J. Symbolic Computation (1985) 1, 47-56

Optimal Solutions for a Class of Point Retrieval Problems

B. CHAZELLEt AND H. EDELSBRUNNER{

t Department of Computer Science, Brown University, Providence, Rhode Island 02912, U.S.A. and
tinstitutes of Information Processing, Technical University Graz, Schiesstattg. 4a,
A-8010 Graz, Austria

(Received 23 July 1984)

Let P be a set of n points in the Euclidean plane and let C be a convex figure. We study the
problem of preprocessing P so that for any query point g, the points of P in C+gq can be
retrieved efficiently. If constant time suffices for deciding the inclusion of a point in C, we then
demonstrate the existence of an optimal solution: the algorithm requires O(n) space and
O(k+log n) time for a query with output size k. If C is a disk, the problem becomes the well-
known fixed-radius neighbour problem, to which we thus provide the first known optimal
solution.

1. Introduction

Let P be a set of n points in the Euclidean plane E?, and let C be a convex figure. We
study the complexity of the following problem: preprocess P so that for any query
translate C, = C+q of C the points in P~ C, can be retrieved efficiently. Intuitively, a
query corresponds to an arbitrary displacement of C without rotation. We demonstrate
the existence of a solution that is optimal in space and time, provided that C satisfies
certain weak computational conditions. Specifically, we describe a data structure that
requires O(n) space and O(k +1log n) time to answer a query with output size k. The only
assumption necessary to the validity of the algorithm is that constant time suffices for
deciding whether a point is contained in C. A few other primitive operations must be
assumed for the sake of preprocessing. If such operations can be executed in constant
time, the data structure can be constructed in O(n?) time.

The generality of the setting allows a uniform solution of several problems which have
been treated separately in the past. If C is a disk, the problem becomes the well-known
fixed-radius neighbour problem (Bentley & Maurer, 1979; Chazelle, 1983a; Chazelle et al.,
[984). The best solution to this problem achieves optimal retrieval time at the cost of
O(n(log n log log n)?) space (Chazelle et al., 1984), but also handles queries with non-fixed
radius. If C is a triangle or a rectangle then we have restricted versions of the triangular
and orthogonal range search problems (Knuth, 1973; Edelsbrunner et al., 1982; Chazelle,
1983b; Cole & Yap, 1983; Edelsbrunner & Welzl, 1983; Willard, 1985). Again, optimal
retrieval time is achieved only with superlinear space. Other shapes which C may assume
include ellipses or hybrid convex figures bounded by a constant number of analytic
curves. We look at the special case where C is a convex m-gon and m is considered a

The first author was supported in part by NSF grants MCS 83-03925 and the Office of Naval Research and
the Defense Advanced Research Projects Agency under contract N00014-83-K-0146 and ARPA Order
No. 4786.

0747-7171/85/010047 + 10 $03.00/0 © 1985 Academic Press Inc. (London) Ltd

48 B. Chazelle and H. Edelsbrunner

variable of the problem. For this case, we describe a solution requiring O(n + m) space and
O(k +log n log m) time to compute a k-point answer.

2. The Geometric and Computational Backdrop

In this section we introduce relevant geometric notions and address the computational
assumptions we have to make.

Let E? denote the Fuclidean plane and endow it with a system of Cartesian coordinates
x and y. The directions determined by the x and y axes are referred to as horizontal and
vertical, respectively. Let A be a subset of E% We assume that the reader is familiar with
the concepts of interior intA, closure cI4 and boundary bdA. For two points a = (a,, a,)
and b=(b,, b,), we have a+b=(a,+b,,a,+b,), and for a real 4, da=(4a,, Aa,). These
operations are naturally extended to subsets 4, B of E?, i.e.

A+B=1{a+blac A,be B} and A4 = {idlac A}.

For any point g, A +q = A+ {q} is called a translate of A and is denoted A,. A is convex i
for any points @, and a, in A, the point Aa, +(1 —A4)a, lies in A for each A such that
0 <A< 1. The smallest convex set that contains A is called the convex hull of A, denoted
convA. The convex hull of {a, b} is called a segment.

