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SELECTING HEAVILY COVERED POINTS*
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Abstract. A collection of geometric selection lemmas is proved, such as the following: For any set P of n points
in three-dimensional space and any set ,9 of m spheres, where each sphere passes through a distinct point pair in P,

there exists a point x, not necessarily in P, that is enclosed by f2 (m ! (n log6 )) of the spheres in S. Similar results
apply in arbitrary fixed dimensions, and for geometric bodies other than spheres. The results have applications in
reducing the size of geometric structures, such as three-dimensional Delaunay triangulations and Gabriel graphs, by
adding extra points to their defining sets.
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1. Introduction. The research that led to the results reported in this paper was originally
focused on a problem about Delaunay triangulations for finite point sets in three-dimensional
space. For such a set P {p, P2 p,,}, the Delaunay triangulation, 7)(P), consists of all
tetrahedra whose circumscribed spheres enclose no points of P [7], 10], [17]. Depending on
how the points are distributed, the number of edges can vary between linear and quadratic in n.
Euler’s relation for three-dimensional cell complexes implies that the number of triangles and
tetrahedra, and therefore the total combinatorial size of 7)(P), is proportional to the number
of edges. We considered the question whether for every set of n points P there exists a point
set Q so that 7)(P t3 Q) is guaranteed to have only a small number of edges. This question
is motivated by the use of Delaunay triangulations in the discretization of three-dimensional
objects [4], for finite-element analysis and related applications, where the size of the analysis
has a strong effect on the efficiency of the analysis 18]. Of course, any set of n points in three
dimensions admits a linear-size triangulation [10]; however, the Delaunay triangulation is
preferred in these applications, because its tetrahedra are, in a certain sense, the most "round"
possible, a property that affects the quality of the finite-element analysis.

A fairly intuitive approach to the problem is to identify a point that lies inside a large num-
ber of spheres circumscribing the tetrahedra ofthe current Delaunay triangulation. Adding this
point will remove all corresponding tetrahedra and replace them by at most a linear number
of new tetrahedra. Thus, the problem of slimming Delaunay triangulations can be attacked by
showing that if there are many circumscribing spheres then there must be a point enclosed by
many of them. It turns out that this is indeed true, for certain quantifications of "many," and
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that similar results can be obtained in more general settings, involving various other geometric
objects, in two, three, and beyond three dimensions. We now summarize the main results and
present the outline of this paper.

objects

intervals

rectangular boxes

diameter spheres

general spheres

TABLE
Sumtnary ofcombinatorial results on tnultiply covered points.

dimension bound

(m2/n2)

d f2 (m2/(n2 ’og2d-2 ))

.
2.2

3.1

3.2

Sections 2 and 3 present the main results of the paper. They are combinatorial in nature
and show how to select multiply covered points in collections of rectangular boxes (2) and
spheres or more general convex bodies (3). Table lists these results. In each case, the
problem is defined for a set of n points in d dimensions, and for a subset of rn of the (2) point
pairs, where each of these pairs defines a geometric object of some kind. The bound given in
the third column of the table is f2 (f (n, m)) if there is always a point enclosed by at least that
many of the m objects. In all cases, the bounds are nontrivial only if the number of objects is
significantly larger than the number of points.

Sections 4 and 5 discuss the problem of reducing the combinatorial size of certain geo-
metric structures by adding new points. The combinatorial result for general spheres is used
in 4 to show, using a constructive proof, that for any set P of n points in three dimensions
there is a set Q of O(nl/2 log3 n) points so that the Delaunay triangulation of P t.) Q has at

most O(n3/2 log n) edges. Section 5 studies the case of Gabriel graphs. The Gabriel graph
of a set P of n points in d > dimensions, denoted by (P), has an edge between two points
p and q in P if and only if the sphere whose diameter is pq encloses no point of P. We show
that the size of (P) in three dimensions can be f2 (n2), and that it can be slimmed down by
adding extra points, as in the case of Delaunay triangulations.

The idea of adding points to slim down the size of Delaunay triangulations has already
been used in a paper of Chew [6], where he triangulates polygons without small angles, by
finding sharp triangles in the constrained Delaunay triangulation of the polygon, and by adding
new points at their circumcenters. After the original appearance of this paper [5], an improved
and fairly complete solution to the slimming problem has been given by Bern, Eppstein, and
Gilbert [3] (see also [2]), who showed that, in any fixed dimension, O(n) points can always
be added to any given set of n points, to reduce the size of the Delaunay triangulation of the
combined set to linear in n. The technique of [3] is not really comparable to the approach taken
here, and it does not supercede our main selection lemmas, which, as we believe, provide useful
machinery for tackling other, unrelated geometric problems. Indeed, our selection results have
been used in a companion paper [1 to derive an improved bound on the number of halving
planes of a point set in three dimensions.

