorithm. we begin by obscerving that
the intersection of /7 with QJ consists of chains whose endpoints lic on
LA 1y and that Kl consists of exactly all the maximal chains. A chain is
said to be maximal if it does not lic in the enclosure of any other chain
with LN Y A maximal chain is also characterized by the fact that the
scgment formed by its endpoints dees not lie inside any other such

scgments.

From the Jordan Curve Theorem [HSSS5], it follows that a maximal
chain from U to V. in clockwise order, has its cndpoint ¥ lying above U
(i.e.. on the scgment Uvj). In consequence, only the chains which move
towards v, are candidates for being part of K, which justifics the
selection criterion of the algorithm. On the other hand, we can also
show that a non-maximal chain which moves towards v is necessarily
enclosed by another chain moving away from Y This explains the
deletion rule. Finally, the last observation to make is that a chain from
U to ¥ which moves away from v (i.e., Ulies on ij) must be enclosed
by a subsequent maximal chain, therefore since maximal chains are
computed "towards” v, we may skip directly 10 the next entering edge
in L that intersects Ya 1Y at a point U below ¥V (ie., U lies on viHV)

- see illustration of the various cascs in fig.5.1. This completes the proof



of correctness, and shows that all the chains Lk may be computed in
sorted order along the segment v, | % all these computations requiring
O(N) time. The final step in computing l(l is to connect all the chains
Lk together in the order in which they appear in the stack. To do so, we
borrow scgments from v, Vs shown .in fig.5.2. We may now apply
any standard lincar convex hull algorithm for simple polygons [1.F80}

in order to obtain Hl in O(NV) time.

Assuming that both H, and Hz are available, we are now in a
puosition to give an algorithm for finding the two vertices of Theorem 1.
‘The idea is to connect the vertices of H, with those of H,. so0 as to
triangulate the polygon 1" defined as the arca between Hl and H2
containing AB. We claim that at least onc of the cdges of the
triangulation will provide the desired pair of vertices, with the property
of Theorem 1. ‘The algorithm proceeds as follows:

Lethy...., hp and I(I,...,kq be the vertices of H, and H,. respectively, as

we raverse them from Vb ooy

+10 jj+
A'q:vJ“. We maintin two pointers, A on Hl and k on Hz. moving

ic.. hl=\'. h =¥ A =v,
1+

them from hl o hp and l(1 to kq, respectively. and computing the
triangulation on the fly. Note that at all times, the scgment hk
intersects H, and H, only at its cndpoints (fig.6.1).

The simplest way of describing the algorithm is recursively. Initially,

hk is Vi, 1% the algorithm terminates with hk = vy,

fNESN
Lct hk = h k. and consider the quadrilateral
hh k. kh. For comlstency wc define A and k

1+ u+1 &l
L) and Vi respectively. We will show in f;emma S that al

least one of its diagonals, hk L 0r thl connects Hl and
H without intersecting mcse polygons outside of its
cndponms i.c., lies entrely in H". Morcover, this diagonal
can be found in constant time. We may then determine that
diagonal, add it to the triangulation, set kk to it, and iterate.

The algorithm clearly runs in linear time. Also, the assurance that it
cffectively produces a triangulation of H" comes from the fact that it
keeps only edges which lic entirely in H", and that the pointers A and k
pass a veriex only after a diagonal has been assigned 10 it. Thus there
only remains to prove the following lemma:

Lemma 50 If the segment h k connects H and H and
lies cntirely inside H. so docs onc of the dlagonals h k
or kuh(+1
constant time.

