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A Sharp Bound on the s-Energy and Its Applications
to Averaging Systems

Bernard Chazelle

Abstract—The s-energy is a generating function of wide applica-
bility in network-based dynamics. We derive an (essentially) opti-
mal bound of (3/ρs)n−1 on the s-energy of an n-agent symmetric
averaging system, for any positive real s ≤ 1, where ρ is a lower
bound on the nonzero weights. This is done by introducing the new
dynamics of twist systems. We show how to use the new bound on
the s-energy to tighten the convergence rates of systems in opinion
dynamics, flocking, and synchronization.

Index Terms—s-energy.

I. INTRODUCTION

Averaging dynamics over time-varying networks is a process com-
monly observed in many well-studied multiagent systems. It has been
used to model swarming, polarization, synchronization, gossip pro-
cesses, and consensus formation in distributed systems [1], [8], [9].
Because of a dearth of general convergence techniques, results in the
area often rely on network connectivity assumptions. The s-energy is
a powerful analytical tool that allows us to overcome these restric-
tions [3]. It provides a global parametrized measure of the “footprint”
of the system over an infinite horizon. This stands in sharp contrast
with the local arguments (spectral or Lyapunov-based) typically used
to prove fixed-point attraction.

The main result of this paper is an optimal bound on the s-energy
of symmetric averaging systems. The new bound is used to tighten the
convergence rates of various multiagent systems in opinion dynamics,
flocking, and self-synchronization of coupled oscillators [1], [3], [7],
[10], [11], [13]–[15], [17], [19]–[21].

Before moving to the technical discussion, we illustrate the role of
the s-energy with a toy system. Fix ρ ∈ (0, 1/2] and place n agents at
x1 , . . . , xn in [0, 1]. Given any ε > 0, for any integer t > 0, pick two
agents i, j such that xj − xi ≥ ε (if any) and move them anywhere in
the interval [xi + δ, xj − δ], where δ = ρ(xj − xi ). Repeat this pro-
cess as long as possible. Note the high nondeterminism of the dynamics:
not only can we choose the pair of agents at each step, but we can move
them anywhere we please within the specified interval. Despite this
freedom, the process always terminates in O( 1

ρn
log 1

ε
)n−1 steps, for
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any small enough ε > 0, and the bound is tight.1 This result is a direct
consequence of our new bound on the s-energy. The proof relies on a
reduction to twist systems, a new type of multiagent dynamics that we
define in the next section.

A. S-Energy

Let (gt )∞t=1 be an infinite sequence of graphs over a fixed vertex set
{1, . . . , n}. Each gt is embedded in [0, 1], meaning that its vertices
(the “agents”) are represented by n real numbers between 0 and 1.
Let μ1 , . . . , μk denote the lengths of the intervals formed by the union
of the embedded edges of gt , and put �t = μs

1 + · · ·+ μs
k , for real or

complex s.2 The s-energy E(s) of the system is defined as the infinite
sum

∑
t> 0 �t . Because the s-energy follows an obvious scaling law,

we note that embedding the graphs in the unit interval is not restrictive.

B. Averaging Systems

In a (symmetric) averaging system, gt is undirected and sup-
plied with self-loops at the vertices. To simplify the notation, we fix
t ∈ Z+ and denote by xi and yi the positions of vertex i at times t
and t + 1, respectively. Vertices are labeled so that x1 ≤ · · · ≤ xn .
For each i ∈ {1, . . . , n}, write r(i) = max{j | (i, j) ∈ gt} and l(i) =
min{j | (i, j) ∈ gt}.3 Fix ρ ∈ (0, 1/2]. The move of vertex i from xi

to yi is subject to

xl(i) + δi ≤ yi ≤ xr (i) − δi (1)

where δi = ρ(xr (i) − xl(i) ). In other words, vertex i can move any-
where within the interval covered by its incident edges, but not too close
to the endpoints. If ρ = 0, convergence is clearly impossible to ensure
since i can easily oscillate periodically between two fixed vertices. We
emphasize the high nondeterminism of the process: gt is arbitrary and
so is the motion of i within its allotted interval.

