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Online Geometric Reconstruction
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We investigate a new class of geometric problems based on the idea of online error correction. Suppose one
is given access to a large geometric dataset though a query mechanism; for example, the dataset could be
a terrain and a query might ask for the coordinates of a particular vertex or for the edges incident to it.
Suppose, in addition, that the dataset satisfies some known structural property P (for example, monotonicity
or convexity) but that, because of errors and noise, the queries occasionally provide answers that violate
P. Can one design a filter that modifies the query’s answers so that (i) the output satisfies P; (ii) the
amount of data modification is minimized? We provide upper and lower bounds on the complexity of online
reconstruction for convexity in 2D and 3D.
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1. INTRODUCTION

Classical error correction assumes the prior availability of exact data. In this way, we
can encode the data in redundant form so as to allow its recovery after transmission
through a noisy channel. But what if the data D comes to us already corrupted? If
the clean data is out of reach, then obviously the very notion of corruption requires
an assumption about prior state. Indeed, what justification would one have to call a
signal noisy if we have no idea what clean data might look like. The prior could be
a distribution or, more generally, a property P. For example, the data could be the
facial representation of a cell decomposition and P could specify that it be a Voronoi
diagram. Or D could be a terrain that P constrains to be monotone or convex. Or D
might consist of an architectural design, with P enforcing certain angular constraints
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Fig. 1. The online filter responds to a query x.

(for example, right angles between adjacent walls). Or D could be a cloud of points in
high dimensions that P forces on or near a low-degree algebraic manifold.

In all cases, the same question arises: Is it possible to filter the data online so that (i) it
satisfies P and (ii) the amount of modification is minimized? Such a filter can be used as
the front-end to geometric codes whose correctness depends on certain properties (such
as convexity, monotonicity, axis-parallelism). The offline version of the problem is a form
of generalized regression: among all datasets satisfying P, find the one nearest D. The
problem assumes a metric between datasets, which could be geometric, combinatorial,
or a mixture of both. In this article, it will be purely combinatorial. The true novelty of
our setting is its online nature. To see why being online changes everything, think of an
architectural scenario where objects are required to be isothetic. Suppose that the first
query reveals the position of a door and its adjacent wall. If the door is ajar, the online
filter has two equally valid options in order to enforce isotheticity: either it can move the
door or it can move the wall. The latter option would have dire consequences, however,
likely to lead to the modification of the entire structure. This simplistic example points
to the main challenge of online filtering: early decisions are crucial.

We use the filtering model introduced in Ailon et al. [2004b]. Access to the dataset
is provided by means of an oracle f . The client specifies a query x and the oracle
returns f (x). The query could specify the index x of a wall, with f (x) providing the
coordinates of its vertices; or the index of an adjacent wall. One should not think of
f as a single function but rather as the set of methods (in the OOP sense) available
to access the dataset and its underlying data structures. The filter works like this:
given a query x, instead of simply returning f (x), the filter provides the client with
the cleaned-up answer g(x). Figure 1 illustrates its inner workings. Upon receiving the
query x, the filter spawns auxiliary queries a, b, c, . . . and computes g(x) on the basis
of of f (a), f (b), f (c), . . . The filter may go through several rounds before producing g(x)
and adaptively produce queries based on the previous answers. The set of all possible
values g(x) specifies a dataset D f that satisfies property P. The filter’s decisions are
irreversible: once a feature of D f has been established, it can never be undone.

The quality of a filter is determined by how close D f is to the object that satisfies
P and differs from D as little as possible. This requires a metric � between datasets
(defined on a case-by-case basis). For the purpose of this article, we require that all
filters obey the constant-distortion condition:

�(D f ,D) = O( min { �(D,D′) | all D′ satisfying P } ).

Obviously, the true quality of a filter will also depend on how big the big-Oh constant
factor is. In other cases, for the sake of speed, one might allow nonconstant distortions
(but we won’t in this article). Note that, most often, setting the constant to 1 makes the
reconstruction NP-hard. There are two aspects to a filter’s complexity which we might
sometimes want to distinguish: the lookup complexity is the number of dataset lookups
(that is, a, b, c, . . .); the processing complexity, which cannot be smaller, is the running
time of the filter per query. The distinction is useful in instances where dataset access
is slow or expensive (as is often the case in biology, medicine, geology, etc.). In this
article, however, all query times refer to the processing complexity. Our emphasis also
is on worst-case query times. Obviously, it is also interesting to keep the amortized
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complexity low—and we’ll do that—but keep in mind that to focus only on amortized
complexity would render the online problem meaningless (since we could always solve
the offline version and charge the first query for it). Worst-case complexity is, indeed,
an essential feature of online reconstruction.

