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Quasi-Optimal Upper Bounds for Simplex Range
Searching and New Zone Theorems'

Bernard Chazelle,> Micha Sharir,® and Emo Welzl*

Abstract, This paper presents quasi-optimal upper bounds for simplex range searching. The problem
is to preprocess a set P of » points in 9t so that, given any query simplex g, the points in Png can
be counted or reported efficiently, I m units of storage ate available (n < m < n), then we show that it is
possible to answer any query in O(n!**/m') query time after O(n'**) preprocessing. This bound,
which holds on a RAM or a pointer machine, is almost tight. We also show how to achieve O(log )
query time at the expense of O(n!**) storage for any fixed ¢ > 0. To fine-tune our results in the reporting
case we also establish new zone theorems for arrangements and merged arrangements of planes in
3-space, which are of independent interest.
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1. Introduction. We consider the following problem, known as simplex range
searching: Preprocess a set P of n points in %¢ so that, given any query simplex
¢, the points in P n g can be counted or reported efficiently. We can put the many
variants of this problem under the same umbrella by assuming a weight function
on the points and asking for the cumulative weight of the points in Pngq. For
the sake of generality, it is best to disallow the use of subtraction (which will make
our upper bounds more powerful): formally, this means choosing weights in an
additive semigroup.
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Our approach is broken up into three stages: We begin by investigating
algorithms with logarithmic query time and polynomial-size data structures. We
show how to achieve O(log n) query time at the expense of O(n**?) storage for any
fixed & > 0. This result generalizes the two-dimensional solution of Paterson and
Yao [32] to higher dimensions at the expense of some extra storage. It is used as
a subroutine by the main algorithm, which we discuss in a second stage. This
algorithm provides us with a family of tradeoffs in any fixed dimension. We show
that with O(m) storage (n <m < n%) it is possible to answer any query in
O(n' **/m*") query time after O(m' **) preprocessing. This bound, which holds on
a RAM or a pointer machine, is almost optimal: indeed, it comes very close to
Chazelle's lower bound of Q(n/m'?) in two dimensions and Q((n/log n)/m*) in
dimension d > 2 [5]. It is actually the only tradeoff of this kind for arbitrary
dimensions. The two-dimensional case, however, has already been solved almost
optimally [1], [10], [19], as far as query time goes (all of these papers solve the
problem only for linear, or close to linear storage). Nevertheless, our preprocessing
costs are much smaller than those of previous techniques. Even for the special
case where m is linear or quasi-linear, our result improves on previous solutions
in dimension greater than 3 [25], [36]. Because of the extra n* factor, however, it
falls slightly short (in terms of query time) of the solutions given by Chazelle and
Welzl [10]. However, on the other hand, except in two and three dimensions, the
upper bounds in [10] hold only in the arithmetic model, whereas our results hold
on any general-purpose computer; that is, they include all costs of searching
through the data structures and other auxiliary operations. Moreover, among
solutions that give quasi-optimal query time, ours is the only one that is also
quasi-optimal in terms of preprocessing cost. Another important advantage of our
technique is that it supports multilevel data structures. This allows us to use it for
more complex types of queries (see a remark to that effect at the end of Section
3). See also [16], [32], [35), and [34] for previous related work.

The extra n* factor we just mentioned is most likely an undesirable artifact of
our methodology. Indeed, we show how to remove this factor in the reporting
version of the problem in two and three dimensions. This requires an intricate
geometric analysis leading to improved zone theorems for arrangements and
merged arrangements planes in 3-space. Considering the central importance of
arrangements in computational geometry, we believe that these theorems are
interesting in their own right. Their generalizations to any fixed dimension have
been elusive and we leave them as open problems.

A final note concerns the nature of our preprocessing algorithms. Most of them
use randomization, but the results of [7], [28], and [29] allow us to derandomize
all preprocessing steps. Using the recent results of Matousek [28], [29] the
resulting algorithms have worst-case performance that is asymptotically the same
as the expected cost of the corresponding randomized procedures, but are more
complicated to carry out. We therefore prefer to present our technique using the
randomized approach; our theorems, though, state the bounds in a way that
indicates that deterministic preprocessing is also possible.

Recently, Matousek [27] has independently obtained results similar to ours by
using a completely different approach. His bounds are actually slightly better than
ours because the extra n® factor is replaced by a polylogarithmic factor.
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2‘. Simplex Range Searching in Logarithmic Time. We will show how to perform
simplex range searching on » points in R in O(log n) query time, using a data
structure of size O(n**) which can be built in (randomized expected) time Om?*?)
for any fixed & > 0. From now on, any reference to the term “expected time” refers
to a Las Vegas algorithm, meaning a probabilistic algorithm that is guaranteed
always to produce the right solution but whose running time is a random variable.
Thus, no distribution on the input needs to be assumed.

. _We begin with the special case of simplex range searching, where the “simplex”
is in fact a closed half-space. (This is, indeed, a special case of the main problem,
Since we can trade a half-space for a very large simplex with one facet in the
bounding hyperplane.) The dual version of the problem presents us with a
collection of n weighted hyperplanes in d-space: Given a query point, we must
compute the added weight of all the hyperplanes lying above the point in question.
(Fc_)r duality, we use the standard point-to-hyperplane and hyperplane-to-
POINt Maps: (py, ..., p) > Xy = PyXy + *** + Py X4y + Paand Xy = pyx; + - +

Pi-1Xq~y + Ps=>(—py, ..., —Ps—1> Pa); the term “above” refers to the x,-direc-
tion.) To solve our range-searching problem, we simply precompute the -answer
at each of the vertices of the arrangement of hyperplanes and preprocess the
arrangement for fast point location. The latter can be done in O(n**?) expected

Preprocessing time, using the O(n?*%)-size data structure of Clarkson [11] (for any

fixed & > 0). The first part of the preprocessing involves computing the cumulative

weight of the planes lying above each vertex of the arrangement. The naive method

takes O(n** ') time and can be improved upon by batching computations. We need

to make a brief digression to develop this point.

Let /;,...,1, be a sequence of p > n lists of at most #» numbers each. Assume
that each J, differs from /;, , in at most a constant number of places (meaning that
the two lists have bounded edit distance). We wish to compute the sum of the
numbers in each list, not allowing subtractions. Here is one way to do it (not
necessarily the most efficient). To begin with, we store the first list in, say, a
red-black tree and compute partial sums at each node. In this way, summing up
any interval in /; can be performed in O(log ») time in a straightforward fashion.
In particular, we can use this scheme to compute the sum of all the numbers in
I;. To deal with I, we insert into or delete from the tree all the numbers in the
symmetric difference of /; and /,. Having now obtained an admissible representa-
tion for /, in O(log ») time, we can find the sum of all its numbers in a single lookup.
Iterating in this fashion, we complete the computation in O(p log n) time.