u+1l
Morcover, this diagonal can be found in

Proof: Consider the linc passing through hk, oricnted
from hw k.1l a point lics to the right (resp. Ieft) of this line,
we will say that it hies below (resp. above) hk. Since H, and
H, arc convex. at least onc of the vertices v of L lics
above kk, therefore it is impossible that both hJ ar;d L
hic below Ak, Indeed this would involve the cxmcncc ut al
least three intersection points between a line and a convex
boundary. leading o a contradiction. 1f only one scgment,
sty h‘” lics above Jik, it can be casily determined in
constant time, and since in that case, all of /1, tics below ki,
the diagonal /l Kk does not intersect H (nor II cither)
outside of ity cndpmms and may thus be chmcn as lhc next

segment of the teungulation (fe.6.2). 47 on the other hand,

both A and & lic above Ak, the quadritateral

lthlI\“::A 1S a \lll‘l;plk polygon, theicfore it contains at
least one of its diagonals entirely (fig 6.3), and this diagonal
can be found in constant tme. Note that. because of its
comexity, I/ (resp. 1,) hies wtally on one side of the tine
passing through hh ) (resp. kA o)k therefore the whole
quadnlau.ral hcncc lhc choscn dmﬂonal lies inside the
polygon H', which complectes the proof. O

‘The purpose of triangulating the polygon H" will become apparent with
the following result.

Lcmma 6: There exists an edge wv in the triangulation of
H’ which satisfics the relation: C(PY3 < h(u.v) < 2C(P)/3.

Proof: From Theorem 3, we know that AR partitions P
into two polygons with weights between C(P)/3 and
2C(P)/3, which gives the relations

C(P)/3 < min (h(A,B).h(B.4) } < max( h(A4.B).h(B,4)) < 2C(P)/3

As a result, any pair of vertices a b on H, (resp. H,), with b
following (resp. preceding) a in the list {hl ..... h} (resp.
{kl.....k 1) satisfies the relation (1) h(5.a)<2C(P)/3. On the
other hand, each triangle abc of the triangulation has one
side ab on the boundary of either H or H with the two
others ac, be constructed by the mangulauon algorithm.
Wiog, let ac be the segment of the triangle constructed first
(ie. ac lies below bc). We always have
(2) h(c.a)= h(b.a) + h{c,b). Now we can show that a simple
upward scan through the faces of the triangulation, ie.,
starting at the triangle adjacent to vv;,, and ending at the
triangle adjacent to v.v L will mcvuably lead to the desired
scgment of Theorem' 1. To see that, we may obviously
assume that none of Lhe edges ab of H or H sausfies the
rclations:

C(P)/3 s h(ba) <2C(P)/3,

otherwisc, we have achicved our goal. In that case. Relation
(1) shows that for any triangle abc visited, the cdge on the
boundary of H'. say ab. satisfics the stronger incquality
h(b.ay<C(P)/3. which, combincd with Relation (2), leads to

h(c.b) > h(c.a) — C(P)/3.

Since h(v )= c(m- € and h(vJ v}) €t it
follows that lf a b .asb,. ... 1s the sequence ()mecrmr cdges
visited in the traversal of the triangulation, with the points
a (rosp. bm) on Hl (resp. H ,). the  scquence
h(al.bl).h(az.b:,).... is munomnnusly decreasing  from
C(I’)—('HI to G by jumps of at most C()/3. In
consequence, it must ke on at least one value in the
steeval JCe/)2 3. 203 3], wiuch can then be chosen as the

pairu,y. O
The proof of Theorem 1 is now complete. Computing H, and H,

definitely constitutes the most difficult part of the algorithm to
implement. We may observe, however, that this overhead will often be
unnecessary since. in practice. it may be scldom the case that the
scgment 4B of Theorem 3 is prevented from sliding towards the
endpoints of its supporting cdges.

One final remark: Assume that P is triangulated, and consider the
graph connecting adjacent faces. As can (and will) be shown casily, this

graph is a tree whose centroid corresponds roughiy to the cutting edge,
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3. Applications to polygon decomposition

problems

It is intuitive that the polygon-cutting theorem should lead to
efficient methods for partitioning a polygon into convex picces. We will
examine two instances of this problem: in one, what is desired is a
partition of the polygon into a small number of convex pieces, while in
the other, only a triangulation of the polygon is sought, without
consideration of optimality. Applying a quality criterion to the
triangulation of a polygon is common practice in numerical analysis,
where an area distribution or a shape function is often to be optimized.
There are many good reasons. however, for making the availability of

any triangulation desirable, as we will sce later on.

3.1. Convex decompositions

Given a simple. non-convex polvgon P, find a minimum
nmumnber  of convex, pairwise disjoint  polygons,  whose
union is P.