The model of computation is the standard RAM with infinite real arithmetic—a
traditional assumption in computational geometry. Let C be a convex closed figure with
non-empty interior. We leave C essentially unspecified and therefore must make a
minimum number of assumptions on the primitive operations allowed with respect to C.
First, we consider the intersection of the boundaries of two translates of C. We define

S(v, w) = bd(—C), nbd(—-C),,,

for two points v and w in E2. By convexity of C, S(v, w) is either empty or consists of at
most two possibly degenerate segments, and thus can be represented in a constant
amount of space. This concept is naturally extended to the case where v and w are
infinitesimally close: this gives

S(v, w) = S(v,) = bd(—C), n bd(— C+1),

for I the line that contains v and w (see Fig. 1 for an illustration of the two cases).

Stvwi={g,}Uconv {35, a3} | Stv,1={q, a}

Fig. 1. Intersection of boundaries of two translates.

Optimal Solutions for a Class of Point Retrieval Problems 49

We call C computable if (i) constant time suffices to test for any point p in E? whether or
not p is contained in C, and (ii) constant time suffices to compute S(v, w) for any two,
potentially infinitesimally close, points v and w in E2. In the remainder of this section, we
¢claborate on the primitive operations needed and introduce the notion of silo. Let L

(resp. R) in bdC be the point with minimal (resp. maximal) x-coordinate, and maximal
y-coordinate if not unique.

LemMA 1. If C is computable, L. and R can be determined in constant time.

PrOOF. Let | be the vertical line through the origin O =(0,0). Since C is computable,
§(0, 1) and the lower endpoints a and b of the two vertical segments that constitute S(0, [)
can be determined in constant time. Let a, < b,; we then have L=—b and R = —a.

We immediately derive

LemMMA 2. Let C be computable, let p be a point in E* and | be the vertical line through p.
Constant time suffices to decide whether

1. C is to the right of |,

2. Cnlil#Qand (2.1) p is above C, (2.2) p is contained in C, (2.3) p is below C,
3. Cis to the left of L.

ProOF. Since C is computable, case 2.2 can be distinguished from the other cases in
constant time. If case 2.2 does not apply, then compute L and R (Lemma 1) and observe
that C contains conv{L, R}. If p, <L, (resp. p, > R,) then case 1 (resp. case 3) applies.

Otherwise, case 2.1 (resp. case 2.3) applies if p, is greater (resp. smaller) than the
y-coordinate of I~ conv{L, R}.

The algorithmic part of this paper uses the so-called silos as substitutes for —C. Let v
be a point and r(v) be the vertical ray with v as lower endpoint. The figure — C+r(v) is
termed the silo T(v) of v (Fig. 2). Obviously, T(v) is the set of points g such that C,
intersects r(v). bdT(v) consists of two vertical rays — L+r(v) and — R +r(v), and the lower

(a) maxx (v, w) = — R, + wy (b) maxx (v, w} = g,

Fig. 2. Intersection of two silos.

B. Chazelle and H. Edelsbrunner

bd(— C),. The silos of two points v, w are translates of each other. Therefore,
1 bdT(w) i1s empty or consists of a single point, segment, or ray, provided that
. Let maxx(v, w) be the maximal x-coordinate of a point in bd T(r) » bdT(w). The
ig technical result will be of interest in Section 4.

3. For any pair of points v,w in E* with v .#w, and bdT(v) ~ bdT(w) #§,
w) can be computed in constant time.

Assume wlog that v, < w,. Three cases must be distinguished:

R+w is below (—C), (this is equivalent to “v is above C_g,,” or “v+R—w is
‘ove C” and, by Lemma 2, is decidable in constant time). Then ~R+w is below
iv) and maxx(v, w) = — R+ w, (Fig. 2(a)).

L+v is below (—C),. Then maxx(v, w) = — L, +v, by the same reasoning as in
ise 1.

therwise, maxx(v, w) is the x-coordinate of the rightmost point of S(v, w) which lies
slow conv{— L+ u, —R+u}, for u=wv, w (Fig. 2(b)).