Returning to half-space range searching, we see the utility of our addition scheme
by connecting together the vertices of the arrangement in an Eulerian tour of size
2 = O(n (as in [15]). It is easy to ensure that the hyperplanes lying above any
two consecutive vertices in.the tour are the same except for at most a constant
number of them. We can therefore precompute the cumulative weight of the planes
above each vertex in O(n’ log n) time. In this way we-can answer any half-space
range-searching query in O(log ») time, using O(n®**) storage and O(n***)-expected
preprocessing time, + -~ R

Now we would like to generalize this data structure to the problem of simplex
range searching,/The dual version of this problem specifies d + 1 labeled points
(Po> Po)s - - - (Pas pa), Where p; stands for “above,” “through,” or “below.” The
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question is to sum the weights of all the hyperplanes satisfying each relation p,
with respect to p; for i = 0,...,d. Let us ignore the fact that the number of points
just happens to be one plus the dimension of the ambient space. Let us call that
number k, instead. If k = 1, this is a half-space query and we apply our previous
solution. Assume now that & > 1.

Let H(p) denote the set of hyperplanes lying above point p. If v, v,, ... denote
the vertices of the arrangement of n hyperplanes, representing each H(v;) explicitly
would require O(n**!) storage. Using the fact that these sets share large subsets
among themselves, we can design a more compact representation by breaking up
each H(v) into a small number of “shared” canonical subsets. Furthermore, we
want to ensure that large canonical sets are few and far between. The reason for
this is that canonical sets will be used as inputs to other polynomial-size data
structures. Thus, the fewer large canonical sets, the better. Using the theory of
random sampling, we know that with high probability a random pick of r
hyperplanes has the property that if we triangulate each cell of the arrangement
of these hyperplanes, each resulting simplex is crossed by O(n(log r)/r) hyperplanes
[11]. We choose r to be roughly n for some small constant ¢ > 0. We need the
ability to locate a point in the triangulation of the sample in O(log #) time. To do
that, we apply Clarkson’s method to the hyperplanes bounding the facets of the
triangulation [11]. This requires O(*“*®) time and space. Next, for each cell ¢ of
the triangulation, we compute the set F(c) of hyperplanes that lie strictly above
¢ (and so, in particular, do not intersect the cell). Next, we recurse on this process
with respect to each cell and the hyperplanes intersecting it. The resulting data
structure can be modeled as a tree of branching degree O(r), where a node at
depth j is associated with (for a constant ¢ > 0)

(i) a certain subset N(v) of the hyperplanes of size O(n(c log ),
(i) a certain triangulation of an arrangement of r hyperplanes of N(v), and
(iii) for each cell, the set of hyperplanes in N(v) lying completely above it,

Note that r is not reset at each recursive call and remains unchanged. As a result,
the tree has constant depth. The lowest level of the tree is the most expensive to
build, so that computing the data structure takes expected time at most propor-
tional to

\ J
ol LU 1)an<ﬁ,l,9§l> 4 gyl
r

for some constant a > 0, with n(c(log r)/rY*! < r, which is O(n***) for an arbi-
trarily small constant &' > 0 depending on & (In implementing this recursive
partitioning scheme, it is best to verify that each random sample is a good one,
in the sense that its triangulated arrangement has only “sparse” cells, as above.
If this is not the case, we throw away the sample and try another one. This increases
the expected cost by only a constant factor.) It follows that both the expected
construction time and the storage requirement are O(n***) for any fixed & > 0.
Given a point p, we can compute H(p) by locating p in the triangulation
associated with the root of the tree and retrieving the set of hyperplanes lying
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above the enclosing cell. Next, we pursue the search in the child of the root
corresponding to the enclosing cell. Since the tree has constant depth, the entire
computation can be performed in O(log n) time. Note that the sets retrieved form
a partition of H(p) into a constant number of subsets.

‘ Returning now to our query problem, we consider each set of hyperplanes stored
In some node of the tree and apply the same scheme with respect to the
arrangement that it forms. (More precisely, we apply to this arrangement the same
scheme with k — 1 instead of k) We thus iterate on this process k — 2 times; the
final sets are processed as in the case k = 1. This technique of attaching recursively
defined auxiliary structures to the nodes of a tree is a standard staple of
mpltidimensional searching [30], so we feel no need to elaborate any further at
this point. Let Ti(n) be the expected time needed to compute the data structure.
Wehave Ty(n) = O(n?**) and, for k > 1, expanding T(n) along tree levels, we find

5 logr)
'l}c(n)San‘”“—k Z (ar)d+d17;c_1(£(_€_r07g_zl)

0<isj

for some a > 0, where n(clogrY/r = O(1). We can check that, for any fixed
&' > 0, there is an appropriate choice of & so that Ti(n) = O(n***). Obviously, the
same upper bound holds for the space requirement. For k a constant, the query
time is clearly O(logn) since the depth of the master tree and all its auxiliary
structures is constant. Let us summarize our findings so far. (We also make a claim
on the reporting version of the problem which we leave as an exercise; we also
remind the reader that our preprocessing can be derandomized by Matousek’s
recent techniques [28], [29].) :

THEOREM 2.1.  Simplex range searching on n points in R* weighted in a semigroup
can be performed in O(log n) query time, using a data structure of size O(n**%) Jor
any fixed & > 0. Preprocessing takes O(n®*®) randomized expected or deterministic
worst-case time. In the reporting version of the problem, the query time has an extra
additive cost linear in the number of points to be reported. o ‘

3. Trading Storage and Query Time. Before we begin, it is best to state and
prove a technical result which we use repeatedly. Given n hyperplanes in R?
(assumed to be in general position for simplicity), consider the triangulation of
their arrangement obtained in the following recursive manner [12]. First, triangu-
late the (d — 1)-dimensional arrangements formed by ‘the intersection o
hyperplane with the i

er toj-thatipa Tt Jonstructing s
rian; } ; Now,; w im that-any hyperplane {(not necessarily
one of those given to us) intersects O(n®~?) cells of the triangulation. Why is that
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s0? We can prove by induction that given any cell of the original arrangement,
its number of faces before and after triangulation differs by at most a constant
factor. Therefore the number of intersected cells in the triangulation is at most
proportional to the maximum size of a zone in the untriangulated arrangement,
which is known to be O(n*~*) [22].

Let us now turn our attention to range searching. As before, we are given as
input a collection of n points in MY, As we saw in the previous section we can
reduce simplex range searching to half-space range searching by putting together
auxiliary structures. We can therefore focus our attention on half-space range
searching, Our basic strategy is to build a triangulation of d-space with the
property that no hyperplane can see too many of the n input points. (To see &
point in this context means to cut through the cell enclosing it.) Then, given &
query half-space, we can count the points in it by identifying the cells completely
within the half-space and those only partly inside. (Obviously, those totally outside
can be ignored.) We count the points within the former cells in time proportional
to the number of such cells. To count the points in the other kind of cells, we
proceed recursively within each cell separately. Unfortunately, we are unable to
find a triangulation that satisfies our requirements. So, instead, we compute a small
number of different triangulations with the property that any given hyperplane
cannot see too many points for at least one of these triangulations. To compute
this set of triangulations, we select a representative (random) sample of all possible
hyperplanes and compute the desired triangulations with respect to them only.
We then argue that what is good for them is also good for any other hyperplane.
(This technique is similar to that used by Matoudek in [26].)