This problem has been well-studied [CH80. GJ78, SC78), and scveral
algorithms have been discovered for producing minimal or ncar-
minimal decompositions. Here we consider only decompusitions which
do not introduce new paints, i.c., all the vertices of the polygons are
vertices of P In connection with the previous section, we will assign 1o
cach vertex v of £ a weight ¢, = Lif its adiacent ¢dees form a reflex
angle (in which case. 1, is called a worch). and a werzht ¢, =0 otherwise.
Thus we can upply the polygon-cutting theorem (Iheorem 1) iteratively
o decompose £ ointo smaller polygons. Note that since. with our
convention, the endpoints of the sphitting scgment lose their weights,
the number of notches ('],('2 of the two pants is cach bounded by
2C/3+2, where C is the number of notches in the original polygon. As
a result, we must stop the iteration when the algorithm ceascs to reduce
the number of notches, i.c.. when all the parts have a number of notches
satisfying: C<2C/3+2, ie., C<6. Finally, to resolve the remaining
reflex angles, we consider each of them in turn, proceeding as follows:

Let @ be the polygon (with at most 6 reflex angles), and v
be the notch exhibiting the reflex angle to be resolved. Let L
(resp. R) denote the ray (i.c.. semi-infinite line) starting at v
in the direction of the cdge cnding (resp. starting) at v
(Aig.7). Compute the intersection(s) of L (resp. R) with the
boundary of Q. and keep only the intersection point A (resp.
B) clusest to v. If 4 and 7 lic on different cdges, there exists
at lcast one vertex on the part of the boundary of P between
4 and B which can be joined to v, 50 as to resolve the reflex
angle at v (fig.7.1). For example, we can choose the vertex w
between A and B that minimizes the angle (vB.vw), and
lies in the triangle formed by v and the edoe
sunnorting B. If, on the other hand, A and 8 lic on the
same cdge A (fig.7.2). we compute the vertex a of the list
(v..... VA)‘ given in clockwise order, which lics in the triangle
vAv,and minimizes the angle (vAva). Similarly, we
compute the vertex b which lics in \'1:'\'” and minimizcs the
- angic (vb.vB). Both of these operations can be exccuted in
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lincar time. Note that minimizing the angles ensures that
both va and vb lic entircly in Q. It is also casy to show that
the combination of these two scgments resolves the reflex
angle at v by splitting Q into 3 polygons (note that in most
cascs, gaand b will be v, and vy Tespectively).

The decomposition algorithm thus consists of a recursive “cutting”
phase which relies on the algorithm given for the polygon-cutting
theorem, The recursion stops when the polygon currently examined has
fewer than 7 notches, at which point the procedure just described is
called upon to finish off the decomposition. We observe that if cither
the vertex v, or Y. say v, in ‘Theorem | is a notch, i.c., ci=l. v, appears
in both of the resulting polygons P, and Py, butis a notch for at most
one uf thein. Fhercfore if. by extension. we let CLV) denote the weight
of P and C(A‘I) (resp. C(.’VZ) be the weight of l’l (resp. I’:). we can
wnie: (1) C(V) »CM'I) + CN,) and (2) CND < ClN,) < 2C(NY3
+2. Nute that C(A‘\']) and C(A\l) are actual weights, ic.. they count
exactly the number of notches in I’l and PZ. as opposcd to the weights
of P, and Py as defined in Theorem 1. which did not account for the
endpuints of the splitting scgment. It is easy to sce that, in the worst
case, we will end up with C(N)/6 polygons with. each. 6 notches, and
the final phase will use 2 cuts for the resolution of cach reflex angle.
This will result in 13C(N)/6 convex pieces, which is to be compared
with the minimum number of convex picces, shown to be always
greater than or equal to C(N)/2+1 in [CH80]. Next we turn to the
complexity of our decomposition algorithm. While it clearly needs
O(N) space, evaluating its run-time T(V) calls for further investigation.
If we neglect the preprocessing phase for the time being, we have the
relations:

Q)TN = TN + T(N,) + O(M), if C(N) > 6
@N, + Ny=N+2
G)TM = OV, iIfC(N) <6
Consider the recursion tree, and label cach node with the number p of
vertices in the corresponding polygon. At the leaves. we have C(P)<6,
while for their ancestors. C() > 6. Relations (3) and (5) show that up to
within a constant factor, T(V) is equal to the sum of the labels in the
tree, while from Relation (4), it follows that if L(i) counts thc sum of all
labels at level i, we have L(0)= N and L{i) < L(i-1) + 2\, which gives
()< N+ 24 Ifkisthe height of the tree, we casily find that
LO) + ... + L(k-1) < Nk + 24¥1,
and since, from (2), we have & = O(log C(AV)) = O(log N, including

the O(Mog N) preprocessing in the running time, we can conclude:

Theorem 7: In O(Mog V) ime and with O(N) space, it is
possible to decompose a simple N-gon P into fewer than
4.J33..xOPT convex picces, without introducing new
vertices. where OPI is the minimum number of convex
picces necessary to partition P,

J—




3.2. Triangulation

When atl the picees of a convex decompusition arce triangles and no
new vertices are introduced, the decomposition is called a triangulation
of the pulygon. An O(Mog N) algorithm for computing a triangulation
of a simple polygon has been given in [GJ78]. Another
method consists of using a strategy based on the polygon-
cutting theorem. We may choose to assign a weight =1 to each vertex
of P and apply the polygon-cutting theorem recursively, until the
polygon under consideration has fewer than 7 vertices, at which point it
is straightforward to complete the tiangulation. We omit the details.
An alternative consists of computing a convex decomposition of P as
described in the previous section, then triangulate each convex polygon.
To do so, pick any vertex of the polygon and join it to every other. In
both cases, a triangulation of P can be cxplicitly computed in O(NVog
N) time, which matches the performance of {G178). We recall that it is
yet unknown whether kAlog N is optimal for.lhis problem.

Theorem 8: Using the polygon-cutting theorem, it is
possible to triangulate a simple N-gon in O(Mog N) time
and O(N) space.

4. Visibility problems

A problem which arises frequently in graphics concerns the
climination of hidden lines-from a two- or three-dimensional scene
[NS79]). In two dimensions, the problem reduces to computing the scts
of points that are visible from a given point inside a polygon . Lincar
algorithms for this problem alrcady cxist {[CH80,FA81). but they
involve complicated stack manipulations.  Instcad, we can use the
polygon-cutting theorem for this'prublcm, which can be formulated as

follows:

Given a simple polygon P and a point M iuside P, the locus
of puints V such that the segment MV lies entirely in P is a
simple polygon V(M). Compuie a clockwise description of the
boundary of V(M)

We will assume that we have available a triangulation 7 of P, as
produced. for examiple, by the algorithn of the previous section. We
can regard the trianzles of 77 as fouming the nodes of a graph G, whose
edees join the pairs of tnangles with a common edge (ic.. an interior

cded) (g.8). As shown in Lemma 9, the ahsence of interior faces

ensures that te graph G is actually a tree.
Lemma 9: Gisatree.

Proofl: 1t suffices to show that for any pair of triangles
1ty in the triangulation, there exists a unique path between
) and iyin G.'The triangle 1, partitions I’ into 4 parts. Onc is
the triangle 4 itself. the others being polygons adjacent to
the cdges of 1y (note that some of thesc polygons may be
reduced to a single edge). At any rate, exactly onc of the
three polygons contains the trangle . Call U this polygon,
letting u denote its cdge adjacent to fl and ¢ be the triangle
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of T adjacent to w and lying in U. Since the triangulation of
P also provides a triangulation of U, and its associated graph
G, is a subgraph of G, we can sce that if there is a unique
path in G, from { (o ,. there is also a unique path in G from
1, to 1,. Therefore we can prove the lemma by induction on
the number of veruces. O