C. Results

Although the 0-energy is typically unbounded, it may come as a
surprise that E(s) is always finite for any s > 0 [3]. In particular, the
case s = 1 shows that it takes only a finite amount of ink to draw the
infinite sequence of graphs gt . We state the main result of this paper,4

and prove it in Section III.
Theorem 1.1: The s-energy satisfies E(s) ≤ (3/ρs)n−1 , for any

0 < ρ ≤ 1/2 and 0 < s ≤ 1.
We prove in item 1 in Section V that the bound of O(1/ρs)n−1 is

optimal for s = O(1/ log 1
ρ
) and ρ ≤ 1/3. These are the conditions we

1All logarithms are to the base 2.
2For example, if gt consists of three edges embedded as [0, 0.2], [0.1, 0.3],

[0.7, 0.9], and one self-loop at 0.5, then the union of the edges forms the three
intervals [0, 0.3], [0.5, 0.5], [0.7, 0.9] and �t = (0.3)s + (0.2)s .

3Because gt is undirected and has self-loops, l(i) ≤ i ≤ r(i), (l ◦ r)(i) ≤
i ≤ (r ◦ l)(i). The notation l, r should not obscure the fact that both functions
can be chosen differently for each graph gt and its embedding (xi )n

i=1 .
4We actually prove the slightly stronger bound of 2(2/ρs)n−1 for n > 2.
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encounter in practice, which is why we are able to provide tight bounds
for all the applications discussed in this work. For s = 1, a quasi-
optimal lower bound of Ω(1/ρ)�n /2� is already known [3]. Theorem 1.1
lowers the previous upper bound of (1/s)n−1 (1/ρ)n 2 +O (1) [3].

The s-energy helps us bound the convergence rates of averaging
network systems in full generality. To our knowledge, no other current
technique can prove these results. The power of the s-energy is that
it makes no connectivity requirements about the underlying dynamic
networks. We use it typically to bound the communication count Cε ,
which is defined as the maximum number of steps t such that gt

has at least one edge of length ε > 0 or higher. From the inequality
Cε ≤ ε−sE(s), setting s = 1/ log 1

ε
and s = n/ log 1

ε
in Theorem 1.1

yields:
Theorem 1.2: The communication count satisfies Cε=O(1

ρ
log 1

ε
)n−1

for any 2−n ≤ ε ≤ 1/2, and Cε = O( 1
ρn

log 1
ε
)n−1 for 0 < ε < 2−n .

This lowers the previous upper bound of (1/ρ)n 2 +O (1)

(log 1/ε)n−1 [3]. We prove in item 2 in Section V that Theorem 1.2 is
optimal for any positive ε ≤ ρ2n and ρ ≤ 1/3. We close this introduc-
tion with a few remarks about the results and their context.
1) The results extend to a large family of asymmetric averaging sys-

tems. Indeed, Theorems 1.1 and 1.2 hold for any infinite sequence
of cut-balanced digraphs gt : recall that a directed graph is said
to be cut-balanced if its weakly connected components are also
strongly connected.

2) The polylogarithmic factor (log 1/ε)n−1 in the convergence rate
of Theorem 1.2 is a distinctive feature of time-varying network-
based dynamics. Markov chains, for example, have convergence
rates proportional to log 1/ε.

3) Our definition of the s-energy differs slightly from the orig-
inal formulation [3], which introduced the total s-energy as∑

t> 0

∑
(i ,j )∈g t

dij (t)s , where dij (t) is the distance between the
vertices i, j in the embedding of gt . Up to a correction factor of at
most

(
n
2

)
, our bounds apply to the total s-energy as well.

4) As noted in [6], the s-energy can be interpreted as a generalized
Dirichlet series or, alternatively, as a partition function with s
as the inverse temperature. Both interpretations have their own
benefits, such as highlighting the lossless encoding properties of the
s-energy or the usefulness of Legendre-transform arguments with
the relevant thermodynamical quantities.