2. Selecting a point within rectangular boxes. The primary combinatorial tool used to

prove the results of this paper is what we call the "selection lemma" (Lemma 2.1). This section
formulates and proves this lemma and demonstrates its generalization to rectangular boxes in
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d > 2 dimensions. Although we phrase the results in geometric terms, they are combinatorial
in nature.

2.1. The selection lemma. To state the selection lemma we make the following defini-
tion. For two points p < q on the real line we call pq {X P < x < q} the interval of
{p, q }. For any set V, we denote by () the set of all unordered pairs {p, q }, for p - q 6 V.
The following lemma can also be found in ], where generalizations different from the ones
in this paper are studied.

LEMMA2.1. Let V be a set of n points on the real line and let E c_ () be a set of
rn edges. For a point x not necessarily in V, let E(x) denote any subset of the edges in E
whose intervals contain x, define m(E(x)) IE(x)l, and let n(E(x)) be the number ofpoints
incident to (i.e., endpoints of) edges in E(x).

(i) There is a point x and a set E(x) with m(E(x)) > m2/4n2.
(ii) There is a point y for which there is a set E (y) with

m(E(y))/n(E(y)) > m/ (6n log )
Both bounds are tight up to multiplicative constants.

Proof. We assume that rn > 2n; otherwise both assertions hold trivially. In order
to show (i) choose k points, none of which are in V, cutting the line into k intervals
so that each contains no more than [ < + points of V (k will be specified later).
The number of edges whose intervals contain none of the k points is therefore at most

k(fl) < (n2 / nk)/Zk. Each of the remaining intervals contains at least one of the k
m if we choosepoints and there are at least m (n2 -k- nk)/2k such intervals, which is at least -k [nZ/(m n)]. By the pigeonhole principle one of the chosen points is contained in at

least m/2(k 1) > (m2 mn)/2n2 > mZ/4n2 intervals (it is only in the last inequality that
we needed the assumption rn >_ 2n).

It is easy to see that this bound is tight, up to the multiplicative constant. For given m and
n let V consist of about n2/2m groups of about 2, consecutive points each, and let E contain
only edges within but not across groups. Any point x can only be covered by the intervals
within one group and there are at most about m2/n2 such intervals covering a common point.

To prove (ii), build an ordered minimum height binary tree whose nodes are the k
chosen points (for the same k chosen in (i)), so that the tree inorder gives the points sorted from
left to right. The height of the tree is h [log(k 1)1 < 2 log n2 /m, as is easily verified. For
a node y define E (y) as the set of edges in E whose intervals contain y but no ancestors of y.
In this way each edge whose interval contains at least one of the k points is counted exactly

rn Because each point canonce. By what we said above we therefore have y m(E(y)) > -.
be incident to edges of at most one node per level we also have -]y n(E(y)) < n(1 + h). Now
suppose that m(E(y))/n(E(y)) < m/(2n(1 + h)) for each node y. But then

m m

Y

m(E(y)) <
2n(1 + h)

n(E(y)) < -,
which is a contradiction. This implies that there is a point y with m(E(y))/n(E(y)) >

m/(2n(l + h)) > m/ 6nlog
The remainder of the proof shows that the lower bound in (ii) is tight, up to the multiplica-

tive constant. The argument consists of two steps. For the first step consider the graph defined

by the set of points W 1, 2 and the set of edges F {i, j j is a power of 2}.

All logarithms in this paper are to the base 2.
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Notice that FI O( log e). We show that the edges whose intervals contain some arbitrary
point y form a forest by arguing that these edges cannot form a cycle. So assume there is a
cycle ofedges {i0, ii }, {i, i2} {i,, i0} whose intervals all contain y, and let i0 be the point
closest to y (we may assume that y is not an integer multiple of so i0 is uniquely defined).
By definition we have lijyl < lij+yl for j 0 and we now argue that this is true in general.
Assume it is true up to j. Because lijyl < lij+yl and the lengths of all intervals are powers of
2, lij+ij+2l > 21ijij+l unless ij+2 ij, which is impossible because this would mean that an
edge is reused. Consequently, the distances of the ij from y strictly increase with increasing
index, which contradicts the assumption of a cycle. Since every subgraph of a forest is again
a forest and since every forest has more vertices than edges the above argument proves that
the lower bound in (ii) is asymptotically tight for m (R) (n log n). Nothing has to be proved
if m is even smaller than that.