Pick a random sample of r points, for some constant r large enough, and
construct a triangulation Z~ of its dual arrangement. With high probability, no
cell will be crossed by more than roughly O(n(log r)/r) of the n dual hyperplanes.
We can compute such a triangulation together with the corresponding distribution
of hyperplanes among its cells in O(n~*) (randomized expected) time. To do this,
we first compute the triangulation in O(%) time and find the cells cut by each dual
hyperplane. From the observation we made at the beginning of this section it
follows that a standard navigation algorithm will do the work in O(*~!) time per
hyperplane. (For each hyperplane, this involves traversing, in, say, a depth-first
search manner, each of the cells which it intersects.) If we discover that a cell is
cut by too many hyperplanes, we throw away the random sample and start all
over again (as we did also in Section 2). With high probability we will succeed
within a constant number of attempts.

Next, we dualize each vertex of J back into primal space. This gives us a set
IT of O(r%) hyperplanes which, as we shall see, provides a good sparse approxima-

tion of the Z hyperplanes defined by the n points. If a hyperplane in IT is dual

to a vertex which (because 7 is a triangulation of the arrangement) is incident
upon many cells, then it somehow becomes more “representative” than others.
So, for technical reasons, we increase its importance by duplicating it a certain
number of times. Specifically, we make IT into a multiset IT* by making as many
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copies of a hyperplane as the number of cells to which its dual vertex is incident
in 7. Obviously, the size N of IT* is still O(r9).

Now, we compute the triangulations mentioned in the overview. We pick a
random sample of IT* of size r uniformly and compute a triangulation of the
arrangement formed by the sample, (Geometrically, of course, the duplication has
no effect; it is just a way of making some hyperplanes more likely to be picked.)
Next, we locate each of the 7 points in the triangulation naively and precompute
the number of points enclosed by each cell. This takes O(nr?) time (we could do
it faster but since r is a constant it does not matter). Let us say that a hyperplane
sees one of these points if it crosses the interior of its enclosing cell (or any one
of them, if there are several). With high probability, the interior of each cell will
be crossed by O(N(log r)/r) hyperplanes of I1*, therefore the total count of visible
point/hyperplane pairs is O(nN(log r)/r). It follows that at least a constant fraction
of the hyperplanes of IT* see only O(n(log r)/r) points. For technical reasons (which
will soon be clarified) we choose this fraction to be 1 — 1/(2d + 2). These favorable
hyperplanes form a (multi-)subset IT* of IT*. We say that the triangulation is
sparse for the hyperplanes of IT* (in the sense that these hyperplanes see only a
few of the n points, as just stated). Computing IT* takes O(Nr‘~!) time by
navigating through the triangulation, cutting through it along each of the <N
hyperplanes of T1.

Let us now say that a cell of 7 is good if all its d + 1 vertices are dual to
hyperplanes in IT*. If not every cell is good, then we collect all d + 1 vertices of
each of the bad cells, dualize them and form the multiset IT¥, to which we then
apply the previous procedure. Note that IT* and I1* are usually not disjoint.
Also, observe that, because of the multiplicity of vertices, every bad cell consumes
at least one vertex dual to a distinct nonfavorable hyperplane, therefore the number
of vertices in the bad cells (which is the size of I1¥) is at most (d + 1)N/(2d + 2) =
N/2, which is half the size of IT*. We iterate on this process, computing multisets
H’{‘,...,H}", until the size IT¥ drops below r, at which point the “random”
sample picks each of them and thus makes them all favorable. This shows
that after completion this process will have generated O(logr) triangulations
each of size r?. The expected time for computmg all these tnangulatlons is
O((nr® + r*~ 1) log r).

We claim that any hyperplane & in R¢ has at least one sparse triangulation.
Note that if that is the case, then, by precompiiting the number of points in each
cell, we can easily find which triangulations are sparse for 4 in O(r*~ ! log r) time,
and use one of those in our query. However, why should our claim be true? Let
p be the dual point of 4. Our construction ensures that the cell C of 7 that encloses
p is good for at least one triangulation S. Therefore, with respect to S, the duals
of its d + 1 vertices can only see O(n(logr)/r) points. Can the dual 4 of p somehow
see any other of the n points? If not, we are done. If yes, then we can argue that
such a point must dualize to a hyperplane that .crosses the cell C. There are at
most O(n(log)/r) such points, so our claim is valid. However, how do we argue
that a point that is not seen by any of the d + 1 hyperplanes dual to the vertices
of C and yet is seen by » must have its dual hyperplane cross C? Consider these
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d + 1 hyperplanes and let D denote the corridor enclosed between their upper and
lower envelopes. It is easily checked that A must be fully contained in D. Thus, if
h sees a point g that none of the 4 -+ 1 hyperplanes can see, ¢ must lie in D. It
follows that g lies below one of these hyperplanes and above another one, so its
dual hyperplane must separate at least two vertices of C and therefore cross C.

We are now ready to tackle simplex range searching. As we did before,
we consider the more general problem of answering queries of the form
®1: P (Or, pp) for any k= 1,...,d + 1. Let Di(P) denote the data structure
we are seeking when the input consists of a set P of weighted points in % For
consistency we define Dy(P) to be the sum of all the weights in P, The data structure
for D,(P) consists of a tree with various auxiliary structures attached to its nodes.
The root of the tree has O(logr) children (call them subroots), one for each
triangulation obtained from the hyperplanes of IT* as above. We apply the
following routine to each of the O(log r) triangulations. Let P, P,, ... be the set
of points in each cell of the chosen triangulation. Alongside its associated subroot,
we store the data structures D,...((P,), D, - {(P,), etc. Next, we provide the subroot
with a distinct child for each P;, and we recurse in this fashion in each child whose
set P; contains less then ¢|P|(log r)/r points (for some ¢ large enough): that is, we
attach Dy(P)) to the child in question. The other children become what we call fat
leaves. The growth of the tree below a node stops as soon as the point-set
associated with it is of size below some magic parameter ¢ > 0 (to be determined
later). Then we switch to the data structure of Theorem 2.1 (set for the same value
of k).

To answer a query (p, py),. .., (Py, py), first we select a triangulation (at a certain
subroot of the tree) that is sparse for the dual hyperplane of p,, and we compute
the cells that lie above (or below, depending on p,) as well as those whose interiors
intersect the hyperplane. With respect to the point-sets in the former cells we
pursue the search, now involving only (p,, p,), ..., (9 pi)s in the corresponding
D, ,-structures stored at the chosen subroot. For the intersected cells, we simply
pursue the search, with our original query (p,, p,),..., (7, p) in the relevant
children of the subroot. Note that the intersected cells contain O(n(log »)/r)
points therefore there is no risk of ever encountering a fat leaf and getting stuck
there. When we reach a (nonfat) leaf of the tree we simply use the algorithm of
Theorem 2.1.

