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Parallel Computational Geometry’
A. Aggarwal,? B. Chazelle,” L. Guibas,* C. O'Diinlaing,** and C. Yap’®

Abstract. We present efficient parallel algorithms for several basic problems in computational
geometry: convex hulls, Voronoi diagrams, detecting line segment intersections, triangulating simple
polygons, minimizing a circumseribing triangle, and recursive data-structures for three-dimensional

queries.
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1. Introduction. Computational geometry addresses algorithmic problems in
diverse areas such as VLSI design, robotics, and computer graphics. Since 1975
there has been a wide development of sequential algorithms for geometric prob-
lems, but until 1985 there was little published about developing parallel algorithms
for such problems. A notable exception was the Ph.D. research of Chow (1980)
which seems to have been the pioneering work in the field but unfortunately only
a portion of it has appeared in the open literature.

This paper contributes some parallel algorithms for solving geometric problems:

(1) -Convex hulls in two and three dimensions.

(2) Voronoi diagrams and proximity problems.

(3) Detecting segment intersections and triangulating a polygon.

(4) Polygon optimization problems.

(5) .Creating data structures in two and three dimensions to answer some standard
queries.

It is seldom obvious how to generate parallel algorithms in this area since
popular techniques such as contour tracing, plane sweeping, or gift wrapping
involve an explicitly sequential (iterative) approach (see Preparata and Shamos
(1985) for more details). In this paper we exploit data-structures that are simple
enough to compute efficiently in parallel while being powerful enough to answer
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queries efficiently. However, the queries may be answered slightly less efficiently
than would be possible if the data-structures were constructed sequentially,
“Efficient” here means polylogarithmic in parallel time.

All the algorithms presented here will be NC-algorithms, i.e., algorithms
executable in polylog depth on polynomial-size circuits. We caution that the
circuits here are slightly different from those used in machine-based complexity
theory in that each node of our circuit can compute an infinite precision arithmetic
operation. Furthermore, these algorithms shall all be described as if they were
implemented on a CREW PRAM—a concurrent-read, exclusive-write parallel
random access machine. Such a machine is conceived as having a large number
of processors with common access to a common memory. Any number of
processors can read the same memory cell simultaneously in O(1) steps, and any
processor can write to a memory cell in O(1) steps, but if two processors attempt
to write to the same cell simultaneously then the machine enters an undefined state,

We should mention here that Anita Chow’s dissertation pays close attention
to the model of computation involved, and in several cases she provides algorithms
for implementation on two models of parallel computation: the CREW PRAM
model and the cube-connected cycles (CCC) network. As mentioned before, in
the CREW model, all the processors share the same memory; however, in the
CCC network, each processor has its own memory, and is connected to at most
four other processors. For details on the CCC model, see Chow (1980).

It follows from Kozen and Yap (1985) that most common computational
geometry problems including all the problems considered in this paper have, in
principle, NC-algorithms. Recall that they combined the techniques of Ben-Or
et al. (1984) and Collins (1975) to give parallel algorithms for computing cell
decompositions with adjacency information; for fixed dimensions, these
algorithms are in NC. The consequences of the cell decomposition algorithm for
parallel computational geometry are explored more carefully in Yap (1987). Since
any appeal to Kozen and Yap (1985) involves a reduction to Tarski’s language
for real closed fields, and the methods are too general to be of much practical
use, this furnishes an existence proof for NC algorithms rather than furnishing
practical NC algorithms.

Many of the problems considered here are known to have Q(n log(n)) lower
bounds in the algebraic computation tree model [Ben-Or (1983)]. Therefore the
goal in our research in such cases is to aim for Q(log(n)) parallel time when
O(n) processors are available. Only in some instances do we present such optimal
algorithms, and the algorithms may require a preprocessing step which involves
sorting. While O(log®(n)) sorting networks have been known for many years, to
ensure optimality we may need to invoke an optimal parallel sorting method
(log(n) parallel time). The AKS sorting network achieves these bounds but with
utterly unacceptable overhead (at the present state of knowledge: see Ajtai et al.
(1983) and Leighton (1984)). More recently an optimal PRAM algorithm has
been described which has much lower overhead [Cole (1986)]. In our algorithms
to compute the Voronoi diagram for a planar point set and convex hull in three
dimensions, we are able to avoid sorting even though, for the latter problem, we
only match the complexity bounds of Anita Chow.
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We also pay some attention to the processor allocation problem: a PRAM
algorithm cannot be considered completely described until we have a clear
description of how the various tasks are to be allocated among the available pool
of processors. Such considerations usually become unimportant when the time
taken to complete a parallel step is logarithmic (or worse) in the number of
processors involved, since processor allocation is usually easy to accomplish in
logarithmic parallel time.

Two standard methods of parallel algorithm design will be exploited freely
throughout this paper: computing a running sum (‘“parallel prefix”) and list-
ranking. To compute a running sum means to compute the n initial sums of an
array of n numbers. This is easily computed in logarithmic parallel time with n
processors, by imagining a balanced binary tree whose leaves are the array entries:
at each internal node the sum of the entries of all its leaf descendants can be
computed (in an upward parallel sweep), and from these internal sums all initial
sums can be computed in a second phase. List-ranking involves traversing a
linked list and determining the rank (distance from the end) of all its entries.
This can be accomplished in logarithmic parallel time by a pointer-jumping
technique; it is discussed briefly at the end of Section 3.

2. Definitions and Terms. As stated in the Introduction, the algorithms treated
here all belong to the class NC, but we express them as PRAM algorithms running
on a CREW machine. The notation

NCi(f(n))

indicates the class of algorithms running on a PRAM using f(n) processors and
halting in O(log"(n)) steps. We are mainly interested in the class NCi(n), ie.,
those using a linear number of processors. Note: we use “NC ™" instead of “NC"”
to distinguish our model from the circuit model of machine-based complexity.
See Yap (1987). ~

We let E* (resp. E®) denote the Euclidean plane (resp. Euclidean 3-space). In
this paper we restrict our attention to E? or E*. Given a (finite and nonempty)
set S of points in E® or E°, the convex hull H(S) is the smallest convex set
containing all points in S. Sometimes by abuse of notation we confuse the convex
hull with the polygon (resp. polyhedron) which constitutes its boundary. We use
the notation dH (S) to denote the polygonal boundary of H(S).

Given a finite nonempty set S of points in E?, its Voronoi diagram Vor(S) is
defined as follows. For each point p in S, define the Voronoi cell V(p) as the set
of points z in E? such that z is as close to p as to any other point in S. Recall
that the Voronoi cells are all nonempty closed convex sets with polygonal
boundaries and two cells can meet only along their common boundaries (i.e.,
the interior of every cell is disjoint from all other cells). The Voronoi diagram
Vor(S) is defined as the planar point-set formed from the union of the boundaries
of all the Voronoi cells; it is planar graph with O(n) edges and vertices, all the
edges are straight line-segments (perhaps unbounded), and two cells can:have
at most one edge in common. o
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3. Optimal Parallel Convex Hull in the Plane. Fast parallel algorithms for the
planar convex-hull problem have been considered in the recent literature [Nath
et al. (1981), Chow (1981), Akl (1983), Chazelle (1984)]. The algorithms typically
use a simple divide-and-conquer technique, recursively computing the convex
hull of n points by solving two problems of half the size. It seems that any such
technique requires Q(log?(n)) time. The main result in this section is the following:

THEOREM 1. The problem of computing the convex hull of a set of poinis in the
plane and listing its corners in cyclic order is in NCT(n).

We subsequently learned that Atallah and Goodrich (1985), and Wagener (1985,
1987), have independently used a similar technique to derive the same result.

From the well-known fact that sorting can be reduced to the planar convex-hull
problem, or using the lower bounds for the algebraic computation tree model in
Ben-Or (1983), it follows that the log(n) time is optimal for n processors. Actually
the algorithm is optimal in a stronger sense: it follows from the work of Cook
and Dwork (1982) that O(log(n)) time is the best possible even if we allow
arbitrarily many processors. To identify the points on the convex hull can be
done in O(1) CRCW time [Akl (1983)].

Let S be the given set of n points. Use the pair of points on the convex hull
H(S) with maximum and minimum x-coordinate to partition H(S) into two
parts in the natural way: the upper and the lower chains. By symmetry, it is
sufficient to show how to compute the upper chain in O(log(n)) time. First sort
§ according to the x-coordinate of the points, using O(log(n)) time with n
processors [Ajtai et al. (1983), Leighton (1984), Cole (1986)]. At this stage,
covertical sets of points can be detected and all but the highest from each set
discarded in O(log(n)) steps. Our algorithm divides S into v sets of V7 points,
recursively computes the upper convex chain of each set, and then merges all
these chains together in O(log(n)) time. The details of merging are nontrivial.

Let us see how to merge v'n upper chains in O(log(n)) steps with n processors.
First consider two upper chains C and C'. Since we divide S by the x-coordinate,
this ensures that the x-coordinates of any two chains do not overlap. Granted
that their edges are presented in an array in sorted order, a single processor can
compute in O(log(n)) time the unique line which is tangent to both chains,
together with the two points of tangency. This was shown by Overmars and Van

Leeuwen (1981). Since there are at most (?) common tangents to be computed,

n processors can compute all such tangents in time O(log(n)). Note that processor
allocation raises no difficulty here since all the chains have a natural sequence
(according to their x-coordinates) and there is a natural sequence therefore on
the set of all pairs of chains.