The second step covers other ratios of m and n as follows. For each point 6 W let
V contain a group, Gi, of tc consecutive points, for x some fixed positive integer. We also
define E {{p,q} P 6 Gi, q Gj, {i, j} F}. Now, n IVI xe and m IEI-"

m(R)(tc2e log e) and therefore - (R)0c log e). We show below that m(E(y))/n(E(y)) < tc for
every point y and every subset E(y) of the set of edges in E whose intervals contain y. But
this is equivalent to showing that (ii) is asymptotically tight because

m to log )log

To show m(E(y))/n(E(y)) < c let E(y) be a subset of the edges whose intervals contain y
and let ni be the number of points in Gi incident to at least one edge in E(y). Define F(y)
as the set of pairs {i, j} 6 F so that E(y) contains an edge {p, q} with p Gi and q Gj.
Clearly, m(E(y)) IE(y)I _< -,li.jlVy ninj. By the argument of the previous paragraph,
F(y) defines a forest which implies the existence of a leaf whose contribution to ninj is
therefore at most nix. Since we can reduce a forest to the empty graph by repeatedly removing
a leaf with its incident edge, we get ninj < x ni cn(E(y)), thus proving that (ii) is

asymptotically tight. ]

Remarks. (1) Part (ii) of the selection lemma implies an inequality that is only slightly
weaker than (i). To see this note that m(E(y))/n(E(y))2 < 1, which implies n(E(y)) >

( ( ).m 6n log using (ii). Using (ii) again gives m(E(y)) > m2/ 36n2 log2 ,2

(2) The proofs of the lower bounds in the selection lemma are constructive. Assume the
graph (V, E) is given with the points sorted from left to right. Point x can be found in time
O(m) by a single scan from left to right that keeps track of how many intervals cover the gap
between the current two adjacent points. By a slightly more complicated algorithm we can
also find a point y satisfying (ii) in time O(m). The idea is to build explicitly the binary tree
described in the proof above (see also [9]). We first build the tree in time O(k) and then assign
the endpoints of the edges to the gaps between the k points in time O(m) during a left to

right scan. From the gaps of its endpoints we get the leftmost and rightmost of the k points
that lie in the interval of the edge and we get the lowest common ancestor of the corresponding
two nodes, all in constant time (see 14]). It now remains to traverse all nodes of the tree and
to select the best one. If the points in V are not presorted then points x and y can be computed
in time O(m + n log n).

2.2. Rectangular boxes. For two points p (rr,
in d dimensions we define

ipq {X (1, 2 d) Yri < i < i or i < i < wi for < < d}
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and call it the box of {p, q}. We now generalize Lemma 2.1 from intervals to boxes in d
dimensions.

THEOREM 2.2. Let V be a set ofn points in d > dimensions, so that no two coordinates

ofany two points in V are the same. Let E c_ (v2) be a set ofm > 2n edges. For a point x not

necessarily in V, let E (x) denote any subset ofthe edges in E whose boxes contain x, define
m(E(x)) ]E(x)], and let n(E(x)) be the number ofpoints incident to edges in E(x). Then
there exists a constant Cd > 0 depending only on d such that the following holds.

 ,.ere ,sa,,o,,.,,, a,.,ase,
(ii) Tere is a poi Sfor wi <re is a se (y) wih

m(E(y))/n(E(y)) > m/ c,nloge-
m

Proof. We prove the theorem for c 6e- using induction over d; the base case, d 1,
is settled by the selection lemma. We remark that no effort is made to minimize ca.

If d > 2 then project all points orthogonally onto the (d 1)-dimensional hyperplane
x 0. By the inductive assumption there is a point y’ in this hyperplane and a subset E (y ’)
of the edges in E whose (d 1)-dimensional boxes (the projections of the boxes/) contain
y so that

m(E(y ’)) m

n(E(y’)) ce_n loga-1 Z"

The edges whose (d 1)-dimensional boxes contain y’ are such that their d-dimensional
boxes intersect the line parallel to the dth coordinate axis that goes through y’. On this line
we have a one-dimensional problem with m (E (y’)) intervals defined by n (E (y’)) endpoints.
The selection lemma thus implies that there are points x and y with

m(E(x)) >

because 4c,_ < ca, and

m(E(y’))2 m2

4n(E(y,))2 cdn2 1ogZd-2 n

m(E(y)) m(E(y’)) m

n(E(y)) 6n(E(y’)) log ’<Y’)) can loga ’5
m(E(y’)) m

because 6Cd-1 log(n(E(y’))Z/m(E(y’))) < 6ca-1 log((n2/m) ca-i loga-l(n2/m)) <

Cd logd (nz/m) if d > 2.
Remarks. (1) Here is a purely combinatorial formulation of Theorem 2.2" Take a graph

with vertex set 1,2 n} and a set of m edges, and consider d permutations of the vertex
set. Then it is possible to cut each permutation into a left and a right part so that there are
"many" edges {i, j with and j separated in each permutation. How many such edges there
are is quantified as in Theorem 2.2.