What is the complexity of all this, and, first, does it really work? Let S be the
set of points above (or below, depending on p,) the dual hyperplane of py I we
just limit ourselves to the master tree (the one containing all the D, _ ,-structures),
it is clear that all the nodes from which we pursue the search into a Dy
structure or into the type of data structure associated with nonfat leaves, are
associated with sets of points which together form a partition of S, Some of these
subsets are associated with nonfat leaves and are handled by appealing to Theorem
2.1. The others are dealt with by switching recursively to D, . -structures. This is
admissible since the first condition (p,) is already satisfied. By easy induction on
k we can show that each point which satisfies the constraints of the query is
accounted for exactly once.

How fast is a query answered? If 1,(n) denotes the worst-case query time, we
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have #,(n) = O(log n), if n < o, and otherwise, t;(7) = O(r") + Y; t1(n;), where the
‘sum is taken over O(*~!) terms (corresponding to the cells in the zone of the
“query hyperplane) and Y n, = O(n(log r)/r). The worst case occurs when all the
ngs are equal, which gives #,(n) = O(%) + ar*~"¢(bn(log r)/r’) for some constants
a, b > 0. Up to within constant factors, this yields

=ty (o)) 3 ey

0sgigj

If 7 is such that n(b log ¥}~ /r*=% = ¢ > n(b log r)'/r", then

L)< Y rda" ) log o
0=<igl

Choosing r to be a constant large enough and assuming that ¢ <n'~%, for
arbitrarily small ¢, > 0, we immediately find that ¢,(n) < (njo)t ~ 1A+ (up to
within a constant factor) for any fixed & > 0. Bach internal node of the tree
requires O(r%) storage. One problem, however, is ‘that the input points might be
heavily duplicated because of the O(log 7) triangulations generated at each level.
Fat leaves were meant to overcome this difficulty. Indeed, they ensure that the
total number of points in the data structure, counting duplications, is O(n(a’ Tog ")
for some constant ' > 0 and n((b log r)/r)" = (1), that is, O(n'**) for any &, > 0.
Since r is a constant, it follows from Theorem 2.1 that the storage m needed is at
most proportional to ¥ né*® for any fixed &3 > 0, where Y, m = O(n'**) and
n, < o. Therefore m= O(n'*%¢~1"%). Setting ¢ = (m/niT2)l/d—1+a)  gives
ti(n) < n**¢/m* for any £ > 0. ‘

If k>1, using conservative estimates for simplicity, the inequality
£,(n) < Yoi<i M(ar*™ 1) log o becomes (up to within constant factors)

ty(n) < Y. r'(log o) Ztk—l(nffi‘))»
i

, “iz0
where for each (level in the master tree) i we have

(i) ty—.(n) can be replaced by 1 if n¥ <,

i) 3, ni? = O(n(b log r)}/r), and

(iti) the number of n{"’s (for fixed 7) is O((ar*~ ).

From the previous paragraph, we can assume by induction that (up to within a
constant factor) t,_ ;(n) < (n/e)* ™+ 72 for any o < n!~% In that case we can
make all the n”s equal, for fixed i. The first term of the outer sum (i = 0) is the
 dominant term of‘a geometric series, from which it follows that t(n)<
7i(nfo) Lt ) for any fixed &, > 0 (up to within a constant factor). We can
assume by indueti n'that when given n points as input a D,_,-structure creates
- O(n***) duplications Since the total number of duplicated points in the master

ady saw, is O(n***) for any &, > 0, this gives us (very conservatively)
nt of Ot T +2) = O(n* **) duplicated points (including all aux-
jres). Using the same reasoning as before, it follows that the storage
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m is O(n* *%a?~1*)), We have the same type of time and space bounds as before
(with different ¢s) for an appropriate assignment of o, so we conclude that, for
any fixed k, t,(n) < n***/m' for any ¢ < 0. What is the expected preprocessing
time? Building the root and subroots of the tree requires O((mr* + r?*~ 1) log r)
time, which is O(n). It follows trivially from Theorem 2.1 that the expected
preprocessing time is O(m* **).

Returning now to simplex range searching we conclude that given m units of
storage it is possible to build a data structure of that size in expected time O(m' **),
so that any query can be answered in time O(n' **/m'/) for any & > 0. This result
is quasi-optimal, since a lower bound of Q((n/logn)/m*") was established by
Chazelle [5] in the Fredman-Yao arithmetic model.

An interesting application of our algorithm gives an improved solution to
Hopcroft’s problem [2], [21] in higher dimension: given n points and n hyper-
planes in d-space, find whether there is any contact between a point and a
hyperplane, We can even solve the on-line version of that problem, where points
are given one at a time. Set m = n?¥“* 1), The preprocessing takes O(n2#/t+ 1 +e)
time and each query can be answered in time Q(n®~ 1@+ D8 Thyg, the problem
can be solved in a total randomized expected time of O(n?"“**%) for any fixed
e>0.

We thus summarize (again noting that all our preprocessing steps can be
derandomized if so desired):

THEOREM 3.1.  Simplex range searching on n points in R¢ weighted in a semigroup
can be performed in O(n*®/m™) query time, for any fixed &> 0, using a data
structure of size m (for any m between n and n') which can be computed in O(m* *¥)
time. (4s a consequence, Hoperoft's problem can be solved in O(n*41+ 1 4e) time,)
In the reporting version of the problem, the query time has an extra additive
cost linear in the number of points to be reported.

ReMARK. The partitioning scheme that we use is rather powerlul, because it can,
in certain applications, be combined with other data structures to form a multilevel
structure (our structure itself is a multilevel one, but additional levels of other
useful structures can be further attached to it). This allows us to extend our
approach to more complex types of queries [3].

4. An Improved Zone Theorem for Planes in Three Dimensions. We now digress
for a while from our main theme to develop several results related to arrangements
of planes in 3-space. These results are applied in the next section to enhance the
performance of our range-searching algorithms in certain cases,

Let «(II) denote the arrangement formed by a collection IT of n planes
Tyyv..s T, in 3-space. The combinatorial complexity of «/(I1), namely the total
number of its vertices, edges, faces, and cells, is O(n*). An important concept in
arrangements, alluded to earlier, is the notion of a zone. Let = be a new plane.
The zone of = in &/(IT) is the collection of all cells of «#(IT) that are crossed by =,
and the complexity of the zone is the number of vertices, edges, and faces bounding
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these cells. It is well known that the complexity of a zone in three-dimensional
arrangements is O(n?) (see [17] and [22]).

Arrangements of planes are useful structures in many applications [17]. How-
ever, for some applications (like the one in this paper), the arrangement itself is
too coarse a partitioning of 3-space, mainly because its cells do not necessarily
have constant combinatorial complexity. A typical such application (as in the
previous sections) involves the technique of e-nets developed by Haussler and
Welzl [25], or the related random sampling technique of Clarkson and Shor [11],
[14]. Triangulating the arrangement using Clarkson’s recursive scheme (see the
beginning of Section 3) is a useful step in reducing the complexity of the cells.
Sometimes, however, we wish to merge (superimpose) two or more arrangements.
It is then not cleaf what happens to the complexity of the resulting cell complex.
Of course, it might no longer be a triangulation, but this can be easily fixed. A
more serious problem is to determine whether the superimposed complex still has
cubic complexity and whether the traditional zone theorems [17], [22] continue
to hold. To simplify this task we build a vertical decomposition of the arrangement.’
This is done by decomposing each cell ¢ of & into vertical prisms, by drawing a
vertical “wall” from each edge of ¢ through c until it meets the boundary of ¢
again. This produces a collection of vertical prisms which are then further
decomposed into subprisms of constant complexity by triangulating their bases
(see below for more details).