+ Let G denote the (combinatorial) graph whose vertices are the points in S and
whose edges are the edges in the upper chains, together with the line-segments
defined by the tangent lines just discussed. There are at most n—1 edges in all
the upper chains, and they can be compressed into contiguous locations in an
array A by using a running-sum technique (in O(log(n)) parallel time). The extra
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<Vf) <n edges may be appended to these edges in the upper chains. The array

A contains two directed edges (x;, x;) and (x,, x,) for each undirected edge
{x,, x,}. Using an optimal parallel sorting method, sort these edges according to

(slope of edge (x,, x,)) within (earlier x-coordinate (x,)).

The slope of an edge is the angle it makes with the x-axis, measured from —7/2
to 37/2 (with 7/2 corresponding to the vertical upward direction). Thus the
array is partitioned into adjacency lists for the vertices of G.

From G we can identify vertices of the upper chain of S using the following
observation: consider any point » in S, which is neither leftmost nor rightmost
in S. If v belongs to the upper chain of S, let u and w be the vertices immediately
before and after v along the chain. Clearly, the slopes of the edges (v, ) and
(v, w) are adjacent among all the edges out of v, and the angle uvw (measured
clockwise from u to w) is = Clearly, for each vertex v there can be at most
one pair of edges (v, u) and (v, w) with this property, and such vertices v can
be detected in constant time with one processor per edge in the array A. This
criterion identifies all edges and vertices on the upper chain, and perhaps some
others, except for the first and last edges on the upper chain: these are, of course,
the edges with maximum and minimum slopes, respectively, leaving the leftmost
and rightmost vertices. (Since S is presorted by x-coordinate it is easy to identify
these two vertices.)

For all these triples u, v, w which indicate possible vertices of the upper chain,
let us call v a “candidate” and w its “successor.”” If v is not a candidate its
successor is undefined, and the leftmost vertex has as its successor the next vertex
on the upper chain. As indicated above this is easily identified. This successor
relation defines a forest of trees, in which the upper chain is represented by a
branch connecting the leftmost vertex to the rightmost. This branch can be
identified in logarithmic parallel time, one processor per vertex, using the parallel
ranking technique described below.

To complete our inductive step, we must now collect the vertices of the upper
chain of S into consecutive locations in an array, This is easily accomplished
using parallel prefix, i.e., computing a running sum on an array C(v) whose
entry is 1 if v is in the upper chain and 0 otherwise. This completes the merge
process of our algorithm.

Since the ranking problem is so basic and will be used again, it bears repeating
here. Here we consider the successor relation as defining a forest of trees directed
from child to parent, and the rank of a node in this forest is its distance from
its root ancestor. In view of a later application, in addition to the rank information,
we compute an additional O(log(n)) pointers for each vertex:

(*) Inlog(n) parallel time, each node can learn its rank and, also for each
i=log(n), it also holds a pointer to its 2'th successor, if it has sucha
SUCCESSOT. T
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This is done in two phases, each phase taking log(n) parallel time. In the first
Phase, by the well:known doubling technique, every vertex determines for all
i=<log(n) whether it has a 2'th successor, and, if so, which. In the second phase

lat stag;el i_ (there are log(n) stages) all vertices with rank between 2’ and 211
earn their exact rank. It is easy to implement all this on B
logarithmic time. ? CREW PRAM in
The runtime T'(n) of this convex-hull al orithm, fi i i
- , for
satisfies the relation ¢ " poits Wit n progessors,

T(n)=clog(n)+ T(vVn)

which implies T(n) is O(log(n)).
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Fig. 1. Merging by contour tracing.

The present algorithm for computing the VYoronoi diagram is modeled after
the sequential method first presented by Shamos and Hoey (1975). This is a
_divide-and-conquer method in which two Voronoi diagrams for the respective
sets P and Q of points (where these sets are vertically separated, i.e., there is a
vertical line L which has all of P to its left and all of Q to its right) are merged -
in linear time to a diagram for Pu Q. The merging is defined by a polygonal
path (the “contour” or “seam”) separating P from Q; the process is akin to
tracing a line and seems inherently sequential. The contour separates the plane
into the set of points closer to P than to Q (i.e., the set of points x whose closest
point or points in S are all in P) and those closer to Q than to P. Figure 1
illustrates the contour between two hypothetical sets P and Q.

Our goal is to parallelize this contour tracing. Let us introduce some suitable
terminology. The convex hull H(S) has already been defined. The normals of S
are defined as the half-lines extending from the corners of H(S) and perpendicular
to the sides incident to those corners: two normals extend from each corner.
These normals partition the complement of H (S), E*~ H(S), into sectors, which
are alternately slices (V-shaped) and strips (bounded by a side of H (S) and the
two incident normals). Figure 2 clarifies this terminology. The points of intersec-
tion of Vor(S) with the convex polygon 4 H (S) we call the cutpoints (Figure 3).
Let U be the strip defined by an edge e of the convex hull. The set U nVor(S)
we call the e-promontory. We assume that S is in general position (no three points
collinear, no four concyclic). Together with the convexity of the Voronoi cells,
this implies that the promontory has the natural structure of a binary tree with
leaves at the cutpoints and such that the parent of a node is always more distant
from e. Beyond the root of this binary tree extends an infinite ray that bisects
the strip. :

Point location inside strips is easily done in O(log*(n)) serial time. We now
modify a suggestion of Goodrich to show that O(log(n)) serial time suffices.

LEMMA 3. Suppose a strip has an e-promontory with k vertices and edges. There
- is a k processor O(log(k))-time parallel algorithm for constructing a data-structure
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Fig, 2. Normals and sectors (slices and strips),

Jor the plane partition defined by the e-promontory so that in O(log(k)) time «
* single processor can answer a point location query.

ProOOF. The e-promontory is a binary tree laid out in the plane, It is complete,
i.e., each internal node has two children. We assume that each leaf is on the
x-axis, and for every node v all its descendants have a smaller y-coordinate. For
any node v of the promontory, let T, denote the subtree of the e-promontory
rooted at v. Each internal node v of the e-promontory tree may be associatecl
with a triangular region R, with v as one corner of the triangle and the two other
corners the extreme cutpoints below the subtree at v, By convexity of Voronoi
cells, the entire subtree T, is contained in R,. Suppose p is a query point insid e
the strip. Let r be the root of the e-promontory. The interesting case is when p
lies inside R,, and this can be checked in constant time. We can now do a binary
search inside R, by locating a vertex v such that T, contains between one-third

r———---——-v-————>

,/,/ \

' ""Fig. 3, Promontory: cutpoints are indicated by (»).
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and two-thirds of the vertices of T,. If p is inside R,, we can recursively do point
location for p inside this subtree. Otherwise, we next search inside a modified
version of T,: the modified tree T, consists of replacing T, by three vertices
corresponding to the corners of the triangle R,, together with the two edges from
» to the other two corners. This recursive search can be carried out in O(log(k))
serial time.

It remains to construct a search structure D, for the tree T,. The search structure
D, consists of a binary tree whose internal nodes are associated with triangular
regions of the form R, which we use for comparisons: if we are at some internal
node z of D,, we next go to the right (resp. left) child of z if query point p lies
inside (resp. outside) the triangular region of z. To construct D, associated with
T, we do an important preprocessing step where for each node v we determine
its preorder rank rank(v) in the tree and, from this, we easily deduce maxrank(v),
the maximum rank of its descendants. This can be done using k processors and
O(log(k)) time [Tarjan and Vishkin (1985)].% We deduce two important pieces
of information from these computed values. First, the number desc(v) of descen-
dants of a node v is given by 1+maxrank(v)—rank(v). Second, we can decide
in constant time if any given vertex u is a descendant of another v. More precisely,
u is a descendant of v iff

rank(v) = rank(u) < maxrank(v).

Inductively, suppose we have to construct a search structure D, for the subtree
T. rooted at some node r. We assume that desc(v) is precomputed for each v in
T.. In particular, let k=desc(r) be the number of nodes in T,. Assigning one
processor to each vertex of T,, in O(1) steps, we can locate the (unique) deepest
node of T, with at least 2k/3 descendants, and choose the node v to be that
one of its children with the larger number of descendants (breaking ties
arbitrarily). It is easy to see that v, will have between k/3 and 2k/3 descendants,
The root of D, will be associated with the region R,. The right subtree of (the
root of) D, will be recursively constructed from T,,: note that the precomputed
information desc(v) for each node of T, is available with no further work. Let
T' be the modified tree obtained by pruning T,, as described above. We want to
construct recursively the left subtree of D, from T. But first we must revise the
precomputed information desc(v) for each node for T'.. To do this we only need
to update the value of desc(v) by subtracting desc(vo) —2 from desc(v) for all v
that are ancestors of v,. But this is easy since with one processor per vertex, each
vertex can in constant time deduce if it is an ancestor of v, (use the preorder
numbering of nodes as shown above). This process involves changing the structure
of T,, so it should be done with a copy of T.. The search structure D, will be a
binary tree of logarithmic height, with a description of the triangle R, at its root,
plus children representing T, and T,,, respectively. .

8 Their CRCW parallel RAM algorithm can be adapted for our CREW version.
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The above data-structure helps us form the contour efficiently. Let us introduce
some simple notation. Recall that a recursive step in the algorithm will involve
separating a given set S by a vertical line L into two sets Pu Q (where P is to
the left of L and Q to its right), recursively constructing Vor(P) and Vor(Q)
separately, and merging the two along the contour. We speak of the edges of
Vor(P) and Vor(Q) as PP edges and QQ edges. In the combined Voronoi diagram
the contour edges can be called PQ edges in an obvious extension of this notation,
and the vertices can be classified as PPP, PPQ, PQQ, and QQQ, depending on
whether the associated three points of S (assuming general position so no four
are cocyclic) involve three, two, one, or no points of P.