3. Clearing the Way for the Main Algorithm

P be a set of points in E? and C a computable figure: C is closed, convex, and has
apty interior. To retrieve P n C,, for query point g, we store subsets of points in
te structures. These subsets are defined by a regular decomposition of E? into
slograms. This section describes the particular decomposition and shows th
nce of silos.

L and R be the extreme points of C as introduced in the previous section. Th
nt s =conv{L, R} partitions C into two figures: C, contains the points above and on
C, the points below s. Since C is computable, so are C, and C,. The algorithn
‘ers each figure in turn. Because of symmetry, we may assume that C is now C,
s< bdC.

M be a point in C\s that allows a line through M to be both parallel to s ani
at to C (Fig. 3). L, R, and M induce the decomposition of E? in the following way
V=43R~-L) and Y=4(M—N), with N the vertical projection of M onto s. W
ie the coordinate system so that point (i,/)=iX+/jY, and cd
p= (px,p})|z<px<z+1, j<p,<j+1 and i,j integers} a cell. &= ’cu} for 4l
:rs i, j is a decomposition of E? (Fig. 3). Note that M can be determined in constar

| '
_Tﬁh?:r ______ :::‘_—_
o 1 1
Bl a2 =S
i
|
: it R
% S v ‘é |
I
S 9 X
B S |
i 0 T

Fig. 3. Decomposing C and E*.

P N S

Se

Optimal Solutions for a Class of Point Retrieval Problems 51

time, and that the new coordinates of a given point can be computed in constant time.
The limited interaction between the cells of 4 and translates of C justifies the introduction
of 4. We have

LEMMA 4. For any q in E*, C, intersects at most nine cells of %.

PrOOF. By construction of 4, C, intersects cells of three consecutive rows and columns of
4. Nine cells lie in the intersection of three rows and three columns.

If C, intersects a cell ¢, the intersection always is of a particular kind. Let N, E, S, W
denote the four edges of bde with the natural association of north-above, east-right,
south-below, and west-left. We say that C, is D-grounded if C, n D equals the orthogonal
projection of C,nclc onto D, for D=N, E, S, W. C, is said to be grounded if it is
D-grounded for at least one assignment of D to N, E, S or W. We have

LEMMA 5. Let q be a point in E* and c a cell of 4 such that C,nc #0. C, is grounded with
respect to c.

PrOOF. Let T be the triangle with vertices L+q, R+q and M +gq. Evidently, T < C, and
C, is D-grounded if T is. Define s, =conv{L+gq, R+gq}, s, =conv{R+q, M +g¢}, and
sy=conv{M +gq, L+q}. Observe that

if T is not S-grounded then intc N s, # 0,
if T is not E-grounded then intc ns, #0, :
if T is not W-grounded then intc nsy #0.

So T is not grounded only if intc intersects each edge of T. We prove that this is not
possible: to obtain intc N s; # @, s; must be above S. The line supporting N then intersects
T in a segment longer than one. As a consequence, N cannot intersect s,, say, and so
neither can E.

Note that we proved more than is asserted in Lemma 5. C, is guaranteed to be
D-grounded for at least one assignment of D to E, S, or W.

Lemmas 4 and 5 form the basis of the algorithm. The idea is to identify the at most nine
cells that intersect C,, and for each cell retrieve the points of P in C,. Lemma 5 guarantees
that for each cell the interaction with C, is grounded. Each non-empty cell ¢ (that is,
cnP+#0) is equipped with a data structure Ap(cn P), for each direction D from
{N,E, S, W}. A high-level description of the algorithm for answering a query C, follows:

Step 1: Determine the non-empty cells in ¢ that intersect C,.
Step 2: For each such cell ¢ do:

Step 2.1: Find an assignment of D to N, E, S, W such that C, is D-grounded with
respect to c.
Step 2.2: Use Ap(cn P) to retrieve the points in cn PN C,.

Next we sketch possible implementations of Steps 1 and 2.1 and relegate Step 2.2 to
Section 4.