(2) A noninductive proof of Theorem 2.2 can be given by choosing some k points in d
dimensions and then using the pigeonhole principle directly. If the point set is based on the
so-called d-fold rectangle or interval tree [9] then the same bounds as above can be derived.

(3) We have seen that the lower bounds of the (one-dimensional) selection lemma are
tight up to the multiplicative constants. This is equivalent to saying that Theorem 2.2 is
asymptotically tight for d 1. Are the bounds of Theorem 2.2 asymptotically tight also for
d>2?
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(4) Note that (ii) implies (i) up to a polylogarithmic factor. This is because m(E(y))/

(n(E(y))2) < and therefore n(E(y)) > m (can loga "--)m using (ii). Using (ii) again gives

m(E(y)) > m2/ (cn2 log2a !
(5) Given a graph (V, E) with the points sorted along each axis, a point y satisfying

Theorem 2.2 (ii) can be computed in time O(m). The algorithm that finds y within this
time bound iterates the one-dimensional algorithm mentioned in remark (2) after the selection
lemma, once for each dimension. A point x satisfying (i) can be constructed in the same amount
of time. If no presorting is assumed then the time to find points x and y is O(m + n log n).

3. Selecting a point within spheres. This section extends the selection lemma to circles,
spheres, and other geometric objects. In 3.1 we consider spheres defined by antipodal point
pairs. In 3.2 we generalize the result to the case where the sphere defined by two points is

arbitrary as long as it passes through the two points. We say that a sphere encloses a point, or
the point lies inside the sphere, if the point belongs to the open ball bounded by the sphere.
Section 3.3 studies a sufficient but fairly general condition that allows a similar result as for
spheres. Finally, 3.4 presents a curious application of our methods to a problem about points
and angles.

3.1. Diameter spheres. Let V be a set of n points in d > 2 dimensions. The diameter
sphere of a point pair {p, q}, pq, for p, q 6 V, is the smallest (d 1)-sphere that passes
through both points. Thus, z (p + q)/2, the midpoint between p and q, is its center and
p _[e, half the distance between p and q, is its radius. Observe that for all points x in the
box ipq the distance to z is smaller than p. In other words, ipq is enclosed in pq. Moreover,
if we rotate the coordinate axes, as necessary, we may assume that no two coordinates of any
two distinct points in V are the same. The following result is therefore an immediate corollary
of Theorem 2.2.

COROLLARY 3.1. Let V be a set ofn points in d > 2 dimensions and let E c_ (v2) denote
any set ofm > 2n edges. For a point x not necessarily in V, let E (x) be a subset ofthe edges
whose diameter spheres enclose x, let m(E(x)) IE(x)l, and let n(E(x)) be the number of
points incident to edges in E (x).

(i) There is a point x and a set E(x) with m(E(x)) > m2/ (can2 log2a-2

(ii) There is a point y for which there is a set E (y) with

( n2)m(E(y))/n(E(y)) > m/ canlogam
m

Remark. This result can also be interpreted in terms of angles/pxq, where p and q are

points of V and x is an observation point. We consider all pairs {p, q} and thus set m (2)"
Point x lies inside pq if and only if/pxq > . Thus, Corollary 3.1 implies that it is always
possible to find a point x so that f2 (n2) point pairs define an obtuse angle at x. Section 3.4
will elaborate on this interpretation and show a similar result for angles larger than -2"3.2. General spheres. Next we extend the result for diameter spheres to general spheres.
For this extension we let V be a set ofn points in d > 2 dimensions and E be a set of undirected
edges between the points as usual. For each edge {p, q} E we let O’pq be an arbitrary but
fixed (d 1)-sphere that passes through p and q. Unless O’pq pq, O’pq intersects pq in a

great-(d 2)-sphere of pq. Therefore, exactly half of pq is enclosed by O’pq and at least half
of the ball bounded by pq lies inside Crpq. If we are lucky then point x (or y) of Corollary 3.1
lies in the halves enclosed by the spheres cr for a constant fraction of the diameter spheres.
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In this case, the bounds of Corollary 3.1 are the same, up to a constant multiplicative factor,
as for general spheres. Otherwise, almost all spheres do not contain x. We call crpq anchored
if this is the case, that is, x does not lie inside crpq but it lies inside pq. All anchored spheres
must lie fairly close to x in the sense that the cone with apex x tangent to any such sphere has
opening angle at least -. We will show how to select another point that is guaranteed to lie
inside many of the anchored spheres. More precisely, we show the following theorem.

THEOREM 3.2. Let V be a set ofn points in d > 2 dimensions, and let E

_
(v2) be a set of

m > 2n edges. For a point x not necessarily in V let m(E(x)) be the number ofedges whose
spheres enclose x.

(i) There is a point x with m(E(x)) >_ m2/ (cn2 log2‘/n2),--;, where ca’’ is a positive
constant that depends only on d.