II. TWIST SYSTEMS

We reduce averaging systems to a simpler kind of dynamics where
agents keep the same ordering at all time. In a twist system, n points
move within [0, 1] at discrete time steps. As before, we fix t ∈ Z+ and
describe the motion of each point xi at time t to its next position yi

at time t + 1. Unlike the averaging kind, twist systems preserve order;
that is, assuming that x1 ≤ · · · ≤ xn , then y1 ≤ · · · ≤ yn . To describe
the motion from t to t + 1, we choose two integers 1 ≤ u < v ≤ n
and, for any i (u ≤ i ≤ v), we define the twist of xi as the interval
within [xu , xv ] defined by

τi =
[
xu + ρ(xm in{i+1 ,v } − xu ), xv − ρ(xv − xm ax{i−1 ,u })

]
. (2)

Fixing ρ ∈ (0, 1/2] ensures that all the twists are well-defined.5 The
only constraints on the dynamics are: 1) y1 ≤ · · · ≤ yn ; and 2) yi ∈ τi

for any u ≤ i ≤ v, and yi = xi otherwise (see Fig. 1).
Observe that conditions (1, 2) are always feasible: for example, we

can choose yi to be the leftmost point in τi ; of course, there is no need
to do so and the expressive power of twist systems comes from the

5Indeed, we can check that τi = [a, b], where a ≤ b. The terminology refers
to the “twisting” of the interval [xi−1 , xi+1 ] around xi into the interval τi

around yi .

Fig. 1. Interval τi extends from a distance ρ(xi+1 − xu ) to the right of
xu to a distance ρ(xv − xi−1 ) to the left of xv : it thus twists [xi−1 , xi+1 ]
into the allowed interval for yi .

freedom they offer. Like their averaging counterparts, such systems are
highly nondeterministic: at each step t, both the choice of u, v and the
motion of the points are entirely arbitrary within the constraints (1, 2).
Writing �t = (xv − xu )s , we define the s-energy of the twist system
as E(s) =

∑
t> 0 �t . The next result justifies the introduction of twist

systems.
Theorem 2.1: Any averaging system can be viewed as a twist system

with the same parameter ρ and the same s-energy.
Proof: Referring to our previous notation, recall that μ1 , . . . , μk

denote the lengths of the intervals Ij formed by the union of the edge
embeddings of gt . We subdivide the time interval from t to t + 1 into
k time windows and, for j = 1, . . . , k, we process the motion within
Ij during the jth window while keeping the other vertices fixed. All
windows are treated similarly, so it suffices to explain the case k = 1.
Let xi (resp. x′i ) be the position of vertex i at time t (resp. t + 1) and let
y1 ≤ · · · ≤ yn be the sequence of x′i sorted in nondecreasing order.6

Let xu , . . . , xv denote the positions within I1 ; we may assume that
u < v. The other vertices are kept fixed, so we have yi = xi for i < u
or i > v. To show that the transition from xi to yi meets the conditions
of a twist system, we need to prove that yi ∈ τi for any i between u
and v. By the symmetry of (2), it suffices to show that, for u ≤ i ≤ v

yi ≤ xv − ρ(xv − xm ax{i−1 ,u }). (3)

Assume that u < i ≤ v and let x̄j be shorthand for ρxj + (1 − ρ)xv .
The entire interval I1 is covered by edges of gt , so there must be at
least one edge (a, b) that covers [xi−1 , xi ], i.e., b < i ≤ a. By (1),
x′a ≤ ρxl(a ) + (1 − ρ)xr (a ) , with l(a) ≤ b < i and r(a) ≤ v; hence
x′a ≤ x̄i−1 . It also follows from (1) and the presence of self-loops that
x′j ≤ ρxl(j ) + (1 − ρ)xr (j ) ≤ x̄i−1 for any j (u ≤ j < i); also x′j =
xj ≤ x̄i−1 for j < u. Putting it all together, this proves the existence of
at least i indices l ≤ v such that x′l ≤ x̄i−1 . It follows that yi ≤ x̄i−1 ;
hence, (3) for u < i ≤ v. To complete the proof of (3), we note that
the case i = u follows from yu ≤ yu+1 . The case k > 1 is handled
by repeating the previous analysis for each interval Ij . The s-energy
contributed by one step of the averaging system matches the energetic
contribution of the k substeps of the twist system. �

III. BOUNDING THE s-ENERGY

The proof of Theorem 1.1 is unusual in the context of dynamics
because it is algorithmic: it consists of a set of trading rules that allows
money to be injected into the system and exchanged among the vertices
to meet their needs. As the transactions take place, money is spent to
pay for the s-energy expended along the way. If all of the energy can

6We break ties by using the index i. Note that the yi ’s are sorted, so they are
not the same as those used in the definition of averaging systems given above.
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be accounted for in this manner, then the amount of money injected
in the system is an upper bound on E(s). In our earlier work [3],
we were able to pursue this approach only for the case s = 1. We
show here how to extend it to all s ∈ (0, 1]. The idea was to supply
each vertex with its own credit account and then let them trade credits
to pay for the s-energy incrementally. This strategy does not work
here because of its inability to cope with all the scales present in the
system.7 The remedy is to supply each pair of vertices with their own
account. Only then are we able to accommodate all scales at once.
By appealing to Theorem 2.1, we may substitute twist systems for
averaging systems. We focus the analysis on the transition at time t
from x1 ≤ · · · ≤ xn to y1 ≤ · · · ≤ yn . Our only assumption is that,
for some u, v (1 ≤ u < v ≤ n), we have yi ∈ τi for any u ≤ i ≤ v,
and yi = xi otherwise.

For each pair (i, j) such that 1 ≤ i < j ≤ n, we maintain an account
Bi,j consisting of (xj − xi )sAj−i credits, where A := 2/ρs and one
credit is used to pay for a single unit of s-energy. (Amounts paid need
not be integers.) We show that updating each Bi,j at time t to B ′i ,j
at time t + 1 leaves us with enough unused money to pay for the s-
energy (xv − xu )s released at that step.8 No new money is needed
past the initial injection at time 1, so the s-energy is at most the sum of
all the Bi,j ’s at the beginning: E(s) ≤∑i< j Aj−i < ( A

A−1 )2An−1 <
2(2/ρs)n−1 , for n > 2. For n = 2, E(s) ≤ A, hence Theorem 1.1. We
begin with a few words of intuition.
1) We update Bi,j to B ′i ,j by considering the pairs (i, j) in descending

order of j–i, starting with (1, n). In general, the update for (i, j)
will rely on money released by the pairs (i− 1, j) and (i, j + 1),
whose accounts will have already been updated. In turn, the pair
(i, j) will then be expected to provide money to both (i, j − 1)
and (i + 1, j): the donation will be made in two equal amounts.

2) How much money should (i, j) receive from its donors. For the
sake of this informal discussion, let us focus on the case u ≤ i <
j ≤ v. The account Bi,j should receive enough to grow to (xv −
xu )sAj−i . This typically exceeds its balance of (xj − xi )sAj−i

at time t, so an infusion of money is required. Of course, the
amount actually needed for B ′i ,j is only (yj − yi )sAj−i , so this in
turn frees ((xv − xu )s − (yj − yi )s )Aj−i ≥ 0, which can be then
passed on to (i, j − 1) and (i + 1, j).

3) We pay for the energetic contribution at time t by spending the
leftover money from the update for (u, u + 1), which we show to
be at least (xv − xu )s , as required.