Let e be any- interior edge of the triangulation, and let M be any
point inside P. Letting ¢ denote the triangle of T which contains M, we,
can define G( M, e) as the unique subtree of G emanating from e, which
docs not contain ¢ (fig.9). We arc now in a position to give an aigorithm
for computing the visibility polygon V(Af). To facilitate our task, we
introduce the function VISIR, defined as follows: let ¢ be any segment
lying entircly on the edge e. Remove from T all the triangles which do
not belong to G(M.e). and call Q the resuiting polygon. We define
VISIB (M.e‘) as the part of Q which i§ visible from M through the
window ¢. More precisely. VISIB (M.e") is the set of points i in Q
such that the only intersection of AMu with the boundary of Q takes
place at e (fig.10). 1.ct a.b.c be the vertices of the triangle in Q adjacent
o ewith c=aband e =a'b”. We define 4 (resp. #2) as the intersection
of the polygonal line {bc.ca} with the infinite line passing through Ma®
(resp. Mb.). It is now straightforward to compute the function VISIB

recursively.

VISIB (M.eD)

if ¢ lics on the boundary of P
then
return ({e.})
clse
Determine the points ¢, 4, 8.
if ¢ lics between A and B
then
V— VISIB (M.Bc)
Ve VU VISIB(M.cA)
clse
V+— VISIB (M, AB)
return (V) (fig.10)

To complete the computation of V(M), it suffices to determine the
triangle of 7 where M lics - which can be done in O(N) time - then

apply the previous procedure with respect to its three edges.
VISIBILITY (P,A)

Let €,.6,.8 be the edges in clockwisc order of the
triangle of]T which contains M. Inidally V(Af) = 2.
fori =123

begin

V(M) — V(M) u VISIB (M,ei)

end




Note that, as described, the procedure reports the boundary of V( M)
in clockwise order, except for the ray-edges of V(A1) i.c., the scgments
collincar with A, which are omitted. A single pass through the list
V(A1). however, will be sufficient to add the missing scgmoents, and we
need not claborate. Using a stindard (c.g., DCEL) representation of the
triangulation cnsures that cach recursive step can be cxccuted in
constant time. from which we can conclude:

Theorem 10: Given a simple N-gon P along with an
arbitrary triangulation of 2 il is pussible to compute the
visibility polygon from any point Al inside 2, in O(N) time.

The main advantage of this algorithm is that it avoids the
complicated stack manipulations of {CHSO0} and [1:A81]. The rcader
may convince himself/herself/itself that the algorithm could be
rewritien without greater difficuity in order to deal dircctly with a more
general convex decomposition (ic., without first converting it into a
triangulation). ‘This may be an interesting alternative if one is willing to
exploit the fact that scarching among the edges of a convex polygon can
be done in logarithmic time, using a Fibonacci search-based strategy
[CH80.CD80}.

5. Applications to internal distance problems

5.1. The car-racing problem

What is the shortest trajectory of a racing car on a given circuit?
More precisely, the problem which we address in this scction can be
expresscd as follows:

Given a simple polygon P and two arbitrary points A and B
in P, find the shortest path inside P between A and B (fig.ll)

This shortest path is called the internal path between 4 and B,
denoted IP( 4, B). and its length. [IP(A.B)|, is called the internal distance
between A and B (fig.11). To have a visual representation of 1P( A4, B),
one can imagine a rubber band inside P tightly stretched between A
and B. In [SM77}. Shamos suggests an O(N?) algorithm for computing
1P(4.8). The mcthod consists essentially of computing all pairs of
vertices visible from cach other, in O(A?) time. so as to form the so-
called viewability graph of P. We next add weights to the graph by
assaciating to cach edge the Fuclidean distance between its endpoints.
Computing an internal path is now equivalent to finding the shortest
path between (wo vertices of a graph with N vertices. which can be
donc in O(Nz) time. Of course. we assume in this case that both A and
A arc vertices of P. We will next show how the use of a triangulation
pemiits us to compute the internal path in O(N) time. without even

having to restrict the points to be on the boundary of 2. Note that since

we know how to compute a (riangalation of an N-gun in O(Mog N)

time. this result constitutes a significant improvement.
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For the time being, we will assume that both 4 and B are vertices of
P. We will sce later on how we can easily dispense with this
requirement. If 4 and B are vertices of the same triangle of 7., it is clcar
that IP(A4.B)= 4B, so we may assume that this is not the case. In the
following, we will say that an interior cdge of T is AB-crussing if its
cndpoints «,v are such that AuwB.v appear this order around the
boundary of P. Let P" be the polygon resulting of the removal from T
of all the edges that are not AB-crossing (fig.12). We first prove a few
technical lemmas,

Lemma 11: The internal path between 4 and _B inPis
identical to the internal path between A and Bin P°.