We need therefore to identify the PPQ and PQQ vertices. Instead of computing
them directly, we solve the following simpler problem: to identify the PP and
QQ edges that intersect the contour. We postpone till later determining precisely
where they meet the contour. To carry this out, we need one more preliminary
computation. This is necessitated by the fact that a Voronoi edge may intersect
the contour twice.” However, we can break up each Voronoi edge into at most
two “‘semiedges” such that the contour meets each semiedge at most once: let e
be any edge of Vor(P) determined by the two points u, v in P. If the horizontal
ray emanating leftward from u or v intersects e at some point x (this happens
with at most one of the points u and v) then we split e into two semiedges at x.
If neither ray intersects e then the entire edge e constitutes a semiedge. Similarly,
if e were an edge of Vor(Q), we would split e into at most two semiedges using
the horizontal rays emanating rightward from u or .

LemMA 4. Each semiedge intersects the contour at most once.

Y

PROOF (SKETCH). Let e be an edge separating points u and v of P in Vor(P).
Since any intersection of the contour with e results in a PPQ vertex, which will
be an endpoint of an edge, call it ¢’, separating « and v in the combined diagram,
we conclude that the contour cannot intersect e more than twice. Suppose that
it intersects e twice. Then e’ together with the contour would enclose one of these
points, u say, completely, and since the contour is monotonic in the y-direction
it is easy to see that the horizontal line extending leftward from u intersects the
edge ¢'. Thus each intersection point is on a different semiedge of e, 0

Call any semiedge that intersects the contour relevant. Note that a semiedge
in Vor(P) is relevant if and only if one endpoint is closer to P and the other
endpoint is closer to Q. To decide if a Voronoi vertex (or other point bounding
a semiedge) v of Vor(P) is closer to P than to Q, we have two cases. (i) If v is
left of L then we determine the slice or strip of H(Q) containing ». If v is in a
slice, then v is closest to a unique point ¢ in Q; we can easily decide if v is
closer to g than to the closest points of P. If v isin a strip we reduce the problem

® We are indebted to Hubert Wagener (privaté communication) for pointing this out to us.
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Fig. 4. The beach!ine (the beachhead B is shaded).

to point location inside a strip; once we have located v in the appropriate cell
of Vor(Q) we can compare distances as in the case of the slice. (ii) If v is right
of L it may initially appear that we need a general point location data-structure
for that part of Vor(Q) lying to the right of L. We show how to avoid this using
another idea.

We 'need some new terminology. Consider the set of points x to the right of
L such that the circle centered at x and tangential to L passes through some
point g€ Q but where the interior of the circle contains no other points of Q.
The set of such points will be called the beachline (of Q). (Alternatively, we
could have defined the beach to be the ‘“‘contour” separating L from Q.) For any
point g not in L, let the g-parabola be the parabola focused at g with directrix
L. (See Figure 4.)

LEMMA 3.

(a) The beachline is a simple curve, disjoint from L and projecting monotonically
onto L. Thus the beachline divides the half-plane to the right of L into two
connected regions. The region that.is adjacent to L is called the beachhead and
denoted by B. The beachhead is characterized as the set of those points in the
right half-plane of L that are closer to L than to any point in Q.

(b) The beachline is composed of a finite sequence of parabolic arcs, each such
parabola being a portion of some g-parabola, g € Q. Each such q is said to be
near L. The point where two parabolic arcs meet is called a transition point.

(c) Let C be the contour defined by the partition S= P U Q. Then C lies entirely
to the left of the beachline.

(d) The Voronoi cells of Vor(Q) that intersect B are precisely thase belonging to
points q that are near L in the sense of (b). Each connected component in the
restriction of Vor(Q) to B has the structure of a free tree embedded in the plane
whose leaves are on the boundary of B: at most one leaf'is on L. The intersection
of a cell of Vor(Q) with the beachhead may have several connected components.
Each such component is called a B- ceII The B-cells are lmearly ordered along

the beachline.
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(e) Let x be a transition point. Then there are two points q, q'€ Q such that x lies
on an edge of Vor(Q) separating the cells of q and q'. Moreover, the two
parabolic arcs that meet at x are portions of the g- and q'-parabolas, respectively.

Proor. (a) To see that the beachline projects monotonically onto e, for each
point p on L, draw the horizontal ray R emanating rightward from p. The beach
line intersects R at a unique point x such that the points on R closer to L than
to Q are precisely those lying between p and x.

-(b) The points x of the beachline where the circle centered at x and tangent
to L is incident to two or more points of Q are finitely many in number. These
define the transition points. For nontransition points x on the beachline, the
circle at x touches a unique g€ Q. Such an x lies on the parabola focused at g.
Thus the beachline is composed of a finite number of parabolic arcs that are
joined together at transition points,

(c) Let x be a point on the contour, and let D be the largest disk centered at
x whose interior does not contain any point of P Q. Then D touches points
both in P and Q since x is on the contour; therefore its interior intersects L.
Were x to the right of the beachline it would follow that D contained points of
Q in its interior, a contradiction; hence x is on or to the left of the beachline.

(d) Clearly, a point in Q is near L if and only if its cell in Vor(Q) intersects
B. Since every point in Q is obviously to the right of the beachline, every B-cell
must intersect the beachline and therefore the B-cells aré linearly ordered by
their intersections with the beachline. For the same reason each connected
component of BN Vor(Q) is acyclic and has the structure of a (free) tree whose
leaves are on the boundary of B. If such a component met the line L twice then
there would be a chain of edges connecting these two points within B and
therefore there would exist some B-cells not meeting the beachline: hence at
most one leaf is on L.

(e) Choose g and ¢’ to be the points that define the parabolic arcs that meet
at x. 1

LEMMA 6. In O(log(n)) time with O(n) processors, we can construct the beachline
of Q and a suitable data-structure to do the Jollowing query: for any point v, to

determine in O(log(n)) serial time, whether v lies in the beachhead B and, if" so,
which B-cell contains v.

Proor. Using one processor per edge of Vor(Q), we can compute all the
transition points (at most two) on that edge. To see this, let e be an edge separating
the Voronoi cells of g and ¢’ in Vor(Q). Then each point x (at most two) where
the g-parabola intersects e is a transition point. Once all the transition points
are computed, we may sort them by their y-coordinates (using list-ranking) to
form the beachline as well as determining all the B-cells.

> Next consider the point location problem: by Lemma 5(a), we can use binary
search to decide if a query point p lies in the beachhead in O(log(n)) time. It
is slightly more involved to locate the B-cell containing p in the beachhead.

- Recall that Vor(Q) B is composed of a collection of free trees with leaves
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on the beachline and perhaps one on L. We can assign a root to each such free
tree: if it reaches L, let its root be the vertex connected to L; otherwise, let its
root be the highest leaf vertex, say. All the edges can then be directed toward
the root using a trick of Tarjan and Vishkin’s (1985): form an Eulerian directed
path beginning at the root and visiting each edge twice, in which case v is an
ancestor of w if and only if v is first visited before w and last visited after w;
thus the edges can be directed using list ranking. We can form regions Ry that
enclose each individual tree T: if T reaches the line L then the region Ry has
three corners formed from the root of the tree and the two extreme leaves of the
tree. If T does not reach L then let u and v be its top and bottom intersections
with the beachline. The line joining these two points cannot be crossed by any
edge of T since otherwise T would either meet L or meet the beachline outside
the range of these points; hence all of T is to the right of this line and we define
R as that region of B to the right of this line in this case. (Unbounded regions
raise a few special cases which are easily dealt with.) Each connected region of
the beachhead exterior to all the regions Ry belongs to a unique B-cell. Thus
using binary search we can determine the region Ry (if any) that contains the
query point p. If p lies outside all the Ry then we are done. Otherwise, we use
the same technique as for point location in an e-promontory. O

We are now ready to give the overall algorithm in five steps (A)-(F). Step (A)
is done once and the rest. are recursively called. The complexity O(log*(n))
follows since steps (B)-(F) each take O(log(n)).

(A) First sort S according to its x-coordinate (an O(log(n)) sorting method is
enough here). Steps (B)-(F) involve partitioning S evenly into P U Q (using
a vertical line L) and recursively computing Vor(P), Vor(Q) and also the
convex hulls H(P), H(Q).

(B) Construct the beachline for Q and the corresponding search structure for
point location within the beachhead. Similarly, construct the data structure
for point location within each strip emanating from the convex hull of Q.
This takes O(log(n)) time with n processors. Do the same for P.

(C) For each point v bounding a semiedge of Vor(P) determine whether it lies
closer to Q than to P, using the two techniques shown above: if v lies to
the left of L, determine the sector (strip or slice) containing v and if a strip,
do a point location to determine the cell containing v. If v lies to the right
of L then check if v lies within the beachhead, and if not we know that v
is closer to Q than to P. Otherwise, locate the cell containing v. In either
case, we can decide if v is closer to Q than to P. This can be accomplished
in O(log(n)) time with one processor per vertex. Repeat the step with the
roles of P and Q reversed.

(D) At this point we know which semiedges of Vor(P) (and by a symmetrical
operation, Vor(Q)) meet the contour. Using this information we next com-
pute a linear sequence of triangular subcells of cells of Vor(P), whose union
covers the contour and such that the contour visits each triangular subcell
exactly once, and visits the cells in the given linear order. We call this
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structure the P-conduit. The contour will finally be determined by combining
the P-conduit with the Q-conduit (a merging process).