COMPUTING INTERSECTING CELLS

After some preliminary sorting, the non-empty cells ¢;; in ¥ can be computed in
O(n log n) time, with n=|P|. These cells can be stored in a linear array, lexicographically

52 B. Chazelle and H. Edelsbrunner

sorted with respect to (i, j). Using binary search (Lemma 2), O(log n) time suffices to
determine the rows that contain cells which intersect C,, and then to identify all cells that
intersect C,.

COMPUTING GROUND ORIENTATION

Let C, be a query translate of C and let ¢;; be a cell in 4 which intersects C,. The
following procedure can be used to determine an assignment of D to E, S or W such that
C, is D-grounded.

Case 1: C contains (i, j)—¢q or {i+ 1, j)—gq; then set D: =S.
Case 2: C contains (i, j+ 1) —gq; then set D: = W.
Case 3: C contains (i+1,j+ 1)—g; then set D: =E.

4. The Main Retrieval Algorithm

The four (or three) data structures to be assigned to a non-empty cell ¢ are built
according to the same procedure; so we limit our presentation to S-grounded queries.
Recall the subproblem to be solved: given a non-empty cell ¢ and a query point g such
that C, is S-grounded with respect to c, retrieve all points in PncnC,. The basic
approach is to specify the locus of queries g yielding the same answer. Exhaustive
characterisation of the regions is prohibitively expensive, however, but the philosophy of
filtering search can be applied to keep down the storage requirement (Chazelle, 19835). In
a nutshell, this notion involves amortising the search over the output size.

Although straightforward, the following facts are fundamental for our approach.

OBSERVATION 6. Point p lies in C, if and only if q lies in (—C),.
Define P.= Pnc. We have

LeMMA 7. Let ¢ be a cell such that C, is S-grounded, and let p be a point of P.. Then p is in.
C, if and only if q is in T(p).

ProoF. If pe C, then g € (—C), = T(p). Conversely, if ge T(p) then pe ~T(—q)=C,+r,
with r = {(0, r,)Ir, < 0}. By S-groundedness of C,,cnC,+r=cnC,and pe C,.

Lemma 7 suggests replacing each point p of P. by silo T(p) and reporting all silos that
contain g (Fig. 4). We develop this idea next: let P.={p,, ..., p,}, with the ordering such
that p; precedes p; in lexicographical order if i <j. Since the difference in x-coordinates of
any two points in P, is less than one,

U= 1<U< T(p;)
is connected. We call L(P)=bdU the layer of P.. By definition of T(p), L(P,) is an
unbounded connected curve, monotone in x, i.e. any vertical line intersects L(P,) in at
most one (possibly degenerate) segment (Fig. 4). L(P,) can be considered to consist of a
sequence of “edges”; for p; in P, we call
L(P) nbdT(p)—() bdT(p))

1€j<i

Optimal Solutions for a Class of Point Retrieval Problems 53

d L ()

L(R)

r={1,2,3,4,5}

Fig. 4. Nested layers of silos.

the edge e; of P,. Obviously, two distinct edges cannot properly intersect and

LpP)= |J e

1<ism
[ntuitively, e; is the contribution of T(p;) to L(P,). If some part of L(P,) is contained in
bdT(p;), for several j, then the smallest j is chosen. If ¢; is empty, then p; is called redundant

and we define extP,. = {p e P.|p non-redundant}. We describe salient properties of L(P,)
and detail its construction.

OBSERVATION 8. Let ¢, ,..., e, (t =|extP|) be the sequence of edges on L(P,) from left to
right.
(1) maxx(py,.py.,,) is the x-coordinate of the right endpoint of e,, and the left endpoint of ¢, ,,
for 1 <i<t—1 (see also Lemma 3).
() k;<kipqn for 1<i<e—1.

For the construction of L(P,), we choose to represent its edge-list in a linear array A, so
that the indices of the edges in sorted order appear from left to right. The construction
takes the points in the order of their indices (so we assume that an initial sorting phase
has been previously performed). When p; is processed, L({p,, ... p;—,}) is treated as a
stack: a possibly empty sequence of points at the end of A is deleted and p; is possibly
added. A formal description of the algorithm follows:

A[l]:=1; top:= 1,
fori:=2tomdo
unless p; and p 4, share the x-coordinate then
while top > 1 and maxx(p 410p - 11> Patrop) = MaAXX(Pg10p1 Pi) O

top:=top—1
endwhile
top:=top+1; A[top]:=i
endunless

endfor

It is obvious that L{P) can be constructed in O(m) time. The following result is crucial

L)
for the ensuing developments.