For two-dimensional arrangements, vertical decompositions do not introduce
significant technical difficulties, mainly because, as implied by Euler’s formula,
they do not increase the complexity of the arrangement by more than a constant
factor. More strongly, they do not increase the complexity of any single cell by
more than a constant factor. Thus the overall complexity of the arrangement
continues to be quadratic, and the number of trapezoidal subcells crossed by a
line remains linear. In three dimensions, however, the situation is considerably
more complicated. Let us denote the vertical decomposition of the arrangement of
our original collection TI by 4(IT). It is known (and will also be argued below) that
the overall complexity of % is still O(n?), but the proof is no longer trivial. (To
appreciate the difficulty, note that it is possible for a single cell ¢ of the original
arrangement, which has only ®(n) complexity, to be decomposed into O(n?)
subcells in the vertical decomposition.) See also [4], [6], [9], and [13] for the
study of vertical decompositions of arrangements of triangles, polyhedra, and
curved surfaces. We can extend the notion of a zone of a plane = to vertically
decomposed arrangements € by defining it as the subcollection of cells of & crossed
by 7. We will show that the complexity of any zone is O(n? log n), thus only slightly
degrading the bound on standard zone complexity.

We then apply this result to derive a nearly cubic bound on the complexity of
the space decomposition obtained by superimposing two vertically decomposed
arrangements of n planes each. Notice that since each cell in the original vertical
decompositions- has constant complexity, the same holds for the cells in the
superimposed partitioning. Actually, we first establish a stronger property—we
show that the complexity of the zone of a plane in the superimposed partitioning
is O(n*log®n). Since each feature of the superimposed partitioning can be
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“charged” to the zone of one of the 2 planes, this implies an O(n* log® n) bound
on the overall complexity of the superposition. We note, however, that for this
result to hold we need to exercise some care in the manner in which we construct
the vertical decompositions: as it turns out, not every vertical decomposition is
suitable for this purpose.

4.1. Vertical Decomposition of an Arrangement of Planes. Let I = {n,,...,m,}
be a collection of n planes in three-dimensional space. Let .o/ = .o/(IT) denote their
arrangement, namely the cell decomposition of space induced by these planes (see
the introduction and [17] for basic definitions and properties of arrangements).
Each three-dimensional cell of .« is a convex polyhedron whose combinatorial
complexity (namely the number of faces, edges, and vertices along its boundary)
can be as large as O(n). The total number of cells in .7, as well as their overall
combinatorial complexity, is O(n?) (it is actually ®(n®) unless the planes are in
degenerate position). We now formalize the notion of a vertical decomposition.
Varjants of this method are described in [4] for arrangements of triangles, in [9]
for simple nonconvex polytopes, in [13] for arrangements of spheres, and in [6]
for arrangements of arbitrary algebraic surfaces (including also higher-dimensional
arrangements). In the case of planes, this triangulation further partitions each cell
¢ of & in the following two-step manner:

(i) From each edge e of ¢, lying, say, on the bottom portion of the boundary,
draw a vertical strip from e upward until it meets the top boundary of c.
Similarly, draw vertical strips from each edge on the top boundary of ¢
downward. These “walls” partition ¢ into a collection of vertical prisms, each
bounded from above and from below by a single face (which is a portion of
some face of ¢). Let @,(IT) denote the resulting decomposition of .o/, when this
procedure is applied to all cells of .

(ii) Next, project each subcell ¢ of %,(IT) onto the xy-plane, to obtain a convex
polygon ¢*, Decompose ¢* into subpolygons of constant complexity, whose
number is proportional to the combinatorial complexity of c*. This can be
done in many ways, but we choose the following specific manner, which results
in a simplified proof of the improved zone theorem and is needed in the analysis
of the merging of two triangulated arrangements. Suppose ¢* is a
k-gon vyv, ' v,.., Obtained as the xy-projection of some cell of ¥,(IT). We
triangulate ¢* recursively by drawing the chords vov,, v504, V40, . . . rEMOVIng
the resulting triangles vgv,v,, v30304,..., and repeating this step on the
resulting polygon. We now take each resulting triangle and intersect the infinite
vertical prism based on it with ¢. This yields a decomposition of ¢ into prisms.
Applying this decomposition to each cell of %,(IT), we obtain our final
collection of subcells decomposing &, which we denote by #(IT). It is easily
checked that any line in the xy-plane cuts only O(log k) subtriangles of a
projected k-gonal cell ¢*.

We refer to %(I1) as a vertical decomposition of /. Adapting previous analysis
techniques [13], [31], we obtain

- Improve
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EMMA 4.1, G(I1) consists of O(n3) cells.

PROOF. The size of #(I1) is bounded by the total combinatorial complexity of all
cells in €y(IT) (regardless of which triangulation we use in step (ii)). The latter
quantity is proportional to the original complexity of o/ (namely O(n?) plus the
number of vertical edges of these cells. Let e = pq be such an edge. Then either

(@) pis a vertex of & ; or
(i) ¢ is a vertex of .«Z; or

 (iii) there exist two edges, e,, e,, of < such that P€ey,gee,, and no other
"~ plane of IT crosses e.

Since each vertex of .o induces only two vertical edges of type (i) or (ii), the total
number of such edges is O(n3).
To estimate the number of edges of type (iii), consider a fixed intersection line,
[, of a pair of planes in II. Let ¥ be the vertical plane passing through /. Bach
vertical edge of type (i) whose bottom endpoint lies on / corresponds to a
- “breakpoint” in the lower envelope of the arrangement of n — 2 rays in ¥, each
of which is the intersection of a plane of IT (other than the two intersecting at )
with the half-plane of ¥ lying above /. Since the lower envelope of n — 2 rays has
at most O(n) breakpoints, it follows that the number of vertical edges of type (iii)
whose bottom endpoint lies on / is O(n). Using a symmetric argument for the edges
whose top endpoint lies on /, and repeating the analysis for all O(r?) intersection
lines of pairs of planes in II, we complete the proof of the theorem. O

REMARK. Another way to prove the preceding theorem is to notice that the
overall complexity of all cells of €(IT) contained in a single cell ¢ of <(IT) is
O(|c[?), where |c| denotes the combinatorial complexity of ¢. As shown in [17] (see
Theorem 5.5 there), we have Y, |c|* = O(n3), where the summation extends over all
cells of 7. The theorem is an immediate consequence of this.

4.2, An Improved Zone Theorem. Let 7 be a new plane and let Z, denote the
. zone of m in o, i.e., the collection of all cells of =7 crossed by 7. As is well known
- (see [22] and [17]), the overall combinatorial complexity of these cells is or?).
~However, our goal in this paper is to bound the number of cells of #(IT) crossed
by =, or, more generally, that are contained in the zone Z,. We were able to obtain
a close to quadratic bound on the complexity of the latter kind. However, the

- bound is slightly worse than that for the former type of zone, the analysis is much
more complicated, and the result is not needed anyway in our application.