It will simplify things if all the geometric constructions are bounded. This can
be ensured by finding a rectangle which contains on its inside all points in Vor({P)
and Vor(Q), and also the top and bottom contour vertices. Since the beachlines
on both sides are enclosed by the vertical sides of such a rectangle, we conclude
that the contour can only cross its horizontal sides, and no essential information
is lost. In our discussion of the conduits we assume that all the cells and edges
are bounded, having been “‘clipped” to lie inside this rectangle. It is relatively
easy to construct such a rectangle in logarithmic parallel time. Details are left to
the interested reader.

Consider a relevant point p of P, i.e., one whose cell meets the contour. The
contour first enters the p-cell (in Vor(P), perhaps clipped) through an upper
semiedge, possibly leaves and returns by several pairs of semiedges (each pair
being two halves of the same edge), and finally leaves the cell for ever. The
direction of travel within the p-cell is clockwise around p and all parts of the
contour within the cell are, of course, visible from p. Let e and f be a contiguous
pair of semiedges in this clockwise sequence where e is an “entering” semiedge
and f a “leaving” semiedge. Consider these two semiedges together with the list
of all edges bounding the (clipped) p-cell included between them in clockwise
order around p. Connecting the endpoints in this ordered list of edges to p
(including e and f), we obtain an ordered list of triangles with the property that
the contour enters the first and leaves the last (to enter a different cell) and enters
and leaves each intermediate triangle exactly once. This list of triangles forms
part of the P-conduit mentioned above. It is relatively straightforward to combine
all these lists together for all relevant points p, in the appropriate linear sequence,
by assigning the appropriate number of processors to each point p: namely, one
to each edge of the clipped p-cell, thereby locating, counting, and sequencing
the lists of triangles around p: to link these lists together in the correct way is
easily done using one processor per semiedge. The time to do this is O(log(n)).
Thus the P-conduit can be formed as a linked list and we can use list-ranking
to store an appropriate representation of this structure in an indexed array.

(E) We construct the contour by merging the P-conduit with the Q-conduit.
Say that two triangles T, and T, from the respective conduits interact
if the bisector separating the respective points p and q (apexes of the
respective triangles) meets the intersection of the two triangles. Clearly,
these triangles interact if and only if the contour contains an edge separating
the two points and this edge intersects the common intersection of both
triangles. Each conduit triangle interacts with at least one on the other side.
Thus the contour can be constructed as follows. Let T" be the median triangle
in the Q-conduit. Assigning one processor to each triangle in the P-conduit
we can identify the set S of all triangles in the P-conduit which interact with
- T'. This set is an interval of one or more contiguous triangles in the P-conduit;
let Ty and T, be the first and last in the list (these may be the same triangle).

~ Then-only Ty and the triangles above it in the P-conduit can interact with
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triangles above T' in the Q-conduit, with a corresponding observation
connecting T» with the triangles below T'. Thus all pairs of interacting
triangles can be identified recursively in O(log(n)) parallel steps. Using this

information it is straightforward to finish constructing the contour in logarith-

mic parallel time.
(F) Finally construct the cells of Vor(S) by fixing up the cells of Vor(P), Vor(Q)

as appropriate.

5. Intersections, Partitions, and Related Problems. We consider the following
problems: (i) detecting whether a collection of line segments contains any intersec-
tion, (ii) triangulating a simple polygon, (iii) balanced recursive partition of a
polygon (so the structure of the partition is a logarithmic depth binary tree), and
(iv) computing an optimal placement of watchguards in an art gallery. We prove:

TueoreM 7. The above problems (i)-(iv) are all in NC7}(n log(n)). For problems
(iii) and (iv), if we begin with a triangulated polygon (or art gallery), then the

problem is in NCi(n).

Note that using straightforward emulation [Brent (1974)], the NCy(nlog(n))
algorithms above can be converted into NC3(n)-solutions. These time-bounds
have recently been improved to O(log(n)) [Atallah and Goodrich (1986), Atallah
et al. (1987)].

The solutions to all these problems share a common basis, which is the
construction of the so-called (vertical) trapezoidal map of a set of line segments.
Let V be a collection of n line segments, no two of which intersect except
perhaps at their endpoints. Following Lipski and Preparata (1981) we define the
trapezoidal map of V as follows: for each endpoint p of a segment in V, let L,
denote the maximal vertical line segment through p that does not intersect properly
any segment of V. (We say that two segments intersect properly if their relative
interiors intersect.) As is apparent from Figure 5, the finite regions of the

trapezoidal map are trapezoids.

—]
SE—

Fig. 5. Trapezoidal map:-
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It is natural to combine the problem of segment intersection with the problem
of computing the trapezoidal map: we give an algorithm that, on input V, detects
if there are intersections among the segments of V and, if not, it computes the
trapezoidal map of V. For brevity in exposition, we assume no two endpoints
have the same x-coordinate and in particular no segment of V is vertical.

Let T be the segment tree associated with the projection of V on the x-axis
[Bentley (1977), Bentley and Wood (1980)]. Recall that T is a balanced binary
tree of 2n+1 leaves. For each k between 1 and 2n+1, the kth leaf of T from
the left is associated with a canonical interval on the x-axis: this interval is
delimited by the kth smaliest x-coordinate in V and the (k+1)st smallest one
(default 00 as appropriate). Similarly, the canonical interval of every internal
node of T is defined recursively as the union of its two children’s canonical
intervals. Let s,,..., s, be the segments of V. Each node v of the segment tree
is assigned a set of indices, L(v), called its node-set, and defined as follows: let
I(s;) be the projection of segment s; on the x-axis. We say that a node of T covers
I(s;) if its canonical interval is contained in I(s;) but the canonical interval of
its father is not contained in I(s;) (or else the node has no father). We define
the node-set L(v) of v to be the set of all indices i such that v covers I(s;). It
is straightforward to see that each index appears in =2 log(n) nodes (at most
two nodes per level) and thus that the storage requirement of the segment tree
is O(n log(n)).

Let us return to our original problem. Define the canonical strip of a node v
of T to be the infinite vertical slab formed by the Cartesian product of its canonical
interval and (—o0, +00). The intersection of the strip with the segments of V whose
indices are in L(v) forms the so-called hammock of v, denoted H(v) [Chazelle
(1986)]. If V is free of proper intersections then the hammock consists of
noncrossing line segments joining two vertical lines. For each node v, define the
set W(v) to consist of segments of the form s n S, where S, is the canonical strip
of v and s intersects the interior of S, and s has at least one endpoint in the
closure of S,. Again, note that each s occurs in at most 2 log(n) sets W(v).

First we consider the main idea of the algorithm. The problem of constructing
the trapezoidal map of V amounts to computing the segment immediately above
(below) each endpoint in V. We can detect if the segments in H(v) intersect by
sorting the segments in H(v) in two ways: once according to their left endpoint
and once according to their right endpoint. (The endpoints lie, respectively, on
the left and right boundaries of the canonical strip.) If these sorting orders
disagree, we at once detect intersection. Otherwise, for each segment s of W(v),
we can insert s into the linearly ordered cells of the canonical strip of v in two
ways: by inserting s according to its two endpoints. Again, se€ W(v) intersects
some edge in H(v) if and only if the two cells obtained by both ways of inserting
s into the canonical strip are different. If these two tests for H(v) and W(v)
pass successfully for each v, then we can conclude that the segments in V do
not intersect (see Chazelle (1986) for a proof). Note that it is insufficient to do
these tests just for H(v).

Now we give some of the details related to sorting. The tree T as well as the

,; canonical intervals can be computed in O(log(n)) time, using sorting on n
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processors. Next we assign one processor to each segment of V and comque
the nodes of T covering each segment in O(log(n)) time (using binary search in
the tree). At this point we can assume that we have one list of size O(n log(n)),
each list item containing a pair of the form

(i, v) = (segment index, covering node).

By sorting the pairs (i, v) lexicographically so that v is most important, we get
the pairs having a common v into consecutive locations of an array. We may
regard the consecutive locations as sublists of pairs correspondu.lg to the above
set H(v). Wé may sort the edges of H(v) in the two ways des.crlbed above and
verify that no intersection occurs. Next, the sets W(v) are si‘mllarly constructed
with n log(n) processors in logarithmic time. We may then 1.ns<.ert each segment
s of W(v) into the sorted sublists of H (v): again we do this in two ways and
with O(n log(n)) processors and logarithmic time. So now we may assume that

we have the quadruples

(P, U, S1, S2)a

where p is an endpoint of some segment s in V, W(v) contains a portion of the
segment s which terminates in p, and, finally, the segment s, (resp. s.z) comes
from the hammock edges directly above (resp. below) p in thc‘ canor}lcal strip.
We sort again to collect in consecutive Jocations the quadruples involving a fixed
endpoint p. By computing the minimum distance among the s, .(resp. s,) from p,
we obtain the edge of V directly above (resp. below) p. Tl_ns cqmpletes our
algorithm for the trapezoidal map. To prove that the algorithm is correct, it
suffices to observe that the segment immediately above (resp. belqw) an endpoint
p will necessarily contribute a hammock edge which lies immediately above (or
below) the endpoint in question. o Cee e
Note that the data-structure can be used for planar point location. Better ye,.t,
it allows us to determine the segment immediately above a query point.in
log®(n)) time, using O(n log(n)) space. ~ e
O(In gth(e 1)1)ext two subgecti(ons %v(e show two applications of the trapezoidal map.