54 B. Chazelle and H. Edelsbrunner

LEMMA 9. Let L(P) =(e,,, . .., &), C, a translate of C that is S-grounded with respect to c,
and r={(q,, r,)lr, < q,}.
(i) r intersects L(P,) if and only if C,\ P, is non-empty.
(i) Let e, nr#®; then py, lies in C,.
(iii) There are indices i and j, with i <1<j, such that C v extP, = {p,, ..., Py }-

PROOF. Assertions (i) and (ii) follow directly from Lemma 7. To prove (iii), assume that C,
contains p,, and p, butnot p, forsomei<m<j. By Lemma7,qliesin T = T(p,,) » T(p,)).
Since p,, isnot redundant, T < T(p,) which implies that C, contains p, —a contradiction.

If L(P)= (e, .- e, and C, are given, the points in C,nextP, can be retrieved in
O(log k,) time as follows:

Step 1. Using binary search, determine / such that e, intersects with r, the vertical ray
falling down from q (if 1 <<k, then maxx(p,_,, py,) < g, < maxx{(p,,, py,,)

Step 2: If [exists then set i:=j:=/. While p,_, (resp. p,,,} is in C,, report it and set
ir=i—1 (resp. j:=j+1).

We are now ready to describe the underlying data structure Ag(P,). Essentially, Ag(P,) is
the (nested) family #(P)= (L, ..., L) of layers of P, defined as follows: Let P, , = P, and
P =P, ,_,—extP, ,_q, for k>1. Let K be the largest index such that P, , #¢, and
L, =L, ,) for 1 <k < K. Z(P,) necessitates O(m) space and can be easily constructed in -
O(m?) time. Furthermore,

OBSERVATION 10. Let #(P,)=(L,,..., L) be the family of layers of P. and let C, be
S-grounded with respect to c. Let r be the vertical ray falling down from q. Then rnL; #0
only if ranL; #0, for j<i.

This remark leads to a procedure for retrieving the points in C,nP,.

i:=1; stop:= false;
repeat determine edge e of L; that intersects r.
if e exists then
report the points in C,nextP, ; and set i:=i+1
else set stop: = true
endif
until stop

The complexity of the procedure is O(k log m), where k is the number of points
reported. O(k+logm) can be achieved by applying the hive-graph of Chazelle (198356) to
&£ (P,). This graph connects L; with L, _,, for 2 <i<K, in such a way that

(i) the knowledge of the edge in L, _, that intersects r allows us to find the intersecting
edge in L, in constant time,
(i) O(m) space suffices to store £ (P,).

To describe the application of the hive-graph, it is convenient to change the
representation of a layer L;: in addition to (k,..., k) we store the sequence B; of
x-coordinates (maxx(py,, px,), - - » maxx(py,_, Pi,), k, = [extP, ;|. B; subdivides the x-axis

Optimal Solutions for a Class of Point Retrieval Problems 55

S Y
SR A AN

Fig. 5. Connecting layers with the hive-graph.

S
b — 4

[_2 —

’
(3=K) !
|
[l
B
|

! into ¢ non-overlapping intervals, each belonging in the obvious manner to an index in
{ky, ... k,}. The hive-graph is obtained by the following procedure:

| set BY := By;
fori:=K—1to1do
| pick every other x-value in B¥, , and merge the chosen values with B;. Let B¥ be
) the resulting list. For each value a in B¥, set up a pointer to the largest b in B¥, |
with b<a.
endfor

Figure 5 illustrates the connections between schematic layers that are introduced by the
hive-graph. It is a straightforward exercise to verify that the hive-graph satisfies properties
(i) and (ii) above. Details can also be found in Chazelle (1983b). All this leads to the main
result of this paper.