Proof: It suffices to show that IP(A,B) can only intersect
AB-crossing edges. To sce that, suppose that it intersects an
interior edge e which is not AB-crossing. Since e partitions P
into two polygons, one of them does not contain B,
therefore IP(A,B) crosses e at least twice (once in each
direction). 1If 4° (resp. B‘) is the first (resp. second)
intersection, going from A4 o B, replacing the part of
IP(A.B) from A" 10 B® by the scgment A'B" will shorten the
length of IP( 4. B), which leads to a contradiction. [J

Lemma 12: The imcmel path between A and B intersects
every interior edge of P exactly once, and intersects no
otheredgein 7.

Proof: The proof of Lemma 11 shows that IP( A.B) cannot
intersect any interior edge more than once. On the other
hand, we can casily prove by induction that since every
interior cdge of P partitions this polygon into two parts,
neither of which contains both 4 and 8, it must interseet
IP(A.B) at least once. Putting this result together with
Lemma 11 completes the proof. 3

It is casy to compute P in O(N) time. To do so, consider every
interior edge of T'in turn, and if it is not AB-crossing, remove it from T
along with the dangling sub-polygon, just created, that does not contain
AorB letl = {alb].....apbp} be the interior edges of r.as they
appear from A4 o B (fig.12), i.c.. in the order in which they intersect
1X(A.B) (L.emma 12). Note that it is straightforward to obtain /. in XNV)

time. once £ has been computed. From now on. the term 1P(x.3), with
xy. vertices of P, refers 1o the internal path between x and y with
respect to cither P or P This is legitimate since the two puths are
identical. as a simple generalization of | cmma 11 readtly shows,

Lemma 13: For any i: 1<icp. there exists a vertex v of 2
such that IXAq)=1P(Avul’ and IPCADL)Y=T( AUV,
where U and ¥ are two convex, non-intersccting polygonal
lincs rning their conveaity against cach other. and running
from vto a and br respectively (fig.13).

Proof: Let €, and €, be two oriented curves originating
at the same point. To carry the analogy with internal paths,
we may further assume that neither is self-intersecting; we
say that CI and ('2 have a proper crossing if, as we follow C.
from its starting point. we encounter a point where C.
intersects Fl. and actually switches from one side to the
other. Fig.14.1 (but not fig.14.2) shows an cxample of a
proper crossing.  We next prove that for any three points




A.B.C in P. thc two paths IP(A,B) and IP(A,C) never have
any proper crossings. Suppose that they did; let a be the
first point (starting at A) where IP(4,8) and IP(4,C) cease to
coincide, and let b denote the next intersecting point. Since
1P(A4,8) and 1P( 4.0) takc distinct paths from a b, we may
re-route cither one to the other, since they must have exactly
the same length. lterating on this process will eventually
causc all proper crossings to disappear, which proves the
above fact. We can now cstablish L.emma 13 by induction
on i. The initial casc being trivial, we may dircctly assume
that the lemma is true for all indices from 1 to i Since the
ambm‘s are triangulation-edges. we necessarily have a=a,,
orb=b . say. g=a_ . wiog ‘Thus, considering the path
]P(A.le). we obscrve that since it does not have any
proper crossings with cither 1P( A.a)or TP A.bi),

1. It must pass through their common point v.

2.Its vertices between v and b arc vertices of U
and W.