(ii) There is a point y and a subset E (y) of the edges in E whose spheres enclose y so
that

m(E(y))
>

m

n (E (y)) c‘/n-’" log‘/+ --n
’" is some positive constant.where m(E(y)) and n(E(y)) are defined as usual and

Proof. We prove only (i); claim (ii) can be proved in a similar manner, using Lemma 2.1
(ii) instead of (i). Let y be a point that lies inside many diameter spheres of the edges in E,
where "many" is quantified as in Corollary 3.1 (ii). Thus, there is a subset E (y) of the edges
in E whose diameter spheres enclose y so that

m(E(y)) m
() >

n(E(y)) c‘/n log‘/
m

where m(E(y)) IE(y)I and n(E(y)) is the number of points incident to edges in E(y). Let
S be the set of spheres of edges in E (y) that do not enclose y" so all spheres in $ are anchored
and we can assume that IS[ > 2

To argue about y’s view of the world we consider a sphere cry with center y and centrally
project all centers of spheres in ,9 onto cry. We can assume that no two centers project onto
the same point on Cry. Define a cap of Cry as its intersection with a closed cone with apex y
whose opening angle is , that is, the cone consists of all points p so that the angle between the
cone’s axis and the half-line through p that starts at y is at most . By a standard compactness
argument, Cry can be covered by a finite (i.e., constant) number, c, of caps [12]. Therefore,
there exists a cap that contains a constant fraction of the projected centers. Let R be the
half-line that is the axis of the corresponding cone C and let $ be the set of spheres in $
whose centers lie in C (that is, project to points in the cap). Since the opening angle of the

r it easily follows that R intersectscone with apex y tangent to any sphere cr in $ is at least ,
cr in two points which delimit an interval that is at least as long as the radius of cr. To see this
it suffices to consider the two-dimensional cross section of cr with the plane spanned by R and
by the center of cr. In this plane, the angle 6 between R and the tangent from y to Cr that is

r

_
However, 3 s s where s and s’nearer to R (see Fig. 1) is at least 2 6" are the

two arcs of Cr, measured in radians, delimited between R and the tangent line. In particular,
’ from which it follows triviallythis implies that the smaller arc cut off Cr by R is s + s’ > 3,

that R intersects Cr in a chord whose length is at least the radius of
At this point we face a one-dimensional problem on R. Intersect R with all open balls

bounded by spheres in S. This gives a set of at least m(E(y))/(2ct) intervals, and we want
to show, using the selection lemma, that there is a point in many such intervals and therefore
inside many spheres. The difficulty we have to cope with is that the intervals can have many
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R

FIG. 1. R intersects r in a long chord.

more than n(E(y)) endpoints. In fact, most likely there are twice as many endpoints as there
are intervals. We show below that it is possible to replace each interval by an interval contained
in it so that the total number of endpoints of the new intervals is at most 6n(E(y)). Using
Lemma 2.1 (i) it follows then that there is a point x contained in

m(E(x)) >
m(E(y))2

4(2c)2 (6n (E (y))) 2

intervals. Together with (1) this implies

m(E(x)) >
m2

cdn,, 2 log2 ,,’m
where c (24cdc1)z.

We now show how to reduce the number of endpoints to 6n(E(y)). Take all spheres in

SR that go through a common point p 6 V and intersect them with the (two-dimensional)
plane h that contains R and p. Let o- 6 SR go through p and denote by d the closed ball
bounded by or. Clearly, the radius of the circle h cr is smaller than or equal to the radius of
or. Furthermore, the interval R O is at least as long as the radius of cr because of the way
R is chosen. Let a and b be the endpoints of this interval. Then the angle/apb is at least
(see Fig. 2). Hence, 12 half-lines starting at p suffice to stab all these angles, and at most six
of them intersect R. These at most six half-lines stab all intervals of the form R 6pq with

O’pq SR, p fixed, and q arbitrary.
For the final argument we place at most six points for each one of the n(E(y)) points

incident to edges in E(y), which gives at most 6n(E(y)) points on R. The interval R f3 pq
is guaranteed to contain at least one of the at most six points generated by p and at least one
of the at most six points generated by q. We can thus replace R fq 6pq by one of the at most
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FIG. 2. The angle formed by a, p, and b is equal to half the angleformed by a, the center of the circle, and b.
Since the interval ab is at least as long as the radius ofthe circle, the latter angle is at least -.