. Having said that much, we now concentrate only on the subcells that are
actually crossed by m. This leads to a much simpler analysis, and it suffices for the
range-searching application that is considered later. To distinguish between the
two problems, we refer to the collection of cells of #(II) crossed by = as the‘crossing
zone of m. Even with this restriction, the number of such cells appears to be much

arger than.the complexity of the zone of 7 in & (a single cell in o7 can be split
into ©(n?) subcells in %), but we will show that, asymptotically, the complexity
oes not grow too much. Our proof is somewhat similar to the technique used in
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[18], [20], and [31] to analyze the complexity of envelopes of triangles in
3-space.

THrOREM 4.2 (New Zone Theorem),
plane m is O(n* log n).

The number of cells of €(I1) crossed by a

Proor. To bound this number we first estimate another quantity, which we
denote by ¢ = {(r) and define to be the number cells of %y(IT) crossed by =.
Combining this bound with arguments based on planarity will yield a bound on
the former quantity.

To prove the theorem we first extend it as follows. Given the crossing plane =,
we split each plane ;€ I into two half-planes at the intersection line [, = m; n .
We thus obtain a collection % of n upper half-planes and a collection % of n
lower half-planes. Now suppose that % and & are unrelated—that is, all half-
planes still “terminate” on =, but the delimiting lines of the half-planes in % do
not necessarily coincide with delimiting lines of matching half-planes of .. We
take the lower envelope of the half-planes of % and the upper envelope of the
half-planes of . and project both envelopes vertically onto =. This gives us two
convex subdivisions, # g, . #4, of n which we superimpose to obtain another
convex subdivision .#. If % and .2 are the collections of half-planes produced
from 7 as above, then it is easily checked that the number of faces of . is equal
to the number of cells of €(IT) crossed by m. J

Lemma 4.3, Given ahy two collections of n upper half-planes and of n lower
half-planes, respectively, which satisfy the above conditions, the complexity of the
resulting planar map # Is O(n* log n).

Proor. Partition % into two subsets %, %, of roughly equal size, and partition
% similarly into two subsets &#,,.%,. Let 4, denote the map obtained by
merging g, With J# o, for i, j = 1,2. Each face f of 4, is a maximal connected
region on = with the property that each point p ef sees the same half-plane in
4, directly above it and the same half-plane in &, directly below it; here we ignore
the presence of the half-planes in %5 .;, % .., We fix a pair %, £, and refer to the
half-planes in these subcollections as red (upper and lower) haif-planes, and to the

half-planes in %;..;, %~ as blue half-planes. We now add the blue half-planes

back to the arrangement one at a time, and bound the increase in the number of
(maximal connected) regions on =, each consisting of points that see the same red
plane above them and another red plane below (in the presence of the already
added blue half-planes); we refer to such regions as “red-red” faces. Repeating
this process four times for all possible combinations of %, % will give a recurrence
on the size of .

Suppose we have already added some number of blue half-planes, and let fbe
a red-red face in the current map .#'. Thus there is a pair 7, € %;, n,€ £, of
red half-planes such that f sees 7, above it and m, below. When the next blue
half-plane ' is added it either leaves f undisturbed, or “chops off” a portion of f
but still leaves only one connected portion of f where ©, and =, are still visible,

thus obtain
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or cuts f into two such portions. Thus an increase in the number of red-red faces
can be obtained only in the third case, but it is easily checked that this case can
arise only if the line / delimiting =’ (on ) cuts f. However, the number of faces of
JM' crossed by I is only O(n). Indeed consider the vertical plane ¥’ containing /.
The rqd half-planes and the blue half-planes added so far cut Vin <2n rays, all
emerging from points on I Each face f crossed by / marks on ! a maximal
interval where the lower envelope of the upper rays and the upper envelope of
the lower rays are both attained by two fixed rays; as is well known, the number
of such intervals is O(n). Hence the total increase in the number of red-red faces
caused by adding the blue half-planes is O(n?).

We thus obtain the following recurrence relationship for the maximum number
of faces, F(n), in a planar map .# obtained as above for collections of 2n half-planes:

F(n) < 4F<g> + 0(m?),

whose solution is O(n* log n). g

REMARK. Can this technique be modified to yield a similar bound on the
complexity of a zone in an arrangement of » triangles in space?

Returning to the proof of Theorem 4.2, we conclude from Lemma 4.3 that the
number of cells of %(IT) crossed by = is O(n* log n). To obtain the number of cells
of @(I1) crossed by =, consider the collection of cells of €,(IT) crossed by . Each
vertical edge of such a cell is either crossed by =, in which case it corresponds to
a vertex of the map ., or else is (vertically) hidden from = by another plane.

Let ¢ be a cell of €,(IT) crossed by =, and suppose that it has k vertical edges.
The number of subcells in #(IT) into which ¢ is decomposed is O(k). If such a
subcell ¢ is crossed by 7 and 7 cuts one of its three vertical edges, then this edge
corresponds to a vertex of the map . Otherwise = cuts the top and bottom faces
of ¢’ and their edges. If it cuts at least one edge of %,(IT) that ‘bound these faces
of ¢/, then the intersection is again ‘a vertex of . Otherwise n cuts only
“secondary” vertical walls (ie., those based on diagonals added to the xy-
projection ¢) on the top and bottom faces of ¢'. In this case if, say, the top face of
¢ lies on a plane 7, then the line /' = N7’ also cuts the secondary wall. However,
since /' intersects the boundaries of cells in %,(IT) at O(n) points, it follows from
the second decomposition step that /' can intersect only O(n log n) secondary walls.
Repeating this argument over all planes #, and observing that the overall
complexity of .#, being a planar convex subdivision with O(n? log n) faces, is also
O(n* log n), we conclude that the number of cells #(IT) crossed by 7 is On*logn).OJ
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#(I1,) and then superimpose them. We obtain a convex subdivision of 3-space,
which we denote by %,,, each cell of which is an intersection of a cell of #¥(IT,)
with a cell of ¢(T1,), and is thus of constant combinatorial complexity. (If desired,
we can split each such cell into O(1) subcells having the same structure as the cells
of 4(I1,) and of %(I1,).) Our goal is to derive a sharp upper bound on the
combinatorial complexity of the superimposed subdivision € ,. Unfortunately,
unless we use the special type of triangulation to form #(ITy) and %(I1,) as above,
%,, may have Q(n*) cells. We digress to describe such an example.

ExAMpLE. We next demonstrate that Theorem 4.5 below may fail miserably if
we use the “vertical” triangulation of Section 2, in the sense that the superposition
of two triangulated arrangements G(IT,), €(I1,), of two collections of n planes each,
can have Q(n*) cells. The first collection IT, in our example consists of the xy-plane,
of n/2 — 1 planes parallel to the x-axis, whose equations are

2nf ., 2mj
ycosj{—zmnﬂ:l
n n

for j=1,...,n/2, and of n/2 additional planes parallel to the plane x + z =1
and sufficiently separated from one another. The first n/2 planes all bound an
(n/2)-gonal prism P whose yz-cross-section is the bottom half of a regular n-gon,
while the other n/2 planes cut P in slanted parallel polygonal sections. These
planes are sufficiently separated from one another so that the xy-projections of
these slanted cuts are pairwise disjoint. A top view of this construction is given
in Figure 1.