Proof of Theorem 1.1: We update Bi,j by using Ci,j credits sup-
plied by the accounts Bi−1 ,j and Bi,j+1 . We show how this produces a
leftover Di,j , which can then be donated to (i + 1, j) and (i, j − 1) in
equal amounts. Here are the details: for all 1 ≤ i < j ≤ n in descend-
ing order of j − i = n − 1, . . . , 1, apply the following assignments
(see Fig. 2):

⎧
⎨

⎩

Ci,j ← 1
2 (Di−1 ,j + Di,j+1 )

Di,j ← Bi,j + Ci,j −B ′i ,j
(4)

where Bi,j = (xj − xi )sAj−i , B ′i ,j = (yj − yi )sAj−i , and Di,j = 0
if i < 1 or j > n. The assignments denote transfers of money. This ex-

7We illustrate the difficulty with a simple example. Set n = 3 and assign xs
i Ai

credits to the account for vertex i = 1, 2, 3. Initialize the system with x1 = 0,
x2 = 1 − ε, and x3 = 1; set ρ = 1/2, with g1 consisting of the single edge
(2, 3). Assume now that y1 = 0 and y2 = y3 = 1 − ε/2. The account for vertex
3, the only one to release money, gives out only (1 − (1 − ε/2)s )A3 ≈ 1

2 sεA3

credits. If s < 1 and ε > 0 is very small, this is not enough to cover the s-energy
of εs needed for the first step. The problem is that the credit accounts do not
operate at all scales.

8We refer to Bi,j as both the account for (i, j) and its value.

Fig. 2. Updating B1 ,4 to its new value of B ′1 ,4 releases D1 ,4 credits,
which are passed on evenly to the pairs (1, 3) and (2, 4). With this scheme
in place, updating B2 ,3 to B ′2 ,3 can make use of C2 ,3 = 1

2 (D1 ,3 + D2 ,4 )
credits.

plains the factor of 1/2, which keeps the money pool conserved: for ex-
ample, one half of Di,j goes to (i, j − 1) and the other half to (i + 1, j).
The soundness of the trading scheme rests entirely on the claimed non-
negativity of all the donations Di,j . For any i ∈ {1, . . . , n}, define
u(i) = u and v(i) = v if u ≤ i ≤ v; and set u(i) = v(i) = i other-
wise. We prove by induction on j − i > 0 that, for 1 ≤ i < j ≤ n

{
Bi,j + Ci,j ≥ (xv (j ) − xu (i) )sAj−i (5)

Di,j ≥ 0. (6)

The next inequality, which follows from dzs/dz ≥ s for s, z ∈ (0, 1],
will prove useful in establishing (5, 6)

1 − (1 − x)s ≥ sx for any s, x ∈ [0, 1]. (7)

1) Case u ≤ i < j ≤ v: By affine invariance, we can always assume
that xu = xv − 1 = 0. We begin with the case u < i < j ≤ v and
observe that v(j) = v and u(i− 1) = u(i) = u. Because yi−1 ∈
τi−1 , we have yi−1 ≥ ρxi . Using (7), we find that

Di−1 ,j = Bi−1 ,j + Ci−1 ,j −B ′i−1 ,j

≥ ((xv (j ) − xu (i−1) )s − (yj − yi−1 )s )Aj+1−i

≥ (1 − (1 − ρxi )s )Aj+1−i ≥ ρsxiA
j+1−i .

(8)

If i = u, we have xi = 0, hence (8) merely expresses non-
negativity, which holds inductively. We conclude that (8) ob-
tains for any u ≤ i < j ≤ v. Likewise, by symmetry, Di,j+1 ≥
ρs(1 − xj )Aj+1−i . It follows from (4) that

Ci,j ≥ 1
2
ρs(1 − (xj − xi ))Aj+1−i ≥ (1 − (xj − xi )s )Aj−i

therefore

Bi,j + Ci,j ≥ (xj − xi )sAj−i + (1 − (xj − xi )s )Aj−i

= Aj−i = (xv (j ) − xu (i) )sAj−i

which establishes (5). Since xu (i) = xu ≤ yi ≤ yj ≤ xv = xv (j ) ,
this also proves that

Di,j = Bi,j + Ci,j −B ′i ,j ≥ Aj−i − (yj − yi )sAj−i ≥ 0

hence (6).
2) Case i < u ≤ j ≤ v: This time, we set xi = 0 and xv = 1 and

note that u(i) = i and v(j) = v. We begin with the case j <
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v, which implies that v(j + 1) = v. Using (4) and (5), yi = xi ,
yj+1 ∈ τj+1 , and (7) in this order, we find that

Di,j+1 = Bi,j+1 + Ci,j+1 −B ′i ,j+1

≥ ((xv (j+1) − xu (i) )s − (yj+1 − xi )s )Aj+1−i

≥ (1 − (1 − ρ(1 − xj ))s )Aj+1−i

≥ ρs(1 − xj )Aj+1−i = 2(1 − xj )Aj−i .