36 intervals defined by the 12 points generated by p and q and apply the selection lemma as
described above. [3

Remark. The proofofTheorem 3.2 is constructive and leads to an algorithm that computes
a point x with the desired properties in time O(m + n log n). The first step of this algorithm
finds a point y within the required number of diameter spheres (see remark (5) after Theorem
2.2). This takes time O(m + n log n). Second, a ray R that intersects many anchored spheres
sufficiently close to their centers is determined by projecting centers of spheres onto the sphere
Cry around y, covering ay with a constant number of caps, and choosing the cap that contains
the largest number of projected points. This takes time proportional to the number of projected
centers, which is O(m). Finally, the spheres whose centers project onto the chosen cap are
intersected with R, thus the defined intervals are replaced by smaller intervals as described,
and point x is selected in time O(m / n log n) in a single scan along R.

3.3. Round objects. A result similar to Theorem 3.2 can be established for a more general
class of objects than just spheres. Let p and q be two points in d > 2 dimensions, let pql
denote their euclidean distance, and let co and Co be two positive constants. A convex set 75pq
is said to be (co, Co)-round (or simply round) for {p, q} if

(i) p and q lie on the boundary of rpq, and
(ii) 75pq contains a d-dimensional ball pq whose radius is at least colpql and whose

center is at a distance at most Co lpql from p and from q.
l)-round, and itFor example, the ball bounded by the diameter sphere tpq of p and q is (,

is fairly easy to see that any ball with p and q on its boundary is (1/2, )-round. With this
definition we can show the following generalization of Theorem 3.2.

THEOREM 3.3. Let V be a set ofn points in d > 2 dimensions and let E c_ (v2) be a set of
m > 2n edges {p, q }, each associated with an round object "Cpq. For a point x not necessarily
in V let m(E(x)) be the number of edges {p, q} with x rpq. Then there is a point x with

m(E(x)) > m/ cn log where c is a positive constant that depends on d, co, and Co.
Proof. To describe where this proof differs from the one of Theorem 3.2 we introduce

two auxiliary objects" the ball/q and the cone ?’pq. The ball pq has the same center as pq
and its radius is half of the radius of pq; the cone ?’pq is the convex hull of pq and p (see
Fig. 3). Clearly, we have Z’pq ’pq D ipq

_
itpq.

When we construct the half-line R out of point y (defined as in the proof of Theorem 3.2),
we make sure it intersects many of the balls pq associated with edges in E (y). Because of
condition (ii), R can be found so that it intersects at least a constant fraction of the/,q.
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FIG. 3. The edge {p, q} defines an round object r that contains t’, , and 1. The half-line R intersects ’; its
intersection with y is alb and with r it is ab.

Let us now fix our attention on a particular r gpq and let a and b be the endpoints of
the interval R tq r. In order to complete the proof in the same way as the proof of Theorem
3.2 we need to show that the angle/apb (and analogously Zaqb) is at least some constant
fraction of Jr.

Notice that the boundary of ), ,pq consists of a fan of line segments that form the tan-
gents from p to/3 flpq, as well as part of the boundary of/3 itself (see Fig. 3). Let a’ and b’ be
the endpoints of R N V; we will prove the stronger result that the angle/a’pb’ is at least some
fixed fraction of Jr. If one of the points a’ or b’ lies on one ofthe line segments that form the tan-
gents from p to/3 then the result is immediate: the angle subtended at p goes from the boundary
of/3 at least as far as to some point of fl’. By condition (ii) the balls fl and/3’ look big from p, so
this angle cannot be too small. On the other hand, if both a’ and b’ lie on the boundary of/3 then
the result follows because a’b’ cannot be too short--in particular, it is longer than the radius

off.
We omit all further details, as they are the same as in the proof of Theorem 3.2. lq

Remarks. (1) As follows from the above proof, it is not necessary to require that Vpq be
convex and that p and q lie on its boundary. All that is needed is condition (ii) and that "gpq
contains the cones ypq and qp defined by pq and points p and q.

(2) It is also interesting to observe that condition (ii) is not sufficient to prove Theorem
3.3. Indeed a counterexample exists already in one dimension. Let V {Pi 2i < < n
be the set of n points and for < j define vii {xl(2pi + pj)/3 < x < (Pi d- 2pj)/3}.
Thus, "tgij has the same midpoint as the interval ij delimited by Pi and pj and its length
is one third of that of fij. However, for any < j < k we have Vij (q rik t1 because
(2 -t- 2Jt-1)/3 < (2TM -t" 2k)/3. Thus, the set of () intervals "gij can be partitioned into n
subsets so that two intervals are disjoint if they belong to the same subset. It follows that there
is no point x contained in more than n intervals rij.

3.4. A problem about points and angles. For points p and q in d-dimensional space
and for angle ct, -f < ot < Jr, define the a-football of {p, q as the set

(pq(Ol) {x Apxq >_ c}.