To triangulate a simple n-gon P, we first

compute its trapezoidal map. We invoke Chazelle and Incerpi (1984) in the

following. Our goal is first to partition P into monotone polygons. To do this,

at each reflex corner c¢ that lies in the relative interior of a vertical edge of a

trapezoid, we introduce a diagonal edge from c to thei corner of P on the ol?posnte
vertical edge. Such diagonals can be constructed in constant time. "I:hls ncl>lw
partitions P into a collection of horizontally monotone p'olygon:s. A hor{zonta );
monotone polygon consists of an upper and a lower cham’ of edges, which me?
at the two extremal (leftmost, rightmost) corners. A c{;am (upper or lower) is
ivial if it consists of a single edge. i . !

tm\))i’ael slliolw how to partitionga horizontally monotor}e}?oﬂlygon Q m?o hor}zoﬁtglly
monotone subpolygons with a trivial upper or trivial lower chaln,has ofor\;flss
Allocate one processor to each edge e of Q.-By symmetry, assume that e o,’;

5.1. Triangulating a Simple Polygon.




310 A. Aggarwal, B. Chazelle, L. Guibas, C. O'Diinlaing, and C. Yap

Fig. 6. Horizontally monotone polygon with trivial upper chain.

the trivial upper chain. If the region of the plane sufficiently close to ¢ and below
e is outside polygon P then do nothing. Otherwise, denoting by u; and ug the
left and right endpoints of e, we (conceptually) drop the vertical line segments
from u; and uy (resp.) to the boundary of P. Let these line segments meet the
boundary of P at vy and vy, respectively. Introduce diagonals from u, (ug) to
the leftmost (rightmost) vertex of P between v; and vg. If u, (resp. uy) is the
leftmost (resp. rightmost) vertex of the lower chain then u; = v, (resp. ug = vg),
in which case we do not introduce a diagonal. Compressing the vertices of each
monotone polygon into a single array by parallel prefix, this produces the desired
partition of Q in O(log(n)) time using g processors, where g denotes the number
of vertices of Q (Figure 6).

So now we may assume that Q={w,,...,w,} is a horizontally monotone
polygon with a trivial upper chain w,w,, and lower chain given by the polygonal
line w,,..., w,. We break up the lower chain into V¢ contiguous segments of
equal size and compute the upper hull of each piece (that is, the upper chain of
its convex hull). This is similar to our convex hull algorithm in Section 3. These
hulls form a continuous path that partitions Q into a connected upper portion
adjacent to w,w, and at least v/n portions below the hulls. Then we recursively
triangulate the parts of Q below each upper hull (Figure 7).

As in the analysis in Section 3, if we can triangulate the part of Q above these
upper hullsin O(logg) time using O(q) processors then the complete triangulation
of Q will have the same asymptotic complexity. Once again by assigning one
processor per pair of upper hulls we can compute all pairwise tangents in
logarithmic time (see Section 3). Next we build up a partial triangulation of the
region of Q between these upper hulls and the trivial upper chain: (1) pair up

Fig. 7. Recursively triangulate below each of the v upper hulls,
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Fig. 8. Partial triangulation of region above the upper hulls.

consecutive upper hulls (the first and second, the third and fourth, etc.) and for
each pair determine the unique tangent between the two upper hulls, adding it
into the triangulation; (2) iterate on this process until there are only two upper
hulls left. Step (1) can be implemented in constant time: to see this, assign one
processor per vertex, per current upper hull, and per precomputed tangent. At
the beginning of each new iteration we assume that the processors assigned to
vertices which are no longer on the current upper hulls are deactivated. Then in
O(1) time the vertices of the current upper hulls are each labeled with a number
unique to the hull. In this way each (tangent) processor can then decide immedi-
ately if it is relevant, that is, if it connects two hulls in a given pair. If so, then
the tangent is added into the triangulation and the processor of every vertex lying
strictly below the tangent is deactivated. Tangents which cross the newly added
edges of the triangulation also have their processors deactivated. The iteration
can then proceed. When the iterations terminate, we have the situation of Figure 8.

It is easy to see that the partial triangulation leaves behind polygonal regions
with very simple characteristics: such polygons Q'={u,, ..., 4.} are horizontally
monotone with a trivial upper chain u,u,, and there is a unique lowest vertex
4, (1=1I= k) such that the y-coordinate of u; is decreasing as i increases from 1
to I, and the increasing as i increases from ! to k. Furthermore, the subpolygons
{u,,...,w} and {u,..., u} are also horizontally monotone with trivial lower
chains u,u; and wujuy, respectively (Figure 9). Since they are also convex, it is
now an easy exercise to triangulate each Q' using k processors and O(log(k)) time.

uy

u

Fig. 9. Special monotonic polygons after partial triangulation.
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In conclusion, we have given an algorithm for triangulating a simple n-gon in
O(log(n)) time, using n processors if the vertical trapezoidal map is available,
or using O(n log(n)) processors otherwise.

5.2. Polygon-Cutting, Recursive Decompositions, and Applications. The polygon-
cutting theorem states that any simple polygon has a diagonal which cuts it into
two roughly equal pieces. In its simplest form, it says that an n-gon can always
be cut up into polygons of at most 2(n/3)+1 vertices. As was shown in Chazelle
(1982) this property, though quite simple, is of great importance, because like
other separator theorems it sets the stage for divide-and-conquer algorithms. We
illustrate this with the problem of placing guards in an art gallery. First we review
how the polygon-cutting theorem is used.

In many problems on simple polygons, it is useful to divide a polygon roughly
evenly for separate processing, and to proceed recursively. This amounts to
constructing a ‘“‘decomposition tree” that is balanced (i.e., logarithmic depth),
where each node v stores a diagonal of the polygon (representing a partition)
and the left and right subtrees below v represent the two polygons defined by
this partition; the leaves represent triangles. Note that the set of all diagonals
stored in the decomposition tree forms a triangulation of the polygon. The
polygon-cutting theorem implies the converse: every triangulation can be organ-
ized into a balanced decomposition tree. The graph-theoretic dual of the triangula-
tion is a tree whose nodes and edges are in bijective correspondence with the
triangles and the diagonals, respectively. If a diagonal partitions the boundary
of P into two polygonal lines of respectively p and n—p edges then removing
the corresponding edge from the tree will leave two trees of respectively p—1
and n—p—1 nodes. What is now needed is an efficient parallel algorithm for
computing the size of the subtrees adjacent to every edge in the tree. This can
be reduced to computing the number of descendants of every node in a rooted
tree, which we have already used in our algorithm for Voronoi diagrams (Sec-
tion 4). From this we conclude that balanced decomposition trees can be imple-
mented in NC7(n) if the polygon is already triangulated, and in NC7(n log(n))
otherwise.

In Chvatal (1975) it is shown that as long as P is simple it is always possible
to place |n/3| watchguards inside P to keep the whole polygon (“art gallery”)
in check. This means that with |n/3] carefully chosen points every point in P
is visible from at least one of the chosen points. A simple proof follows from the
property that any triangulation of P is 3-colorable. Being a tree, the dual graph
of a triangulation of P has at least one leaf. This means that if P has more than
three vertices, its triangulation contains at least one triangle abc adjacent to the
rest of P through ab only. Removing this triangle allows us to 3-color
the remainder recursively, which then leaves one color available for vertex c.
A solution to the art-gallery problem then results from placing a guard at each
vertex colored with the least-used color.

To overcome the inherently sequential nature of this algorithm, we first assume
that a decomposition tree T for the polygon is available. Our goal is to 3-color
a simple polygon P. A 3-coloring of P is represented by storing at each edge of
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T a permutation of the colors ¢i, ¢z, C3, and at the leaves of T, an arbitrary
3-coloring of the vertices of the triangle. Note that a vertex of P may appear in
more than one triangle but we make no assumption that the color assigned to its
various appearances at the leaves are consistent. The consistency question is
resolved by the permutations at the edges. Let us describe how the color of any
vertex v of P is obtained in this coding scheme. Say v appears in the triangle at
a leaf I of the decomposition tree T. If v is *“locally” assigned a color ¢ at /, then
the color of v in the “global coloring” is obtained by applying the permutations
found along the path from [ to the root of T. We must ensure consistency, i.e.,
different leaves containing v will lead to the same global color for v. This is
simple. Let us say that a node u of T is globally consistent if for all vertices v of
P, whenever two leaves below u assign local colors to v, then the path from these
two leaves to u will assign the same global color to v. Assume that all nodes at
distance greater than k from the root are globally consistent. Let u be a node at
distance k from the root, and u, , ug be the two children of u. It is easy to assign
permutations to the two edges from u to its children so that u is globally consistent.
(To see this, note that the possible cause for inconsistency is at the two vertices
incident to the diagonal of P at u.) Starting from the nodes furthest away from
the root, in O(log(n)) steps, we can compute the permutations. In another
O(log(n)) steps, with one processor per leaf of T, we can assign the global color

to each v in P.

6. Polygon Optimization Using a Back-and-Forth Technique. There has been
considerable interest recently in optimization problems where the solution space
is a suitable class of polygons (see Chang (1986)). One such class of problems
is the following, for fixed k =3. Given a convex n-gon P, determine the minimum-
area (resp. maximum-area) k-gon that circumscribes (resp. is inscribed in) P.
First consider the circumscribing problem. In the sequential setting, O’Rourke
et al. (1986) give a linear-time algorithm for k =3 while Aggarwal et al. (1985)
and Chang (1986) give an O(n*log(n) log(k)) alforithm for k=4. Recently, a
factor of log(n) has been shaved off this result using a general technique in
Aggarwal et al. (1986). Since the solution for k=4 is at least quadratic time, we
cannot have an NCi(n) solution without improving the sequential result. Thus
we focus on the minimum circumscribing triangle problem. Our main result is
given next: the stated runtime is achieved using what we have dubbed ‘“back-and-
forth subdivision,” a technique new in computational geometry.