1.1. Our Results and Previous Work

In the following, n denotes the size of the input and the distance between two polygons
(terrains) is defined as the minimum number of edges (faces) whose coordinates need
to be modified to transform one into the other. All the algorithms below are randomized
and succeed with high probability.1 We give three filters for reconstructing convexity
in two and three dimensions.

(1) An optimal Õ(log3 n) time filter for reconstructing the convexity of a simple polygon
is presented as a balanced binary tree.

(2) An optimal Õ(
√

n ) time filter for reconstructing the convexity of a simple polygon
is presented as a doubly linked list. We assume that each vertex is labeled with its
rank in the list. We also give an Õ(n1/3) time ε-tester2 and prove an �(n1/3) lower
bound.

(3) A filter for reconstructing the convexity of a bounded aspect ratio3 terrain is pre-
sented in triangulated DCEL format with a worst case query time of O(n12/13+δ +
ε

−O(1)
D ) and an amortized time of O(nδ). Here, δ is an arbitrarily small positive

constant and εDn is the terrain’s distance to convexity, that is, the minimum
number of faces whose coordinates need to be modified in order to make the terrain
convex. For the harder problem of reconstructing convexity of arbitrary terrains,
we prove a lower bound that depends on εD. This shows a separation between 2
and 3 dimensions.

Our first result should be thought of as a warmup. Indeed, it follows fairly directly
from procedures given in Ailon et al. [2004a, 2004b]. The remaining results use com-
pletely new techniques. To get a taste of why the results are surprising, consider the
fact that exact 3D reconstruction offline is not known to be in polynomial time, so it is
remarkable that allowing a constant factor approximation in the distance should allow
us to answer online queries in sublinear time. Many tools are required to achieve this
result, including the planar separator theorem, balanced trapezoidal decompositions,
and approximation algorithms for vertex cover. A completely new technique that we
apply here is sampling in range spaces of unbounded VC dimension. By showing that
online 3D reconstruction requires �(ε−1

D ) time, we prove that convexity reconstruction
represents yet another complexity gap between 2D and 3D. We leave the online re-
construction of general terrains and, most interesting, of arbitrary polytopes as an
open problem. Of independent interest, we also give a sublinear time algorithm that
computes small balanced separators for geometrically embedded planar graphs. It is
unlikely that this construction is optimal and we pose an intriguing problem—the
construction of optimal separators in sublinear time.

We are not aware of any line of work that our results can be compared with directly–
except for Ailon et al. [2004b], where online property-preserving data reconstruction

1Throughout this article, “with high probability” is shorthand for: with probability at least 1 − n−c, for an
arbitrarily large constant c > 0, where n is the size of the input.
2Unless indicated otherwise, all our algorithms are randomized. An ε-tester for a property P determines
whether an input of size n satisfies P or requires at least εn modifications to do so. We use the notation
Õ( f ) = O( f )(log f )O(1) and our claims of optimality are to be understood up to polylogarithmic factors.
3A terrain is said to have bounded aspect ratio if the xy-projections of the faces have bounded sides and
angles.
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was introduced and polylogarithmic time filters were provided for reconstructing
monotone functions. Of course, offline geometric reconstruction has been studied
before, but usually the metric is geometric (like the Hausdorff distance) and not
combinatorial. Examples include finding the best approximation of surfaces satisfying
certain criteria [Agarwal et al. 2002; Agarwal and Desikan 1997; Agarwal and Suri
1998; Amenta et al. 2000]. On the other hand, a notion of combinatorial distance is
certainly present when studying the computational aspects of the Erd}os-Szekeres the-
orem [Chvatal and Klincsek 1980] or other Ramsey-like results. Geometric properties
have been well studied within the purview of property testing [Czumaj and Sohler
2001; Czumaj et al. 2000], program checking [Mehlhorn et al. 1996], and sublinear al-
gorithms [Chazelle et al. 2003]. Efficient testers have been given for convexity [Czumaj
and Sohler 2001; Czumaj et al. 2000; Ergun et al. 1998], clustering [Alon et al. 2000;
Indyk 1999b, 1999a; Mishra et al. 2001], and Euclidean MST [Czumaj et al. 2003;
Czumaj and Sohler 2004], but there too the relevance to our work is only tangential.