From 1, it results that we may concentrate on the path
lP(r.bI“) instcad of IP(A.I)H ). since we obviously have
AL, ) = IP(Av) U I(vb ). Next. we strengthen
proposition 2 by proving that the vertices of IP(v.bl+ l) are
vertices of U or . but never of both at the same time.
Indeed. suppose wlog that starting at v, the vertices of
IP(v,bH y) are {.hy...., with 1, through 7 lying on U and
ey O BT follows that the angle (’n_llnHFIm’m-l) is
under 180 degrees. therefore there is an obvious shorteut for
1P( "'bu!)‘ avoiding . (fig.15), which lcads to a
contradicion. Thus there are now two buasic cases o
consider, depending on whether IPX{v.b, |} takes its vertices
in U or B In the former case. v will be relocated further
ahcad on U, whercas it will stay unchanged in the latter. ‘The
details are straightforward. so we may consider the proof of
the lemma as complete. O

We are now ready to proceed with the algorithm for computing
1P(A.B). The method involves computing IP(4.q) and 1P(4.,b), for
i=1,...p, which we can do iteratively by using the results of Lemma 13
The procedure being trivial for i=1, we tum to the general step
b=b,.
Let Uyl (resp. w, “"‘wﬁ) be

directly. As alrcady mentioned, we have either a,=a_, or
and we can assume wlog that a=a_,.
the vertices of U (resp. W) from v o q, (resp. b)). The half-plane
dclimited by aibi on the side where bi +1 lies is partitioned into a+f8 +1
regions, themselves delimited by the lines passing through
Wﬁ~1"ﬁ""'”’1"'rV”'r"‘l'"l“r'"'"a-l“a
With this order, the regions appcar sorted a]png the scgment aib.l from
b, 10 g, so that we can find the region which contains b, by testing
each of them in turn in this order, until we are successful (fig.16). This
corresponds to unfolding W and possibly folding over U. If b, lies in
a pencil of the kind (wk-lwk‘wkwk+ 1), we must simply rcmove
from W and resct 8 to k+1 and wg 10 b, (figl6.1). If

“jbi+ r

W1

le lies in the pencil ("J-]“y“,“,n

remove (V.4 ) from U and finally sct v to U (fig.16.2). All the

), however, we must set W to

other cases are similar and call for no further cxplanation. Since none

of the vertices removed in these operations will cver be examined again

(L.emma 13), both lP(A.ap) and IP(A.bp). hence 1P(A4,8), will be
computed in O(N) time.

We gencralize this result by allowing both A and B 10 lic anywhere
inside /. and not only on the boundary. et R (resp. 8) be the tiangle
where A (resp. B) lies. If R=S. the problem is solved since
1P(A.B)= AB. Otherwise, we can compute the chain of trianglcs P in
cxactly the same way as described above. Next, let A bc the interior
cdee of R which [P 4.8 crosses. We can replace R by the triangle "x","
without altering the pady 11X 4.8). Applying the same treatment o S
will make .4 and A become vertices of £, which allows us to call on the
procedure described carlier to compute 1.4, 5). In conclusion. we can
sLate our main result;

Theorem 14 Let P be a simple N-gon. and assume that
any triangulation of £ is available. For any pair of points
AL in L.itis possible to compute 1PCA ). the internal path
between 4 and 8. in O(N) time, which is optimal in the
worst case.
5.2. The all-internal-paths problem
The problem is o preprocess the polygon P so that a batch of queries
of the kind:
What is the internal path between A and B?
can be answered optimally. The mcthod described in the previous
section grants an attractive balance between exccution and
preprocessing time, when only a few queries have to be handled at any
given time. It s worst-case optimal. but not optimal in the strictest
scnse of the term., since all the vertices of P must always be examined
for every query. As a result, the precomputation of all possible internal
paths between vertices centails a prohibitive O(NJ) cost. The goal which
we sct forth here is to preprocess P so that the computation of 1P(A4,B)
for any pair of vertices (A.B) requirces only time proportional to the size
of the output, i.c., the number of vertices in 1P(A,8). To achieve this
goal, we use the concept of visibility introduced carlier. Let V(A) be
the visibility polygon of A. If IP(A.B)y=AB. B is a vertex of V(A),
otherwise V(A) has a ray-cdge (i.c.. an cdge vw such that v lics on Aw),
with the property that vw scparates / from B by intersecting [P(A.B).
More precisely, vw is the unique edge of V(A) such that cither A.v,B.w
or A.w.B.v occur in clockwise order (fig.17). Since V(A) is star-shaped,
and vwis a ray-cdge which is traversed by IP(A.8), v must be the first
vertex of 1P(A,B) after A. Indeed, there would be a shortcut if 1P(A.B)
cut vw at any other point.  Conscquently, we have the relation
IXA.B)= Av U IP(v.B) This motivates the introduction of the function
F(A.D=R, il IXAB=48, and F(A.B)=v othcrwisc. Thecorem
1 shaws that if o trangulation of P is available, the visibility polygon
V(A) of cach vertex A4 of P can be obtained in OCY) tme. The
knowledee of V1) permits us to setup the array