THEOREM 8. The problem of computing a minimum circumscribing triangle for a
convex n-gon is in NCY(n).

For convenience we refer to the n edges of a given convex polygon P by their
indices in clockwise order from 0 to n—1. Also, given an edge i, we denote by
a(i) the last edge in clockwise order from i which forms a positive angle with
the line through i: put another way, (i) is the unique edge such that its'§econd
terminal (in clockwise order) supports the tangent to P parallel to i‘and-0 ’Fe

i (there is an easy special case when this tangent lies along an edge) (Figure 10)-
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Fig. 10. The edges {i, i+1,..., «(i)} of P and T(i, ).

We exhibit a vn divide-and-conquer strategy (cf. Section 3) which relies o the
following geometric characterization developed in Klee and Laskowski (1983),
and O’Rourke et al. (1986). :

We use the following known properties:

(i) Among the minimum circumscribing triangles of P, at least one such triangle

has two of its sides “flush” (where a side is flush if it lies along an edge of
P).

(ii) The midpoint of each side of any minimum circumscribing triangle of p

must touch P.

(iii) Given i and j, where i=j=<ea(i), let T(i ) denote the triangle with two

(iv)

sides flush with i and j such that the third side has its midpoint ¢ touching
P and such that i, j, and g occur in clockwise order on the boundary of P.
We write i =)= k to mean j is in the range i - - k (mod n). We write m(i j)
for the edge of P that touches ¢. In general the third side of T(i, ;) is not
flush so there will be two choices for m(i, j); we will conventionally choose
the larger index (mod n). For each i, there are at most two indices j*(i)
such that the midpoint of the second side of T(i, j*(i)} (i.e., the side that
is flush with j*(i)) actually touches P. If there are two choices (necessarily
adjacent) for j*(i), we choose the edge that has the larger index (mod n).
Let m*(i) refer to the edge m(i, j*(i)), and T*(i) refer to T(i, j*(i)). We
say edge j*(i) (resp. m*(i)) is left critical (resp. right critical) with respect
to i. We call triangle T*(i) a locally minimum triangle with respect to edge
i. Note that the midpoint of the edge of T*(i) flush with i need not touch P,
Monotonicity property. An edge je P (i#j) is called low (resp. high) with
respect to i if j precedes j*(i) (resp. j succeeds j*(i)) in a clockwise traversal
of P. By definition then, for each i, the sequence of edges (i,i+1,..., a(i)
consists of a sequence of low edges, followed by a left critical edge, followed
by a sequence of high edges. The monotonicity property is as follows.
Suppose that p is the midpoint of the side of T(j, ) lying along j and p is
not on j: if p and the side containing i are on the same side of j then j is
high, and if they are on opposite sides then j is low, with respect to i. (Note
that this deduction is made without knowledge of the left or right critical
edges of i.) ‘

(v) Interspersing property. If i = i’ then j*(i) =,*(i') and m*(i)s m*(¥),
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property (v) is a weakened form of that derived by O’Rourke et al. 1986) but
is sufficient for our purposes. Given i and j we can compute m*(i, j) using binary
search in logarithmic serial time; thus, given i, the monotonicity property lets us
use binary search to compute j*(i) in O(log?*(n)) serial time. Thus n processors
can compute the locally minimum triangles T*(i) for each i. By property (i), the
globally minimum triangle will be found among these T*(i). This can be found
in O(log(n)) further steps. We shall see that this can be improved to yield an
O(log(n)) parallel algorithm using what we call “back-and-forth subdivision.”

We define partial right inverses for the two functions /* and m*: JT'(k) is the
unique i such that j*(i=1)<k=j*(i) (in clockwise order); m~'(k) is defined
the same way. (The functions j* and m* are not usually bijective, but if k is in
the range of j* then j*(j ™" (k)) = k; similarly for m™'.) The monotonicity property
(iv) shows that these quantities are well defined and, furthermore, given an
interval I of length s containing j~'(k), if j*(i) is known for all i in that interval,
then a single processor can compute j7'(k) in O(log(s)) time. The idea is that
we shall compute approximate values for functions j* and m* and for their
inverse functions j~' and m™'. We can refine an estimate of j*(i) by using
information about j ' and m* and performing binary search in the interval known
to contain the true value. The other approximations can be refined simultaneously.
Repeating this process sufficiently often, namely, log log(n) times, we compute
all these functions exactly. A single phase of the process involves knowing for
each k an interval a- -+ b of length s, say, such that a <j*(k)=b. In this case
we say that the interval [a, b] brackets j*(k). Using sufficiently many processors
(n overall), we can improve this estimate to an interval of length v/s: the same
goes for calculating estimates of the other functions. The phase takes O(log(s))
parallel steps.

For simplicity we assume that n is a power of 2. We initially choose s as the
maximum integer <n of the form

21
2%,

where t is an integer (specifically, t= |1og,(logz(n))}). This avoids rounding
difficulties. This initial value of s lies between vn and n.

LEMMA 9. Let s be a perfect square perfectly dividing n (which is assumed to be
a power of 2). For 0=i=n/s—1 let s, be the iv/sth edge in clockwise order around
the polygon P. Suppose that to each k four intervals J*(k), J~'(k), M*(k), and
M™1(k) are associated respectively bracketing j*(k), ' (k), m*(k), and m~(k),
where each interval is of the form [ 5,5, Si+1)vs]- In other words, the given bracketing
intervals are of length s+1 and their boundaries are multiples of s. Then with-n
processors all of these intervals can be reduced to intervals of the form [s;, $i44], in
O(log(s)) parallel steps. ‘ S

Prook. For 0=i<n/vs we assign /s processors to compute in--O¢log(s))
parallel steps the correct subinterval [$;, s+1] of J *(s,) bracketing j*(s:). Thetth
processor uses binary search on M*(s;) to determine whether s, <j*(s;), i.e;; to
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determine whether s, is low, critical, or high with respect to s;. Thus the correct
interval bracketing j*(s;) is located. Reassigning the given processors to this
interval, j*(s;) is computed exactly. This exact information about j*(s,) at these
n/+'s sample sides s; enables us to bracket j~'(k) for all sides k of P, since

s;<j'(k)=s4+1  ifand only if j*(s;) < k=j*(s;.1),

so this can be checked in time O(log(s)) with one processor reassigned to each
edge k, using binary search on the subsequence of edges s; contained in the
interval J~'(k) (j*(s,) is known exactly for all 1).

Thus we have j*(s;) computed for all i and j™'(k) correctly bracketed for all
k. Next for each sample side s, we assign Vs processors: one is assigned to each
side i in the interval J~'(k) (which is now of the form [s,, s.4,]). The processor
assigned to i queries M*(i) and determines whether k is low, critical, or high
with respect to i. By the monotonicity property this enables j™'(s,) to be deter-
mined exactly. When this computation is finished, J*(i) can be recomputed for
every edge i just as J7'(i) was computed. The refinement of our estimates of
M*(k) and M~'(k) is achieved by symmetric methods. )

The initial conditions for applying the lemma are slightly different since in
general n>s. The aim then is to achieve initial bracketing intervals of length s;
however, essentially the same ideas apply. Repeating the refinement phase log
log(n) times all quantities are computed exactly. Notice that since all the tasks
assigned involve easily computed subsequences and subintervals of 0« -« n — 1,

processor assignment presents no difficulty in this algorithm. It is clear that this
method takes overall parallel time ' ‘

—k 1
z Oftog(r™*) =3 0( ) - o(tog(r)).

ADDITIONAL REMARKS. Boyce et al. (1985) have shown that some of the
properties similar to those given for the minimum circumscribing triangle also
hold for the maximum inscribed triangle. It is not clear if the back-and-forth
technique can be extended here since the monotonicity property (iv) is not
available. However, an O(log*(n)) solution is possible. For the dual problem of
computing the maximum inscribed triangle, simple divide and conquer gives a
solution using O(log?(n)) time and n processors. In fact, unlike the minimum
circumscribed k-gons (for k=4), such a divide-and-conquer technique yields an
O(k log*(n)) time for computing a maximum inscribed k-gon using n processors.
Finally, Toussaint (1983) has shown that the minimum circumscribing rectangle
for a given convex n-gon can be found in O(n) sequential time. Using the
geometric characterization given by Freeman and Shapira (1975), it is easy to
‘compute such- a rectangle in O(log(n)) time using only n/log(n) processors.
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In fact, the diameter of a convex polygon can also be computed in O(log(n))
time using n /log(n) processors, as the following brief outline suggests.'® If we

«can compute for each i its antipodal vertex 8(i) (the endpoint of a(i)) it is

straightforward to compute the distance of (i) from the line through i for each
i, and then compute the minimum of all these distances with the stated resources.
We take n/log(n) processors and assign each processor to a group of log(n)
successive sides of the polygon. Each processor first computes the antipodal
vertex for the first side in its alotted group (this involves unimodular search in
logarithmic serial time), and then begins to scan in a clockwise direction along
its group of sides. Its “primary task” is to compute §(i) for all sides within this
group. Going from side i to i+1, the corresponding antipodal vertex may either
remain the same, increase by 1, or increase by more than 1. In the latter case the
gap between 8(i) and 8(i+1) could be considerably more than log(n), and the
processor might not achieve its primary task. However, in this case, if k denotes
the side beginning at 8(i), we know that 6(k) is the vertex ending the ith edge.
Thus the processor can begin a “‘secondary task,” namely computing 8(j) for
j=k k+1,- - until it either reaches the end of the group containing k or §(j)
increases, in which case it can determine 8(i+1) and revert to its primary task.
It is easy to show that, for every i, 8(i) is computed by some processor, either
as a primary or secondary task. : : -

7. Convex Hull in Three Dimensions and Related Structures. In this section we
discuss the problem of computing the convex hull H(S) of a set S of points in
three-dimensional space. The method originally described in the Focs paper
ran in parallel time O(log*(n)), but the method to be outlined here is in NC7(n).
Thus we now match the asymptotic efficiency of Chow’s method (1980); since
our method does not use optimal parallel sorting it should be expected to work
better in practice. As with the two-dimensional Voronoi diagram problem the
algorithm is based on a serial divide-and-conquer technique already known in
the literature. We employ a new data-structure, which has independent interest,
to solve queries of the following kind: given a line L and a polytope K, determine
whether L intersects X and if not return a plane through L tangent to K. Such
queries are called line-queries; they will be discussed in detail later. Let us state
the main result of this section.