Note that if (I1,) is formed using the vertical triangulation of Section 2, any
line parallel to the x-axis and lying sufficiently close to and below it, cuts ®(n?)
cells of #(IT,); this is illustrated in Figure 1.

The second collection IT, consists of n planes parallel to the x-axis and
sufficiently close to it, with the property that the yz-cross-section of &/(I1,) has
®(n?) vertices in a sufficiently small neighborhood of the origin. Thus there are
®(n?) intersection lines of the planes in IT,, each of which cuts @(n?) cells
of #(I1,) implying that the superposition of #(IIy) and %(1;) has ©(n*
cells, which establishes our claim on the unsuitability of vertical decompositions
for merging.

Recall that our second decomposition step is such that any line in the xy-plane
cuts only O(log k) subtriangles of a projected k-gonal top or bottom face of a cell
of B(I1,) or %(I1,). Consequently, if a line / in 3-space cuts a cell ¢ of €,(ITy),
then ! cuts at most O(logk) cells of #(IT;) contained in ¢, where k is the
combinatorial complexity of ¢; a similar property holds for #(I1,). Note that this
property fails for other vertical triangulations (it is this failure that causes the
generation of Q(n*) subcells in the above example).

LEMMA 44. The number of cells in €y, crossed by any plane  is O(n* log? n).
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superposition of two vertically decomposed

Fig. 1. A top view of the construction of a “bad™
arrangements.

PrOOF. Let Z' denote the collection of all cells of %, crossed by =, and let &/’
denote the subdivision of = formed by its intersections with the boundaries of the
cells in Z'. Note that the. complexity of Z' is bounded by the complexity of /"
Consider the intersection 7 with @,(I1,) and with €(IT,). These are two convex
subdivisions of 7 and we wish to bound the complexity of the subdivision &/,
obtained by overlaying them on top of each other. '

We claim that this bound, when multiplied by O(log? n), yields a bound on the
complexity of Z'. Indeed, what is missing in o are-intersections of 7 with the
“secondary” vertical walls erected during the second vertical decomposition step
for both IT,; and II,. Call these intersections secondary edges. Notice first that
each edge of &, intersects at most O(log n) secondary edges, because it is fully
contained in the cross section of a single cell of €o(I1;) and a single cell of €,(I15).
Hence if o7, has k edges, then the number of intersections between its edges and
secondary edges is O(k log ). These points thus partition the secondary edges into
O(k log n) subedges in total, and, by the same argument as above, each subedge
can intersect at most O(log n) other secondary edges. This establishes our claim.

We can therefore focus our attention on s/ alone. It suffices to obtain a bound
for the number of vertices of .7 ,. Each such vertex is either the intersection of 7
with an edge of %(IL;) or with an edge of %,(I1,), or an intersection of 7 with a
face of one decomposition and with a face of the other. Since Z' is contained in
the zones of 7 in‘beth subdivisions, and since each of these ‘zones has only
O(n? log n) edges, it suffices to consid only vertices z of the latter type. The

following cases can
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Arguing as in the proof of Lemma 4.1, the number of such “breakpoints” z
along /, is only O(n). Summing over all planes n,, we conclude that there are
only O(n?) vertices z of this type.

(ii) The two faces defining z are vertical faces in the subdivisions %o(Il,) and
% ,(I1,), respectively. Again, there exist a real edge of #(I1,) and a real edge
of ##(I1,), each lying either directly above or directly below z. Without loss of
generality assume that an edge of &(I1,) lies above z and an edge of «(Il5)
lies below z. Clip each plane of IT, to the half-plane lying above 7, and each
plane of T1, to the half-plane lying below . It follows that the problem has
been reduced to that of estimating the combinatorial complexity of the
“crossing zone” of = in the vertical decomposition o(IT*), where IT* is a
collection of 2n half-planes, n of which lie above n and the other » lie below
7, and all half-planes “terminate” on 7 itself; here % o(IT*) is defined in complete
analogy to the manner in which it was defined above for full planes. However,
this is exactly the setup of Lemma 4.3, which therefore implies that the
complexity of this crossing zone is O(n* log n).

As argued above, this completes the proof of Lemma 4.4, O

THEOREM 4.5. The number of cells in €., is O(n® log® n).

Proor. Since vertical faces and edges of %(I1;) and of #(Il,) cannot cross
transversally, it follows that each vertex v of 4,, must lie on a plane of IT; or of
IT,. Consider, without loss of generality, only vertices that lie on a plane = of IT,.
However, by definition, these vertices are features of the crossing zone of win € 5,
so their number is O(n? log® n) from the previous lemma. Summing this over all
planes 7 yields the asserted bound. O

We have the following easy generalization of Lemma 4.4:

THEOREM 4.6, If we merge q vertical decompositions 4(I1), fori=1,...,q,
each involving n planes, the number of cells of the merged arrangement that are
crossed by a plane is O(n*q* log® n).

REMARK. Note that the cells of the merged arrangement in the last theorem are
not necessarily of constant complexity—each can be bounded by O(q) faces. We
can further decompose such a cell into O(q) subcells of constant complexity each.
In this case, although the overall complexity of the decomposition does not
increase by more than a constant factor, the number of cells crossed by a given
plane is O(ng® log® n). We have the following generalization of Theorem 4.5.

COROLLARY 4.7.  The number of constant-complexity subcells that arise as we merge
g vertically decomposed subarrangements of n planes each, is O(n*q> log® n).
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5. Simplex Range Reporting in Two and Three Dimensions. The zone theorems
of the previous section allow us to sharpen somewhat our complexity bounds for
the reporting version of simplex range searching in two and three dimensions, We
confine most of our discussion to the three-dimensional case, which contains all
the important ideas.

The construction of O(log r) sparse triangulations, as described in Section 3, can
be adapted to the particular type of vertical decompositions discussed here. The
only differences arise in analyzing the complexity of the construction. Given a
collection IT of r planes as input, the vertical decomposition C(IT) is obtained by
first computing the arrangement &/(IT), which takes O(r®) time [17], [22], then
erecting the vertical walls, which takes time proportional to the sum of the squares
of the cell sizes, and finally triangulating the xy-projections of each resulting cell,
which takes time linear in the size of the decomposition. As we already observed
in Section 4.1 the sum of the squares of the cell sizes is O(r) [17], therefore the
total construction time is O(r®). l

Let us now briefly review the steps in the construction of the sparse triangula-
tions. The triangulation J need not be replaced by a vertical decomposition,
therefore the complexity of computing IT* is still O(nr?). Next we pick a random
sample of r planes in IT* and compute its vertical decomposition. To locate each
of the n points inside it, it suffices to intersect the decomposition by a plane passing
through each point and locate the point in question naively among the planar
cells of the intersection. By virtue of Theorem 4.2, this reduces the complexity of
the search to O(r* log r) per point. Similarly, computing how many points a given
plane of IT* can see takes O(r*logr) time. Since we have O(logr) stages, the
overall preprocessing time is O(nr? log® r + r° log? r). A similar proof to the one
given in Section 3 shows that, given any plane =, for at least one of the O(logr)
vertical decompositions, 7 can see only O(n(log r)/r) points.