Subsequent to this work, there has been some study of sublinear reconstruction for
other properties in Saks and Seshadhri [2010], Kale et al. [2008], and Austin and Tao
[2010]. Some extensions to this model of sublinear reconstruction were discussed in
Saks and Seshadhri [2010] and Austin and Tao [2010]. The specific property of mono-
tonicity has also received attention in Bhattacharyya et al. [2010] and Chakraborty
et al. [2011].

2. CONVEXITY FILTERS FOR POLYGONS

In this section, we shall deal with the problem of reconstructing convexity for polygons.
For simplicity, we shall begin with reconstructing polygonal chains instead of polygons.
For simplicity of presentation, we will make the assumption that these chains are
terrains (the projections of the edges on the x-axis do not overlap). The filter for chains
will then be extended to handle general polygons. The input is a 2D polygonal chain
D, ie, a polygonal curve with points p1, . . . , pn, where each consecutive set of points is
joined by a directed line segment. These segments are the edges of D. The set of edges
will be denoted by E. The chain P induces a natural ordering on the edges – given two
edges e = pi pi+1, f = pj pj+1, e � f if i ≤ j (e ≺ f if i < j). We can define the interval
[e, f ] = {g ∈ E|e � g � f }.

We study the two following ways of representing D.

(1) The edge set E is stored in a binary search tree, using the ordering on edges.
(2) The edge set E is stored in an ordered doubly linked list, from which we can access

a random edge and walk from it in either direction. In addition, there exists an
oracle that give the ordering of edges (given edges e, f, g, the oracle outputs their
order in D). Note that for the case of terrains, this is trivial to implement.

Note that the first model allows binary searches among the edges, whereas the second
one does not. Let εDn denote the minimum number of edges that need to be modified
to make D lower convex, without changing the ordering of E. This modification only
refers to changing the actual coordinates of the points of D. Lower convexity means
that (after the modification) for any edge e, it must point towards the increasing x
direction, and all edge must lie to the left halfspace defined by e. Therefore, two edges
are in convex position with each other if they both point from left to right and lie to the
left of each other.

The first case, as mentioned earlier, can be easily solved using tools developed in
Ailon et al. [2004a, 2004b]. This will hopefully give the reader a flavor of geometric
reconstruction. Building on some of these ideas and introducing some new tools, we
can develop filters for the second case.
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What makes the 2D case remarkable is that a certain easily testable property allows
us to classify any given edge in one of two categories (good or bad) in a way that leads
to a filtering mechanism with a constant approximation factor. (An almost identical
classification was used for filtering monotone functions in Ailon et al. [2004b].)

Definition 2.1. A pair 〈e, f 〉 is a violation if e and f are not in convex position. We
also say that e violates f and vice-versa.

The following transitivity relation is immediate: if e ≺ f ≺ g and 〈e, g〉 is a violation,
then so is at least one of 〈e, f 〉 or 〈 f, g〉. This is a simple consequence of the properties
of convexity. Note that for an edge e that points from right to left, the pair 〈e, f 〉 is a
violation for all f ∈ E.

Definition 2.2. Given any 0 < δ < 1/2, an edge e is called δ-bad if there exists
an edge f such that either (i) e ≺ f and the number of g ∈ [e, f ] that violate e is at
least (1/2 − δ)|[e, f ]| or (ii) f ≺ e and the number of g ∈ [ f, e] that violate e is at least
(1/2 − δ)|[ f, e]|. The edge f is referred to as a witness to e’s badness. An edge that is
not δ-bad is called δ-good.

The next lemma is crucial for proving the correctness of the filter.

LEMMA 2.3.

(i) The 0-good edges have no violating pairs;
(ii) at least εDn edges are 0-bad; and

(iii) no more than (3 + 8δ/(1 − 2δ))εDn edges are δ-bad.

PROOF (FROM AILON ET AL. [2004A]). Note that by transitivity, for any e ≺ f such that
〈e, f 〉 is a violating pair, either e or f (or both) is 0-bad. Therefore, if we were to remove
all the 0-bad edges, the remaining edges would be in convex position; hence (i) and (ii).

We start by assigning to each δ-bad e a witness fe to its badness (if many witnesses
exist, we just choose any one). If fe 
 e, then e is called right-bad; else it is left-bad.
(Obviously, the classification depends on the choice of witnesses.)