THEOREM 10. There is an NC3(n) algorithm for constructing the convex hull
H(S) of a set S of n points in 3-space, which only uses sorting at a preprocessing

. stage and hence can use any sorting algorithm in NC5(n) or better. The algorithm

produces as a by-product a data-structure suitable for answering line-queries about
H(S) in serial time O(log*(n)).

For reasons of space we only provide an outline description of our algorithm,
which, while of some interest in its own right, is very elaborate and achieves a

" As an anonymous referee pointed out, the same problem can be solved just as efficiently taking
the set of edges as displacement vectors and merging this set with its mirror image (see Shamos [1977]).
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runtime which has been bettered by much simpler methods (this is discussed in
a concluding subsection). Much more detail is supplied in an existing technical
report [Aggarwal et al. (1987)]. Recall the serial divide-and-conquer algorithm
[Preparata and Hong (1977)] to compute the convex hull of S: the set of points
S is evenly split into two sets by a horizontal plane R, which does not contain
any pointin S; let P and Q denote the points in § above and below R, respectively.
Recursively compute H(P) and H (Q); compute the sleeve joining the two hulls,
i.e., the chain of faces tangent to the two hulls and meeting three or more
points of S; then merge H (P) with H(Q) along the sleeve to form the convex
hull H(S).

For the rest of this section R will continue to denote a horizontal plane, which
we call the separating plane, partitioning S into upper and lower parts P and Q,
respectively. Consider that part of the sleeve on and above the separating plane
R. We might imagine that it was homeomorphic to a cylinder with boundary,
but sleeve faces can meet one another above the separating plane, so it can have
several holes. Each partial sleeve face has an edge meeting R, and two edges
meeting this edge; all other edges on this partial face are called seam edges and
are given a left-to-right (i.e., clockwise) orientation. These chains of seam edges
join together to form what is called the upper seam of the H(S). Thus the upper
seam has the form of a directed Eulerian circuit, but vertices may be visited more
than once and the same edge of H(S) may occur with both orientations along
the seam.'! The lower seam, occurring below the separating plane R, is defined
similarly.

Our algorithm is simple in principle though the development is lengthy: it
depends on computing the seams efficiently at each stage. To compute the upper
seam, say, assign one processor to each edge of H(P), to perform what is called
a “line-query,” relative to H(Q). Consider a fixed edge of H(P); let L be the
line containing it. If the edge belongs to the upper seam it is necessary (a) that
L should not meet the interior of H(Q), and (b) one (or conceivably both) of
the two planes through L tangent to H(Q) should not intersget the interior of
H(P). To determine whether a given plane passing through L is tangent to H (P)
can be accomplished in constant time by inspecting the two faces of H (P)
meeting L.

Once the edges in the seam have been calculated, their cyclic connection order
can be ascertained in logarithmic time by a list-ranking process. The full structure
of the sleeve can be deduced once both seams have been constructed by
implementing what is essentially a merging process, easily accomplished in
logarithmic time. Therefore we now consider these line-queries more closely.

Let K be a convex polytope and L an oriented line not meeting the interior
of K. There are two half-planes through L tangent to K (they bound the convex
hull of Lu K: let us ignore the trivial case where K and L are contained in the
same plane). It is helpful to distinguish these planes in a canonical way.

I' The possibility that the seam can have self-intersections complicates both the sequential algorithm
and ours. We are indebted to Herbert Edelsbrunner (private communication) for drawing our attention
to this possibility.
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DEeFINITION 1. With K and L as above, consider the set of all half-planes
bounded by L which intersect K. All such half-planes can be parametrized by a
rotational angle 6 about L. Assuming that L does not intersect (the interior of)
K, these angles 6 sweep out an interval [8,, 6,] of angles where we can distinguish
these two bounding angles (since L is oriented) by requiring that 8,> 6, in the
anticlockwise sense, and 6, — 6, = 7. These bounding angles define the two planes
through L tangent to K, and we call the one at angle 6, the back tangent-plane
to K through L, and the other the front tangent-plane. The line-query for L and
K is to determine whether L meets K transversally, and, if not, to compute the
front and back tangent planes through L to K.

If we visualize L and K so that L is in the plane of the page, and oriented
upward, and K is to its left, then the front and back planes will be in front of
and behind K, respectively (see Figure 11). Such queries arise naturally in
implementing the convex hull algorithm. To begin with, let us consider a much
simpler query which we call a point-query:

Given a plane T meeting a corner p of a convex polyhedron K, determine
whether T is tangent to K, and, if not, give the two faces incident to p which
T cuts.

This is solved by providing a test polygon at p, namely a polygon which forms
the boundary of the region of intersection of a fixed plane M separating p from
all the other corners of K. Clearly, the plane T cuts K if and only if it cuts this
test polygon, and if so the edges where it cuts the polygon identify the faces
incident to p which it cuts. The corners of the test polygon are unimodal with
respect to height above (or below) the plane T, so it is then easy to solve the
queries in logarithmic serial time by a variant of binary search. The problem,
therefore, is to construct a test polygon in parallel, with one processor, say,
assigned to each edge of K incident to p. Indeed, it is easy to construct such a

Fig. 11. Hlustrating the front and back tangent planes.
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polygon once at least one line N has been found which meets the interior of K
at p, since then a suitable separating plane normal to this line can be found (take
all the projections of the incident edges on N, find the one closest to p in
logarithmic time; let r be its distance from p; then choose the plane passing
perpendicularly through N at half this distance). To find a line entering K at p,
simply choose three corners adjacent to p and let g be their average; then pg
defines a suitable line. Summarizing,

is based on the
faces with the h
then all its face

LemMA 11.  Given a convex polyhedron K with | corners, it is possible to construct
test polygons for each corner in O(log(l)) parallel time overall with I processors.

The following lemma shows where point-queries could arise in constructing
the convex hull. Its simple proof is omitted.
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LemMA 12. Let T be a plane which meets the sleeve of H(S) at some corner p
but does not intersect any face of the sleeve. Then T can meet the interior of K (.S)
if and only if it meets the interior at p, and in this case the polygonal region of
intersection of T with H(S) is contained in H(P) if p is in the upper seam and in
H(Q) if p is in the lower seam.

The rest of this section is organized as follows. We introduce the notion of
“seam polytope,” and of localizing a query to a subpolytope. We introduce the
idea of a *near split” on a polytope which can be used to localize a line-query
on the polytope. We then give only a rough description of the remaining com-
ponents of our algorithm: for further details please refer to the technical report.
We conclude with a discussion of some simpler methods (given by others).

7.1. Definition and Characteristics of a Seam Polytope. For each of the two seams
of the sleeve as considered above we construct a “seam polytope,” a bounded
convex polytope which has a distinguished circuit of directed edges, called the
seam, which matches the corresponding seam of the sleeve.

DEFINITION 2. A seam polytope is a convex three-dimensional polytope with
two distinguished horizontal faces, the base and the top, and the other faces
partitioned into two sets, called, for mnemonic purposes, the blue and green
-faces, respectively. The edges along the top and base are called top and base
edges, respectively. No green face meets the base and no blue face meets the
top. Each blue face meets the base in a proper edge and is either triangular or
trapezoidal in shape. The seam vertices and edges are those vertices and ed ges
- bounding blue faces but not meeting the base. Edges connecting the seam to the
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base are called blue edges, and edges meeting only green faces are called green
edges, and vertices meeting only green faces are called green vertices.

The assumption about the blue faces is not essential but simplifies things: it
is based on the assumption that the blue faces are formed by intersecting sleeve
faces with the halfspace above the separating plane, and if S is in general position
then all its faces are triangular. From our previous discussion we know that by
orienting the blue faces we can describe an Eulerian circuit of directed edges
which includes all seam vertices and edges but can include the same (undirected)
edge twice (with both orientations): specifically, when two blue faces meet at a
seam edge, that edge will be met twice in the directed circuit. Henceforth the
seam will generally denote the directed circuit so formed. It cannot be assumed
that every green face meets the top of the seam polytope; moreover, the green
faces can have any number of bounding edges, and their connectivity pattern
can be complex. The set of blue faces is connected, since each face is connected
to the base; also, there is a connected set of green faces meeting the top, which
is called the “mainland.” However, there may be more “green islands” formed
where the seam returns upon itself. See Figure 12,

Let us reconsider briefly the construction of the sleeve and the two seam
polytopes that are built during this construction. Without loss of generality we
only consider the upper seam. The base of the seam polytope is the intersection
of H(S) with the separating plane R. The top of the seam polytope may be
defined by a horizontal (parallel to R) plane which passes just above the highest
vertex on the upper seam (since the vertices in S can be assumed presorted with
respect to the z-coordinate, this vertex can be obtained with little computational
overhead). The planes supporting the faces on the sleeve yield the blue faces of
the polytope; the planes supporting those faces of H(S) which meet the blue
faces above R yield the green faces of the seam polytope.