X0 = Flav)ii=lo. N}




in OC\V) tme, with O.Vj storage, from which we conclude:

Theorem 15 Let Pbe asimple polvgon with N vertices.
It is pussible to preprocess 2 in O(A\z) lime, using O(Nz)
space. so that for any pair of vertices 1.8, the path IP(A.B)
can be computed optimally. i.c.. in time proportional to the
size of the output.

Proof: Compute the N arrays D("l) ..... D(vN). forming an
Nx N matrix {F(vl.v }. 50 that IP(A.5) can be computed by
reiricving F(A.B) "in _constant time, and computing
IP(F(A.8B), B) recursively. O

5.3. The internal-length problem

Imagine that an island with only inland communications is 1o be
serviced by some utility (water tank, power station. fire house, police
station, hospital, etc...). An interesting piece of information which may
be needed is an upper bound on the internal path length between any
pair of points. Let 48" be the wo vertices of P which form the
longest path 1P(4°,8"). We call HPLA® B the internal lengthof P. Itis
casy to determine A” and & by trying out all possiblc pairs of vertices
and using the matrix F of the previous section, given that the longest
path can always be assumed to be found between two vertices of the
polygon. This leads to an O(Nz) running time. which we can cut down
to O(Nz) by procceding as follows: 1.et IXAB) = JIP(A.B)). We will
compute IX A.B) itcratively by summing up partial distances obtained
from /. In order to avoid duplicating computations, as soon as 1 X A.5)
is available, we backtrack along the path just followed in F to record the
partial results. “This cnsures that, on average. onc value 1X 4, B) will be

computed at cvery other step, which Ieads to an O(NQ) algorithm,
INTDIST
- Initially. cach IXA.B) is set to -1 for A= 8. and 10 0 for A= B.

foralli(1<i<N)
for all j(1<j< V)

begin
0—{v}
X‘—Vl
while D(x,vj) =-]
begin
xe—F(x,v)
0—Quix}
end
if Q has more than one element
then
letQ = {x)eex p}
Lo—D(xp,v.)
fork = p-f....,l
begin
Lo—L+|xkxk+1|
Dixpv)—L
end
end

D(A'.B') = Max ( D("i'v,) | ait pairs of vertices "i"’j)
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Since we can compute a triangulation of P in O(Mog N) time, we
may conclude;

Theorem 16: 1t is possible to determine the internal
length of a simple N-gon as well as the corresponding
intcrnal path in O(V?) time.

6. Conclusions and future research

‘The decompusition principle in geometry cxpresses the feasibility of
local treatments for the solution of gencral problems on arbitrary
figurcs. ‘The polygon-cutting thcorem presented in this paper asserts the
applicability of this principle in the casc of simplc polygons, and by
doing so, lcads to cfficient, simple divide-and-conquer methods for
solving a varicty of gecometric problems. The merit of this approach lics
primarily in the versatility of its applications as well as in the increased
cfficicney which it affords. ‘The most immcediate open question is

e . e . e
whicther sorting the vertices in preprocessing s indeed regquiced. this boils

down 10 one of the most crucial problems of computational geometry:
Is it possible o triangulate an N-gon in less than (Mog N) time? In
crude words, does the knowledge of a simple path among N points buy
us anything? The answer is yes for computing convex hulls, but is still
unknown for other problems like the one at hand. In this paper, we
have deliberatcly chosen simplicity and practicality over generality by
restricting the weights attached to the vertices to take on the values 0],
There is no difficulty, however, in extending the theorem to a more
gencral weight function.
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