Let C be a set of εDn edges where D can be modified to make it convex. To bound
the number of right-bad edges, we charge C with a credit scheme. (Then we apply a
similar procedure to bound the number of left-bad edges.) Initially, each element of C
is assigned one unit of credit. For each right-bad e �∈ C (in reverse order from right to
left), spread one credit among all the g such that e � g � fe and 〈e, g〉 is a violation
(note that g must be in C). We use the word “spread” because we do not simply drop
one unit of credit into one account. Rather, viewing the accounts as buckets and credit
as water, we pour one unit of water one infinitesimal drop at a time, always pouring
the next drop into the least filled bucket.

We now show that no edge in C ever receives an excess of 2+4δ/(1−2δ) units of credit.
Suppose by contradiction that this were the case. Let e be the right-bad that causes
some edge g’s (g belongs to C) account to reach over 2 + 4δ/(1 − 2δ). By construction e
is not in C; therefore, the excess occurs while right-bad e is charging an edge g such
that e ≺ g � fe and 〈e, g〉 is a violation. Note that, because e �∈ C, any g satisfying these
two conditions belongs to C (let us denote the number of such edges by l) and thus gets
charged. With the uniform charging scheme, this ensures that all of these l elements of
C have the same amount of credit by the time they reach the excess value, which gives
a total greater than l(2+4δ/(1−2δ)). By definition of right-badness, l ≥ (1/2−δ)|[e, fe]|.
But none of these accounts could be charged before step fe; therefore,

(1/2 − δ)|[e, fe]|(2 + 4δ/(1 − 2δ)) < |[e, fe]|,
which is a contradiction.
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Fig. 2. light-test.

Of the total of at most 2+4δ/(1−2δ)εDn units of credit, εDn units of credit came from
initially assigning the edges of C one unit of credit each. Therefore, there are at most
1 + 4δ/(1 − 2δ)εDn right-bad edges. By applying a similar argument for left-bad edges
(this time charging from left to right), we prove (iii).

With this classification of edges, we now give an outline of the filter to convexity. Our
aim is to preserve δ-good edges and modify only δ-bad edges. This will ensure convexity
and that at most (3 + O(δ))εDn edges will be modified. When a query comes for a δ-bad
edge e, we use a modification procedure to “fix” e. This is done by finding the closest
δ-good edges f and g on both sides of e and then simply replace all edges in between
by linearly interpolating between f and g.

Any query for an edge that has not been previously queried will lead to a committing
of the value assigned to the edge. Changes will occur in intervals (a whole interval
[e, f ] may be changed in one query) and all changed values will be committed. We will
assume that a data structure stores all committed intervals (and their corresponding
values) and given any edge, we can tell in O(log n) time whether it has been committed,
and if not, find the closest committed values.

2.1. Edges in a tree

In the first model, where E is stored in a binary search tree, the filter for convexity will
be almost the same (just a slight variation) as the O(log2 n log log n) filter for monotonic-
ity given in Ailon et al. [2004b]. In the case of monotonicity, randomly sampling from
an interval was trivial - in the case of E being stored in a binary search tree, choosing
one random sample from some interval of edges takes O(log n) time. Therefore, when
the monotonicity filter is modified for handling convexity, the per query time becomes
Õ(log3 n). For completeness, we describe the procedures required to construct this filter.

Definition 2.4. Let A be the joint distribution of m independent 0/1 random vari-
ables x1, . . . , xm, which can be sampled independently. If E [xi] ≤ a for all i, then A is
called a-light; else it is a-heavy.

LEMMA 2.5 [AILON ET AL. 2004A]. Given any fixed a < b, if A is either a-light or b-
heavy; then, with probability 2/3, we can tell which is the case in O(m) time. If A is
neither, the algorithm returns an arbitrary answer.

The algorithm of Lemma 2.5 is given in Figure 2. The test is run by calling light-
test(A, a, b, c′) for sufficiently large constant c′. In the following we use the algorithm
of Lemma 2.5 to test, with high probability of success, whether a given edge e is δ-bad
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Fig. 3. Testing if an edge i is δ-bad or 2δ-good.

or 2δ-good, for any fixed δ > 0. Given an interval [e, f ], we define two 0/1 random
variables α[e, f ] and β[e, f ]: given a random edge g ∈ [e, f ], α[e, f ] = 1 (respectively,
β[e, f ] = 1) iff 〈e, g〉 (resp. 〈 f, g〉) is a violation. Note that sampling from this interval
takes O(log n) time. The algorithm goodness-test (Figure 3) tests if a given edge ei (this
means that ei is the ith edge in terms of the ordering of edges) is δ-bad or 2δ-good.