For the rest of this section, if K is any polytope and A any subset of K, suppose
that we have determined for a given line L that if L penetrates K then it penetrates
A, and if it does not penetrate K then the front (resp. back) plane through L to
K must coincide with the front (resp. back) plane through L to A. Then we say
that the given line-query (for front or back plane) has been localized to A. Since
the front plane to K through L coincides with the back plane to K through L',

Fig. 12. A seam polytope: sea, mainland, and islands.
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where L' is the same line as L with the opposite orientation, we can always
restrict our attention to the front plane.

A hierarchy of seam polytopes can be constructed as H(S) is being built; for
any oriented line L, a line-query for H(S) and L can be solved by 2 recursive
sequence of line-queries for L and this hierarchy of seam polytopes, as follows.
No proof is offered here; one is given in Aggarwal et al. (1987).

LEMMA 13. Let H(S) be as above and suppose that 11 is the seam polytope for
its upper seam. Given an oriented line L, suppose that we wish to determine whether
L intersects the interior of H(S) and if not to give the front plane through L tangent
to H(S). Then a solution to the corresponding question for II either solves the query
for H(S) or localizes it to H(P) or H(Q).

The following is an immediate corollary.

LEMMA 14. Suppose that a hierarchy of seam polytopes have been constructed
along with H (S), and that S has size O(n). If auxiliary search structures have been
provided which enable the line-queries for the seam polytopes to be solved in serial

time O(log(n)) then line-queries for H(S) can be solved in O(log?*(n)) serial time
overall.

We shall next see an appropriate search structure for an individual seam
polytope which achieves the time-bound in Lemma 13. It will be enough to build
such a structure (and also the seam polytope itself, which only resembles H.(S)
near the seam) in O(log?(n)) time; this construction will be given in outline.

7.2. Near Splits, Core, and Lobes of a Seam Polytope. A data-structure we
describe in outline to help solve line-queries makes extensive usage of a partition
method which we call near-splitting. A natural divide-and-conquer method to
solve a line-query for a line L and a polytope K would be to divide K by a
plane into two simpler parts: by solving the line-query relative to the face common
to the two parts we could localize to one or other part. Since such a splitting
face could have a large number of vertices, to localize the query would require
logarithmic serial time. Therefore rather than splitting K into two parts meeting
at a common face we decompose K into two convex polytopes which meet in a

set with nonempty interior and whose union is K. This motivates the following
definition.

DeriNITION 3. Let K be a (seam) polytope, and J a sequence of corners of K
~such that in cyclic-order every successive pair of vertices defines a line-segment
_ belonging to one of the faces of K and no three vertices of J belong to the same
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Fig. 13. Near-split of a polytope,

face of K. Connecting pairs of successive vertices in cyclic order around J we
obtain a polygonal curve, a Jordan curve, around K. Let A be the convex hull
of those corners of K on and outside J; let B be the convex hull of those corners
of K on and inside J. Then A and B form a near-split of the polytope K. See
Figure 13.

LeMMA 15. With A, B, J, and K as in the above definition, let L be an oriented
line. Then if test polygons are provided for both A and B at each vertex of J, a
solution to a line-query for L relative to A~ B either solves the line-query for K or
can be used with O(1) extra work (on a serial processor) to localize the query to
A or B.

No proof of the above lemma is offered here. Notice that the provision of test
polygons enables a query to be localized rapidly (constant time) even at a
high-degree vertex.

The remaining components of our algorithm are rather detailed and we only
present them in outline here.

(1) First, introducing several near-splits, we can decompose the seam polytope
into what are called in Aggarwal et al. (1987) the “core” and “lobes.” The
core has a rather simple structure in which line-queries can be solved by a
form of binary search (based, however, on the idea of near-splits). This
enables a line-query to be localized, in logarithmic time, to the correct lobe
of the seam polytope.

(2) The green edges on each lobe of the seam polytope form what is essentlally
a forest of trees, where the leaves are (mostly) along the seam. (Although
several green edges can meet the same point on the seam, they can be regarded,
for accounting purposes, as defining different leaves.) By adding fictitious
edges we can combine all the trees in the forest into one (free) tree. Using,
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for instance, a trick of Tarjan and Vishkin’s (1985) involving Eulerian
circuits, we can orient the edges of this free tree in logarithmic time, giving
it a root.

(3) This tree can be “covered” by a binary tree (i.e., a node with k = 3 children
being replaced by a complete binary tree with k leaves). Finally, this binary
tree, which we call the binary structure of the lobe, can be partitioned
recursively using Goodrich’s decomposition method as described in Section
4. This induces a recursive decomposition of the lobe by near-splits, yielding
the structure we wanted.

(4) The question remains of how to build the seam polytope in the first place
(the steps described above can be performed once the seam polytope has
been given, together with a cyclic ordering of the seam edges). The polytope
can be built by divide and conquer, roughly as follows. Partition the faces
incident to the seam into two parts, each contributing half the seam. Recur-
sively construct the polytopes defined by intersecting the halfspaces which
the faces define, and intersect the resulting two polytopes to obtain the seam
polytope. The concept of near-split is also useful here when forming the
intersection, and it is possible to form the intersection (and, at deeper levels
of recursion, auxiliary search-structures) in logarithmic time. This yields the
seam polytope in O(log*(n)) parallel time, as claimed.

7.3. A Simpler Approach. This concludes our discussion of the convex hull
problem. The construction given here, while elaborate, is slightly more efficient
than Chow’s. (The more detailed analysis given in Aggarwal et al. (1987) makes
careful provision for the possibility that the seam can return upon itself, which
introduces many complications.) The FOCS version was based on an adaptation
of Kirkpatrick’s method, and as mentioned above ran in time O(log*(n)). Richard
Cole (private communication) has given a strikingly simple method to implement
Kirkpatrick’s method in parallel. Let us say only that Kirkpatrick’s method was
based on the observation that every planar graph has a substantial fraction of
low-degree vertices (vertices of degree <11, say). To develop a suitable search-
structure for the graph, compute a maximal independent set of low-degree vertices,
discard them, and then reprocess the resulting graph. For our purposes, the
“planar graph” is the graph dual to a given convex hull X (see Dobkin and
Kirkpatrick (1983)). Richard Cole’s observation is as follows: to compute a
maximal independent set of low-degree vertices, let G’ be the graph formed by
the edges incident to the low-degree vertices. Construct a spanning forest of G’,
and let S be the subset of odd-depth vertices in this spanning forest (relative to
an arbitrary choice of roots for the trees in the forest). Since the trees of the
forest have bounded degree, the size of S is a fixed fraction of the size of G'.
Let G" be the graph spanned by S. Then every vertex in G" has degree at most
k—~2 (i.e., 9) where k is the valence of G'...continuing this process for a few
more stages we obtain a maximal independent set.

This method can be implemented to solve the convex hull problem in a(n) x
log®(n) parallel CREW time with n processors, where (n) is the cost of construct-
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ing a spanning forest. The cost is log(n) on a CRCW machine using the method
of Shiloach and Vishkin (1982), so this implies a much more elegant CRCW
solution to our problem.

Recently, Dadoun and Kirkpatrick (1987) showed that a Kirkpatrick decompo-
sition could be built in O(log(n) log*(n)) CREW time, thereby constructing the
convex hull with an elegant O(logz(n) log*(n)) CREW algorithm.

8. Final Remarks. Although parallel algorithms in areas such as graph-theoretic
algorithms and numerical problems have been well studied for several years, a
similar development is only beginning in computational geometry. Consequently,
even the most basic problems such as triangulation problems and those in
geometric optimization have not been put in the class NC until the FOCS paper.
Standard techniques in the subject such as contour-tracing, plane-sweeping, and
gift-wrapping initially seem inherently sequential; one of our main contributions
is to show that NC-analogues of these techniques actually exist. As hinted
before, efficient solutions to the basic problems imply correspondingly efficient
solutions to a multitude of other problems, and we have only shown some of the
reductions.

It is interesting to note that in the sequential setting the problems of planar
convex hulls, planar Voronoi diagrams, and three-dimensional convex hulls all
have the same @(n logn)-time complexity. In the parallel case, these problems

have been shown to be in
NC7(n), NC3(n), NC3(n),

respectively. Our planar convex-hull algorithm, culminating several previous
works, turns out to be optimal in a very strong sense and it remains open whether
the parallel solutions for the other problems can be further improved.
Although all common problems in computational geometry are in NC [Kozen
and Yap (1985)], we think that a main goal of parallel studies in computational
geometry is to bring problems into the practical subclasses of NC. In this paper
we focused on NCi(n) for small k. It is our belief that such algorithms (as
opposed to NCj(n?), say) will have practical implications. In particular, it is

possible that they could be employed in VLSI and in graphics machines or
robots.

Acknowledgments. Several people, including Richard Cole, David Kirkpatrick,
Mi Lu, and Ivan Stojmenovic, noticed a false assumption in our Voronoi-diagram
algorithm in the original extended abstract. Ivan also provided an alternative
merge procedure for the Voronoi-diagram algorithm. Hubert Wagener pointed
out the need for semiedges in our Voronoi-diagram algorithm. Herbert Edelsbrun-
ner pointed out that the seams could be nonsimple in the three-dimensional
convex-hull algorithm. Finally, Prasoon Tiwari drew our attention to Anita
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Chow’s valuable Ph.D. dissertation of 1980, which anticipated some of our
results: for the three-dimensional convex hull her algorithm was actually better
than the one presented at the 1985 FOCS conference.
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