THEOREM 1 1. Let P be a set of n points in E? and C a convex computable figure. There exists
a data structure that stores P in O(n) space such that O(k +log n) time suffices to retrieve all

points of P lying inside a query translate C,. The data structure can be constructed in O(n?)
time.

We list a number of immediate consequences.

COROLLARY 12. For n points in E2, O(n) space and O(k +log n) time suffice to retrieve the k
points within a fixed radius of an arbitrary query point.

It seems worthwhile to note that for the fixed radius problem C is a disk, thus making
the partition into an upper and lower part unnecessary since both parts lead to the same
decomposition of E2. Another interesting special case arises when C is a convex polygon
with m edges and m is considered a parameter of the problem. In this case, C violates the
requirement of being computable. This can be fixed by allowing the primitive operations
to take O(log m) time (this is motivated by the existence of a trivial algorithm for detecting
whether a point lies inside a convex m-gon in O(log m) time). Our method yields

COROLLARY 3. Let C be a convex polygon with m edges in E2. A set P of n points can be
stored in O(n+m) space such that Ok +log m log n) time suffices to retrieve the k points of
P lying inside a query translate of C.

5. Discussion

The problems examined in this paper fall into a general class involving a fixed set of
objects and d-dimensional queries. A query is d-dimensional if it can be specified by d

56 B. Chazelle and H. Edelsbrunner

parameters; in this paper d = 2. By contrast, more difficult problems like orthogonal or
triangular range search are respectively four- and six-dimensional. Studying the
complexity of retrieval problems along this taxonomy appears to be of great
methodological value. In general, can the complexity of query problems be asserted within
a theory based on the dimensionality of queries?

Let us briefly recall the main tools used in this paper:

. transforming the problem,

. using a decomposition of E? into cells and introducing silos,
exploiting layers of silos to speed up searching,

connecting layers into a hive-graph.

B —

All of these ideas have appeared—in most cases separately—in the computational
geometry literature: layers and transformations were exploited to give an optimal solution
to the case where halfplanes are query ranges (Chazelle et al, 1983). There, too, the
structure shared the connection of layers into a hive-graph. The notion of silos is closely
related to the somehow dual concept of a-hull developed in Edelsbrunner et al. (1983).
Finally, using decompositions into cells seems almost as old as the field itself (Knuth,
1973).

References

Bentley. J. L., Maurer, H. A. (1979). A note on Euclidean near neighbor searching in the plane. Inform. Process.
Lett., 8, 133-136.
Chazelle, B. (1983a). An improved algorithm for the fixed-radius neighbor problem. Inform. Process. Leti. 16,

193-198.
Chazelle, B. (19835). Filtering search: A new approach to query-answering. Proc. 24th Ann. Symp. Found. Comp.
Sci., 122-132.

Chazelle, B., Cole, R., Preparata, F. P., Yap, C. K. (1984). New Upper Bounds for Neighbor Searching.
Technical Report CS-84~11. Providence: Brown University.

Chazelle, B.. Guibas, L. J., Lee, D. T. (1983). The power of geometric duality. Proc. 24th Ann. Symp. Found.
Comp. Sci., 217-225. ,

Cole, R., Yap, C. K. (1983). Geometric retrieval problems. Proc. 24th Ann. Symp. Found. Comp. Sci., 112-121. '

Edelsbrunner, H., Kirkpatrick, D. G., Maurer, H. A. (1982). Polygonal intersection search. Inform. Process.
Lett. 14, 74-79.

Edelsbrunner, H., Kirkpatrick, D. G., Seidel, R. (1983). On the shape of a set of points in the plane. JEEE |
Trans. Inform. Theory, IT-29, 551-559.

Edelsbrunner, H., Welzl, E. (1983). Halfplanar Range Search in Linear Space and O(n®°°%) Query Time. Report
F111, Institutes of Information Processing, Tech. Univ., Graz, Austria.

Knuth, D. E. (1973). Sorting and Searching—The Art of Computer Programming, 111. Chapter 6.5. Reading:)
Addison-Wesley.

Willard, D. E. (1985). New data structures for orthogonal queries. SIAM J. Comput. (in press).