LEMMA 2.6 [AILON ET AL. 2004B]. Given any fixed δ > 0 and a parameter k, if e is ei-
ther δ-bad or 2δ-good, then goodness-test will tell which is the case in time O(log2 n log k)
and with probability at least 1 − 1/k.

We now have a procedure that separates from 2δ-good edges from δ-bad ones. The
strategy for reconstruction is as follows – given a query for e, first test it using
goodness-test. If the output is “2δ-good,” keep the edge. Otherwise, change the edge. By
Lemma 2.3, we know that such a procedure will only change (3+O(δ))ε f n edges. Chang-
ing an edge will involved changing the endpoints – we will refer to that as changing
the value of an edge.

Given a query for e, suppose we decide that e is not 2δ-good. Our aim now is find
some replacement value for this edge. The first step to doing this is to attempt to find
the closest 2δ-good edges both to the left and right of e. Because of the sublinear time
constraint, this cannot be done exactly. Instead, the idea is to find an interval I0 around
e such that the fraction of 2δ-good edges in I0 is at least �(δ), but their fraction in a
slightly smaller interval is O(δ). Once such an interval is found, we can find 2δ-good
edges in this interval and use them to reconstruct e. This is described in Figure 4.
The procedure has been modified from the one given in Ailon et al. [2004b] to handle
convexity. The following lemma is essentially taken from Ailon et al. [2004b]. The proof
needs some marginal modifications for our current setting.

LEMMA 2.7. The procedure find-good-edge returns, with probability 1 − 1/n3, an
edge e that is in convex position and to the right of a δ-good edge in I. This requires the
existence of at least a δ-fraction of 2δ-good edges in I. The running time of find-good-edge
is Õ(log3 n), for fixed δ.

PROOF. The running time bound is obvious to see. The expected number X of δ-
bad samples for which goodness-test outputs “2δ-good” is at most cδ(1 − δ) log n, by
Lemma 2.6. The expected total number Y of samples for which goodness-test outputs
“2δ-good” is at least c(1 − δ2) log n. The probability that X exceeds Y/3 is at most 1/n4

if c is chosen large enough, using Chernoff bounds. Therefore, with probability at least
1−1/n4, more than a 2/3-fraction of the values appended to the list L are δ-good edges.
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Fig. 4. Finding a good edge in an interval, assuming that I has at least a δ-fraction of 2δ-good edges.

Note that all δ-good edges are in convex position. Whenever edge fi causes a pop from
L′, either the head that was popped or fi are δ-bad. By transitivity, when the procedure
ends, the stack L′ consists of edges in convex position. Also, there must be at least |L|/3
edges in L′ and at least one of them is δ-good. This completes the proof.

In find-good-edge, we could also order edges in the opposite direction and find an
edge that is in convex position and to the left of a δ-good edge. We now have all the
necessary tools to show the reconstruction of D. The reconstruction algorithm convexify
is practically the same as the procedure monotonize in Ailon et al. [2004b], used for
reconstructing monotonicity.

To find a good interval, we do a binary search among all the intervals of length (1+δ) j

( j = 0, 1, . . .) starting or ending at index i, that is, edges with indices in [i, i + (1 + δ) j]
and [i − (1 + δ) j, i]. There are O(log n) such intervals, and thus the running time is
O(log log n) times the time spent for each interval. The overall algorithm convexify is
shown in Figure 5. The following claim together with a suitable rescaling of δ concludes
the proof of correctness of convexify. The following proof is taken from Ailon et al.
[2004b].

CLAIM 2.8. Given any 0 < δ < 1
2 , with probability 1−1/n, convexify outputs a convex

polygon that is within distance (2 + δ)ε to D. Given a query e, the output is computed
online in time Õ(log3 n), when δ is assumed to be fixed.

PROOF. First we analyze the running time. The first goodness-test takes Õ(log3 n)
time. If the algorithm determines that e is δ-bad, then the while-loops run O(log log n)
times. In one iteration of the while-loop, the algorithm calls goodness-test O(log n)
times. Each call takes O(log2 n) time by Lemma 2.6. Therefore, the time complexity of
the while-loop is Õ(log3 n). By Lemma 2.7, the running time of the call to find-good-edge
is Õ(log3 n). The time complexity of the algorithm is therefore Õ(log3 n).

Let us first look at the while-loop. If I has more than 2δ-fraction of 2δ-good edges,
then the number of “2δ-good” outputs is < 3

2 c log n with inverse polynomial probability.
This can be shown through Chernoff bounds. On the other hand, if I has less than
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Fig. 5. Convexity reconstruction.