Our strategy now is to avoid the duplication of input points by merging together
the O(log r) vertical decompositions. How do we do that? One solution is first to
intersect each plane of each decomposition (there are O(r log r) such planes) with
all the other decompositions. Using a standard navigational scheme, each intersec-
tion operation can be performed in time proportional to the number of cells
crossed by the plane, which by Theorem 4.2 is O(r? log r). This produces O(logr)
convex subdivisions of the plane in question which we must now merge together.
Using, say, Guibas and Seidel’s algorithm [24] we can merge two planar convex
subdivisions in time linear in the input and output sizes. Because of Theorem 4.6
we know that the final subdivision will have size O(r? log® r). In the worst case
the same vertices of the subdivision might be looked at during successive merges,
so the running time is O(r* log® ). Since there are O(r log r) planes to consider,
the total running time is O(r® log” r) and the storage requirement is O(r® log® r).
This gives us the adjacency information along each of the O(rlog ) planes. To
compute the vertical edges we may have to sort the vertices along the vertical
lines to which they belong. Since we already know those vertical lines (intersections
of vertical walls), all vertical -adjacencies, and finally .a full representation of the
merged decomposition, can be obtained in O(r® log” r) time and O(r> log® r) space.
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As noted in Corollary 4.7 we can further decompose each cell into constant-
complexity subcells in one last pass of cost linear in the size of the decomposition.

To summarize, in O(nr? log? r + r®log? r) time we have computed a three-
dimensional decomposition % consisting of O(r> log® r) constant-complexity cells,
such that any given plane intersects O(r*log®r) cells. From our discussion of
Section 3, we know that (by sampling enough times) we can guarantee that any
given plane sees only O(n(log r)/r) points with respect to at least one of the original
O(log r) decompositions. The idea of merging the decompositions together is that
now this property is true for € with respect to any plane.

We complete the data structure by considering each nonempty cell in turn and
arbitrarily breaking up the points inside into groups, each consisting of roughly
¢ points. Each group of points is preprocessed according to Theorem 2.1. Also,
alongside each nonempty cell of the decomposition we store the points that it
encloses. Finally, we pick an arbitrary sample point in each nonempty cell and
we build the same data structure recursively with respect to these sample points.
This last step might sound peculiar at first but it will afford us a useful
bootstrapping mechanism. The (randomized expected) preprocessing time

“amounts to O(nr? log? r + r® log? r) (for constructing %), O(nr* log® r) for locating
the points inside  (by traversing % along planes containing the points), and
O((r* log® r + n/a)a®*?) (for preprocessing the groups of points). Note that by
choosing r® log® r and n/¢ smaller than n by at least a constant factor, we make

- the recursion costs follow a geometric series and hence be negligible. Therefore
the total preprocessing time is on the order of

n
nr2 10g6 r -+ r5 logz r+ ('.3 logﬁ r+ ;>o.3+ﬂ.

The storage requirement is at most proportional to

(r“ log® r + g>a3+",

To answer a query, we begin by identifying which cells intersect the bounding
facets of the query tetrahedron (type A) and which ones fall completely inside (type
B). This is done as follows. First, we apply the algorithm recursively with respect
to the sample points and weed out from the answer those reported sample points
whose enclosing cells are of type A. From the remaining sample points reported
we extract the actual input points enclosed in their respective cells. This allows
us to find readily which of the n points lie inside the cells of type B.

Now we are ready to identify the cells of type A. To do so we intersect € with
each of the four planes bounding the query tetrahedron and we check all the
intersected cells. All type-A cells will be encountered in this fashion. The time to
do this can be kept proportional to the number of intersected cells which we know
from our previous remark to be O(r* log® r). Finally we handle all type-A cells by
using the precomputed data structures associated with the groups of points in

mal Upper |

O(m + n
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1g it to b
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them. Because a plane can see only O(n(logr)/r) points in %, the query time
overhead #(n) (ie., not counting the time to report the points) satisfies the
recurrence #(O(1)) = O(1) and

1
t(n) < t(br® log® r) + c{ r? log® r + nogr log ¢
ro

for some constants b, ¢ > 0.

Recall that m denotes the amount of storage available. If we set ¢ = a(m/n)' /@ *2),
where « is a small enough constant, and define r by the equation ¢ = n/(r® log® r),
we can verify that as long as m/n is large enough and m < r?, both r*log® r and
n/c are sufficiently smaller than », as required earlier. The storage requirement,
which is on the order of (r* log® r + n/a)a®**, is O(no***) and therefore does not
exceed the amount m allowed (for o small enough). The preprocessing time, which
is on the order of nr?logr + r’log?r + (r* log® r + n/o)o™*?, becomes (con-
servatively) O(no*** + n(n/o)? log? r + (n/0)*?), which is at most proportional to

p3/3+20(6430 502 513+ 5/(6+32)

m+ m2/(6 +3e) m5/(6+38) ?

that is, O(m + n®**/m/3), Finally, since br* log® r is at most a fraction of » (for
m/n large enough), the recurrence for #(n) will be applied only Oflogn) times,
showing it to be at most proportional to '

Heneceer (2)2/3(log r)¥(log o) log n = (g)%(k’g n)>,

ro

which is also on the order of

m2/(6 +38) 1/3

m

n(6 +2g)/(6+ 32)(log n)S N O(nf(n, m))

where f(n, m) = (m/n)® log®n, for another arbitrarily small & > 0. This is an
improvement over Theorem 3.1 when m/n is small enough, but not over [10] when
m = Q(nlogn).

THEOREM 5.1. Given m units of storage, with m/n larger than some appropriate
constant and m < n®, simplex range reporting on n points in R3 can be done in
Onf(n, m)/m'? + k) query time, where f(n, m) = (m/n)° log? n, for arbitrarily small
(fixed) &€ > 0, and k is the number of points to be reported. Preprocessing takes
O(m + n***/m*?) randomized expected time. ‘ ‘ ‘

6. Conclusiélﬁlk."zv This paperglves an (a]i‘n‘(!)st) déﬁnitive answer to a classicél
multidimensional searching problem. We use two novel tools to achieve this goal:




428 B. Chazelle, M. Sharir, and E. Welzl

one is a way to enclose a set of points into the cells of a triangulation so that no
hyperplane can “see” too many points. The other is an arrangement merging
strategy with good zone theorems. On this subject, the obvious open problem is
to generalize the zone theorems to higher dimension. Regarding range searching,
it would be interesting to trade all n° factors for polylogarithmic ones. We also
note that the constants of proportionality appearing in our bounds are rather
large, and it would be interesting to find methods for improving them, especially
in low dimensions.
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