For example, )pq (-) is the closed ball bounded by the diameter sphere (pq, and pq (Jr) is the
line segment pq. For general c, dppq (a) is the intersection of all closed balls that contain p and
q and have a fixed radius depending on IPql and or. If ot < Jr is fixed, then )pq(Ol) contains
a ball centered at the midpoint between p and q whose radius is some fixed positive fraction
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of IPql. Hence, ,(pq(tY) is round for Co and co > 0 (co goes to zero if ot approaches rr)
and Theorem 3.3 applies. We reformulate this result for the case where every pair of points
defines an u-football and phrases it in terms of angles.

r be afixedCOROLLARY 3.4. Let P be a set ofn points in d > 2 dimensions and let ot > -angle strictly smaller than re. Then there exists a constant c depending on d and ot and a point
x so that/pxq > ot for at least cn2 pairs {p, q} (e2).

Loosely speaking, point x is almost collinear with a constant fraction of the .point pairs
if ot is insignificantly smaller than zr, for example ot 79. In other words, x almost lies on
each one of a constant fraction of the lines defined by the points.

4. Slimming down spatial Delaunay triangulations. This section deals with Delaunay
triangulations for point sets in (three-dimensional) space. Let P be a set of n points in space
and let 79(P) be its Delaunay triangulation. For simplicity we assume that no five points are
cospherical so that 79(P) is uniquely defined. If this is not the case then it is always possible to
enforce it by simulating an arbitrarily small perturbation of the points; see ]. As mentioned
in the introduction, abcd is a tetrahedron of 79(P) if and only if the sphere through points a,
b, c, and d does not enclose any points of P.

For 0 < < 3, let fi be the number of/-dimensional faces of D(P), that is, fo n is
the number of vertices, fl is the number of edges, f2 is the number of triangles, and f3 is
the number of tetrahedra of 79(P). By Euler’s relation we have f0 fl + f2 f3 (see
Hopf 5] for an elementary proof of this relation). Because every tetrahedron is bounded by
four triangles and every triangle bounds at most two tetrahedra we also have 2f3 < f2. This
implies

(2) f3 < fl n + and f2 _< 2f 2n + 2.

We thus see that f, the number of edges of 79(P), is a good measure of the combinatorial
complexity of 79(P). We call f the size of 79(P).

Depending on how the points are distributed, the size of 79(P) can vary between linear in
n and quadratic in n. An extreme example is when the points of P lie on the positive branch
of the moment curve, A/[ {(x, x2, x3) x > 0}. Because a sphere intersects WI in at most
four points, which can be shown using Descartes’ sign rule for the polynomial that arises,
every point pair defines an edge of D(P). It follows that the size of 79(P) is () (see also [8]).
The goal of this section is to show that no matter how badly P is distributed, there is always
a small set Q of points in space so that 79(P t3 Q) has size a.t most O(n3/2 log n).

A sphere is called a Delaunay sphere of P if it is the circumscribed sphere of a tetrahedron
abcd of 79(P). Using Theorem 3.2 we can show that if there are many Delaunay spheres,
then there are many that enclose a common point.

LEMMA 4.1. Let P be a set of n points in space defining Delaunay spheres. There

is a point x enclosed by rn E (x > t2 / (cn2 log6 ) Delaunay spheres, for some positive
constant c.

Proof. Note that an edge ab is incident to as many Delaunay spheres as there are tetrahedra
in 79(P) that share ab; this number can be as large as n 2. In order to apply Theorem 3.2
we match the edges of 79(P) with the Delaunay spheres so that the Delaunay sphere matched

Delaunay spheres have a matchingwith an edge passes through its endpoints and at least g
edge. We do this as follows. By definition, each Delaunay sphere is incident to six edges,
and, by (2), there are at least edges. Match an edge with an incident sphere arbitrarily and
remove both from further consideration. Thus, there are at most five more edges that can no

matched pairs aslonger find a matching sphere. If we iterate this process we get at least
required.
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We thus arrive at a situation where we have n points and m > g edges with a unique
corresponding sphere each. Theorem 3.2 implies that there is a point x enclosed by at least

m2 2 2

c’3’n2 lg6 ’m 62c’n2 log6 --i-
6’12 cn2 lg6 5-"2

spheres, e.g., for c 6 c." 71
If we add x to P then all tetrahedra whose circumscribed spheres enclose x disappear by

definition. Lemma 4.1 thus impliesthat it is possible to destroy f2",(t2/",(n2 log ))tetrahedra
at once. However, x also gives rise to new tetrahedra. Because all new tetrahedra are incident
to x we can bound their number from above as follows.

LEMMA 4.2. Let P be a set ofn points in space and x a point not in P. Then x is incident
to at most 2n 4 tetrahedra in 79(P tO {x}).