(9)

Again, by induction, Di−1 ,j ≥ 0; therefore, by (4)

Bi,j + Ci,j ≥ Bi,j +
1
2
Di,j+1 ≥ (xs

j + (1 − xj ))Aj−i

≥ Aj−i = (xv (j ) − xu (i) )sAj−i

hence (5). For the case j = v, again note that the lower bounds on
Di−1 ,j and Di,j+1 we just used still hold, and thus so does (5) for
all i < u ≤ j ≤ v. Finally, yj ≤ xv ; hence, xu (i) = xi = yi ≤ yj ≤
xv = xv (j ) , and (6) follows from (4 and (5).

The case u ≤ i ≤ v < j is the mirror image of the last one, whereas
the remaining three cases are trivial and require no account updates.
We pay for the s-energy contribution at time t by tapping into Du,u+1 ,
which is unused. For this to work, it suffices to show that Du,u+1 ≥
(xv − xu )s . We have yi ∈ τi (i = u, u + 1); hence

yu+1 − yu ≤ xv − ρ(xv − xu )− (xu + ρ(xu+1 − xu ))

≤ ρ(xu − xu+1 ) + (1 − ρ)(xv − xu )

≤ (1 − ρ)(xv − xu ).

Thus, it follows from (4), (5), and (7), together with u(u) = u and
v(u + 1) = v, that

Du,u+1 = Bu,u+1 + Cu ,u+1 −B ′u ,u+1

≥ A(xv (u+1) − xu (u ) )s −A(yu+1 − yu )s

≥ (1 − (1 − ρ)s )A(xv − xu )s

≥ ρsA(xv − xu )s ≥ (xv − xu )s .

This completes the proof of Theorem 1.1 for twist systems. By The-
orem 2.1, this also implies the same upper bound for averaging
systems. �

IV. APPLICATIONS

A number of known convergence rates for various averaging systems
can be sharpened by appealing to Theorems 1.1 and 1.2. We give a few
examples below.

A. Asymmetric Averaging Systems

Symmetric averaging systems have been widely used to model back-
ward products of the form (At · · ·A1x)t> 0 , where each Ak is a type-
symmetric stochastic matrix with positive diagonal and nonzero entries
at least ρ > 0 [2], [8], [11], [13], [15], [17].9 In other words, Ak is the
matrix of a lazy random walk in an undirected graph gk with a lower
bound of ρ on the nonzero probabilities. A close examination of the
proof of Theorem 2.1 shows that the graphs gt may be directed as long
as the vertices still have self-loops, and, for each i = u + 1, . . . , v,
there exist edges “hovering” over i from both sides, i.e., (a, b) and
(b′, a′), with a, a′ < i ≤ b, b′. We note that this property holds if each

9A matrix A is type-symmetrix if Aij and Aj i are both positive or both 0
for all i, j .

directed graph gt is cut-balanced.10 This gives us a strict generaliza-
tion of Theorems 1.1 and 1.2 to asymmetric averaging systems whose
sequences of digraphs are cut-balanced. This result goes beyond the
mere convergence of these systems, which was established in [12].

B. Opinion Dynamics

There has been considerable attention given to consensus formation
in social dynamics [8]–[10]. Given a set of agents in high-dimensional
space, where coordinates model opinions, one imagines that at each step
a subset of them come into contact and, through a process of delibera-
tion, adjust their opinions toward agreement. Will such a process con-
verge to consensus, polarization, a mixture of both, or not at all? Mathe-
matically, the agents are represented by their position in d-dimensional
space: x1 , . . . , xn in [0, 1]d . We fix 0 < α ≤ 1 and iterate on the fol-
lowing process forever: (1) choose an arbitrary nonempty subset of the
agents and move them anywhere inside the box (1 − α)B + αc, where
B is the smallest (axis-parallel) box enclosing the chosen agents and c
is the center of B; (2) repeat. Intuitively, one “squeezes” the subset of
agents together a little.

Theorem 4.1: For any positive ε≤2−dn , at all but O( 1
dαn

log 1
ε
)n−1

time steps, the smallest box enclosing the chosen agents has volume
less than ε.

Proof: We set up a symmetric averaging system as follows: gt

consists of n self-loops, together with the complete graph joining the
agents of the chosen subset; along each axis, the dynamics obeys (1)
with parameter ρ = α/2. Let �t (j) be the length of the graph’s pro-
jection onto the jth axis. By Theorem 1.1, we know that, for any
0 < r ≤ 1,

∑
t> 0 �t (j)r ≤ (6/αr)n−1 . Let Vt be the volume of the

smallest box enclosing the agents picked at time t. By the generalized
Hölder’s inequality, for 0 < s ≤ 1/d

∑

t> 0

V s
t =

∑

t> 0

d∏

j=1

�t (j)s ≤
d∏

j=1

(
∑

t> 0

�t (j)ds

)1/d

≤ (6/dαs)n−1 .

Set s = n/ log 1
ε

and use Markov’s inequality to complete the
proof. �

C. Flocking

Many models of bird flocking have been developed over the years and
used to great effect in CGI for film and animation. Their mathematical
analysis has lagged behind, however. In a simple, popular model tracing
its roots back to Cucker and Smale, Vicsek, and ultimately Reynolds,
a group of n birds is represented by two n × 3 matrices x(t) and v(t),
where the ith rows encode the location and velocity in R3 of the ith
bird, respectively [7], [13], [21]. The dynamics obeys the relations

⎧
⎨

⎩

x(t) = x(t− 1) + v(t)

v(t + 1) = P (t)x(t)

where P (t) is an n × n stochastic matrix whose entry (i, j) is positive
if and only if birds i and j are within a fixed distance R of each
other. All entries are rationals over O(log n) bits. A tight bound on the
convergence of the dynamical system was established in [4] and [5]: it
was shown that steady state is always reached within a number of steps
equal to a tower-of-twos of height proportional to log n; even more
amazing, this bound is optimal. The lead-up to steady-state consists of
two phases: fragmentation and aggregation. The latter can feature only
the merging of flocks while the (much shorter) fragmentation phase

10A directed graph is cut-balanced if its weakly connected components are
strongly connected.
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can witness the repeated formation and breakup of flocks. Technically,
a flock is defined as the birds in a given connected component of the
network joining any two birds within distance R. It has been shown that
the total number of network switches (i.e., the number of steps where the
communication network changes) is nO (n 2 ) . We improve this bound
to nO (n ) by using the s-energy. It was demonstrated in [4, p. 21:7]
that the number of network switches is bounded by the communication
count Cε , for ε ≥ n−bn 2

, ρ ≥ n−c and constant b, c > 0. Our claim
follows from Theorem 1.2. �

D. Self-Synchronizing Oscillators

The self-organized synchronization of coupled oscillators is a well-
known phenomenon in physics and biology: it is observed in circadian
neurons, firing fireflies, yeast cell suspensions, cardiac pacemaker cells,
power plant grids, and even musical composition (e.g., Ligeti’s poème
symphonique). In the discrete Kuramoto model studied in [16]–[18],
all oscillators share the same natural frequency and the phase of the ith
one obeys the recurrence