Proof Let cr be a sufficiently small sphere with center at x. If we intersect cr with the
edges, triangles, and tetrahedra of 79(P) we get a planar graph. Each vertex of this graph
corresponds to an edge of 79(P), and if cr is sufficiently small all such edges are incident to x.
Because x is incident to at most n edges (at most one per point in P), the planar graph has at
most n vertices and, by Euler’s relation, at most 2n 4 regions. These regions correspond to
the tetrahedra incident to x. 71

What we said about Delaunay triangulations in space suggests the following algorithm
for reducing the size of a Delaunay triangulation by adding points at well-chosen locations.
Recall that m (E (x)) is the number of Delaunay spheres destroyed by adding point x.

Input. A set P of n points in space.
Output. A set Q of points in space so that 79(P U Q) has at most O(n3/2 log n) edges.
Algorithm.

Construct 79(P) and set Q "= 0;
loop find a point x that maximizes m(E(x)) in 79(P Q);

if m(E(x)) > 4n then Q "= Q tO {x} and update 79(P Q) accordingly
else exit

endif
forever.

Using Lemmas 4.1 and 4.2, one can establish the following result.
THEOREM 4.3. For any set of n points P in three-dimensional space there is a set Q

of at most 0 (n 1/2 log n) points so that the Delaunay triangulation of P tO Q has at most
O (n3/2 log n) edges. Such a set Q can be computed in time 0 (n2 log7 n).

We omit here details of the analysis, because this result is less significant now, in view
of the recent results of Bern et al. [3]. Interested readers are referred to an earlier and fuller
version of this paper [5].

5. The size of Gabriel graphs. The Gabriel graph of a finite point set is a subgraph of
the Delaunay triangulation that has applications in zoology and geography [1 3], [16]. Let P
be a set of n points in d > dimensions. The Gabriel graph of P, denoted by (P), has
an edge between two points p and q in P if and only if their diameter sphere, pq, encloses
no point of P. The definition implies that the edges of (P) are a subset of the edges of the
Delaunay triangulation. Thus, ](P) has only O(n) edges when d < 2, and trivially at most
O(n2) edges, otherwise. The bound is tight for d < 2, since each point is incident to at least
one edge. The following lemma shows that the bound is also tight for d > 2.
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LEMMA 5.1. The maximum number of edges of the Gabriel graph of n points in d > 3
dimensions is f2 (n2).

Proof We exhibit a set P of 2n points in three dimensions such that (P) has at least n2

edges. Embedding this example in higher-dimensional space proves the lemma for d > 3.
We place the points in two groups {ai} and {bj on interlocking, orthogonal circles. Each

circle passes through the center of the other, and the points on each circle are located near the
center of the other circle. Each circle has radius 2. The points ai lie near (0, 1,0) on a circle
in the xy-plane centered on (0, -1,0). The bj lie near (0, -1,0) on a circle in the yz-plane
centered on (0, 1, 0). To quantify "nearness" we use a small parameter "

ai (f (i), i, O) and bj (O, -l + j, f (j)),

where _< i, j < n and f(k) x/4k k22 < 4x/. We show that for > 0 sufficiently
small, the diameter sphere determined by a pair {ai, bj contains no other points of P. The
center of the sphere is

ai + bj
cij

2 -(f (i), (j i), f (j)).

We prove that the distance from Cij to a point ak (or bk) is minimized when k (k j).
The square of the distance is

(ak cij)2 ((2f(k) f(i))2 + (2 2k6 j + i)2 + f(j)2)

-; (16ks 4f(k)f(i) + 4i + 4 8k 4je + 4ie + 4je) + O(62)

+ 2(k + i) f(k)f(i) + O(2).

Because f(k)f(i) 4/’ + O(62), we have

(a, cij)2 + 2(k 2x/ + i) + O(62) + 2(x/ x//)2 q-- O(2).

For small enough, this quantity is minimized only when k i.
We can use Corollary 3.1 to reduce the size of Gabriel graphs. In three dimensions this

gives a better bound than the one for Delaunay triangulations, which is based on Theorem 3.2.
THEOREM 5.2. For any set of n points P in d > 3 dimensions there is a set Q of

O(n 1/2 logd-1 n) points so that the Gabriel graph of P to Q has at most O(n3/2 logd-1 n)
edges.

Proof. Here is a sketch of the proof. By Corollary 3.1, if m > 2n, m the number of
edges of (P to Q), then there is a point x whose addition to Q deletes m(E(x)) edges from
(P tO Q), where

m(E(x)) >_
m2

Cdn2 log2d-2 n"
m

Adding a point to Q adds at most P to Q] edges to (P tO Q). Using an argument similar to that
of 4, one can show that the number of edges of(P t_J Q) can be reduced to O(n3/2 log- n)
by adding points to Q. By reasoning similar to that used in the proof of Theorem 4.3, one
can show that the algorithm of 4, modified for Gabriel graphs, produces a set Q of size
O(n 1/2 logO- n). [3
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