θi (t + 1) = θi (t) +
KΔT

|ni (t)|
∑

j∈n i (t)

sin(θj (t)− θi (t))

where ni (t) is the set of vertices adjacent to i in gt (which includes
i). Following [17], we assume that all n phases start in the same
open half-circle, which we can express as α − π/2 ≤ θi (0) ≤ π/2, for
some arbitrarily small positive constant α. We find that sin(θj (0)−
θi (0)) = aij (θj (0)− θi (0)), where cα ≤ aij ≤ 1, for constant c > 0.
This condition holds for all t since averaging keeps the phases in the
same open half-circle. The dynamics is that of a symmetric averaging
system provided that we pick ρ small enough so that bρn/α ≤ KΔT ≤
1, for a suitable constant b > 0. By Theorem 1.2, for any ε ≤ 2−n , the
number of steps where two oscillators are joined by an edge while their
phases are off by ε or more is O( 1

αK Δ T
log 1

ε
)n−1 .

V. LOWER BOUND PROOFS

1) We prove that the bound O(1/ρs)n−1 from Theorem 1.1 is op-
timal for s = O(1/ log 1

ρ
) and ρ ≤ 1/3. A lower bound con-

struction from [3, p. 1703] describes a system whose n-agent
s-energy satisfies the recurrence En ≥ ρsEn−1 + (1 − 2ρ)sEn +
1 for n > 1; hence, for positive constant b, E2 ≥ b/ρs and
En ≥ (bρs−1/s)En−1 for n > 2. This shows that En ≥ (b/ρs)n−1

ρs(n−2) = Ω(1/ρs)n−1 , for s = O(1/ log 1
ρ
), as claimed.

2) We prove that Cε = Ω( 1
ρn

log 1
ε
)n−1 , for any positive ε ≤ ρ2n

and ρ ≤ 1/3. Note that ρ must be bounded away from 1/2 (we
choose 1/3 for convenience): indeed, in the case of two vertices
at distance 1 joined by an edge, we have the trivial bound Cε = 1
for ρ = 1/2. The proof revisits an earlier construction [3] and
modify its analysis to fit our purposes. If n > 1, the n vertices of
g1 are positioned at 0, except for xn = 1. Besides the self-loops,
the graph g1 has the single edge (n − 1, n). At time 2, the vertices
are all at 0 except for xn−1 = ρ and xn = 1 − ρ. The first n − 1
vertices form a system that stays in place if n = 2 and, otherwise,
proceeds recursively within [0, ρ] until it converges to the fixed
point ρ/(n − 1): this value is derived from the fact that each step
keeps the mass center invariant. After convergence11 of the vertices
labeled 1 through n − 1, the n-vertex system repeats the previous
construction within [ρ/(n − 1), 1 − ρ]. Let C(n, ε) denote the
communication count for n agents: we have C(n, ε) = 0 if n = 1

11We can use a limiting argument to break out of the infinite loop.

or ε > 1; else

C(n, ε) ≥ 1 + C

(

n − 1,
ε

ρ

)

+ C

(

n,
ε

1 − ρn/(n − 1)

)

.

(10)
By expanding the recurrence and using monotonicity

C(n, ε) ≥ k + k C

(

n − 1,
ε

ρ(1 − 2ρ)k−1

)

(11)

where we set

k =
⌈

(log ε)/n − log ρ

2 log(1 − 2ρ)

⌉

.

Assume now that ε ≤ ρ2n . From our choice of k, we easily verify
that

ρ(1 − 2ρ)k−1 ≥ ε1/n . (12)

The recurrence (11) requires that ε/(ρ(1 − 2ρ)k−1 ) < 1, which
follows from (12). Since ε1/2n ≤ ρ ≤ 1/3, we have k ≥ b

ρn
log 1

ε
,

for constant b > 0. It follows that C(2, ε) = Ω( 1
ρ

log 1
ε
) and, for

n > 2, by (12)

C(n, ε) ≥
(

b

ρn
log

1
ε

)

C(n − 1, ε1−1/n ).

We verify that the condition ε ≤ ρ2n holds recursively: ε1−1/n ≤
ρ2(n−1) . By induction, it follows that C(n, ε) ≥ Ω( 1

ρn
log 1

ε
)n−1 ,

as desired.
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