δ-fraction of 2δ-good edges, then the number of “2δ-good” outputs is > 3
2 c log n with

inverse polynomial probability. Consider the following events.

—The intervals Il and Ir have at least a δ-fraction of 2δ-good edges and the call to
find-good-edge succeeds.

—The interval Imin = [i − (1 + δ) jmin, i] has at most 2δ-fraction of 2δ-good edges.

Both these events hold with probability > 1 − 1/n4. The intervals Il, Ir, and Imin are
constructed at most O(n2) times (over all queries). Now consider the event that the call
to goodness-test (in line 4) correctly distinguishes between δ-bad and 2δ-good edges. As
shown in Lemma 2.6, this happens with probability > 1 − 1/n3. This is totally called
at most n times. By a union-bound, all of these events occur (for every query) with
probability > 1 − 1/nd, for some positive constant d. Therefore, we henceforth assume
that these events always occur (in other words, the probability of something “bad”
happening is polynomially small).

It is obvious that the output is always convex, since we never add edges that are
not in convex position with already committed edges. We now show that the number
of edges modified is at most (3 + O(δ))εDn edges. Edges that are changed are either
2δ bad, 2δ-good edges that violate already committed edges, or 2δ-good edges that are
present in an interval that gets modified. The total number of 2δ-bad edges is less than
(3+17δ)εDn, by Lemma 2.3. We can assume that for Imin = [i − (1+ δ) jmin, i], the fraction
of 2δ-good edges in Imin is at most 2δ. Since by the end of the algorithm jmax ≤ jmin + 1,
the fraction of 2δ-good edges in Ir = [i, i+(1+δ) jmax ] (or Il = [i−(1+δ) jmax , i]) is at most 4δ.
Therefore, when find-good-edge is called on an interval, the number of 2δ-good edges in
it is at most 4δ. Let us focus on the call of find-good-edge for fl. By Lemma 2.7, the edge
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Fig. 6. Checking 2δ good-vs-δ bad.

output fl is in convex position with some 2δ-good edge (which is to the left) in Il. Any 2δ-
good edge to the left of fl that violates it must be inside Il. Similarly, any 2δ-good edge
to the right of fr that violates it must also be inside Ir. Any 2δ-good edge that is changed
by convexify must lie in an interval contain at most a 4δ-fraction of 2δ-good edges. The
total number of edges modified is at most (3 + 17δ)εDn/(1 − 4ε) ≤ (3 + O(δ))εDn.

This completes the proof of the following theorem.

THEOREM 2.9. For any sufficient small δ > 0, there exists an (Õ(log3 n), 3 + δ)-filter
for 2-dimensional convexity, where the input is a terrain represented by a balanced
search tree.

2.2. Edges in Linked List

We now look at how to extend these ideas when the polygonal chain D is represented
as a doubly-linked list. We assume that there is an oracle that gives the order of edges
in the curve. In other words, given a set of edges, we can set in the proper order with an
extra logarithmic overhead. The first step is to describe goodness-test (refer to Figure 6)
which separates 2δ-good edges from δ-bad ones. This essentially does the same as the
old goodness-test - the main difference being that a sample of size

√
n is used to detect

violations.

LEMMA 2.10. The procedure goodness-test(D, e, δ) differentiates between δ-bad and
2δ-good edges with probability > 2/3 in time O(

√
n log n).

PROOF. The time complexity is easy to see. Checking for violations in S can be done
in O(

√
n) time. To put R in cyclic order, we can use the oracle that gives the order

of edges and a binary search to complete this in O(
√

n log n) time. Once this is done,
analyzing R takes O(

√
n) time. Note that the number of lookups is still O(

√
n).

In this proof, violator will refer to an edge that violates e. Let us assume that e is
2δ-good. It will obviously pass the violation test in S. For any interval I of size l (with e
at one end), the probability (by Chernoff) that the number of nonviolators chosen from I
is ≤ (1/2+7δ/4)(c/δ2)l/

√
n is less than e−c′l/

√
n (c′ = �(c)). Similarly (again by Chernoff),

the probability that the total number of edges chosen from I is ≥ (1 + δ/4)(c/δ2)l/
√

n is
less than e−c′l/

√
n. Therefore, with probability at most 2e−c′l/

√
n, the sample from I has

≥ (1/2 − 3δ/2) fraction of violators. By taking a union bound over all such intervals of
size >

√
n (and choosing c large enough), we can ensure that e passes the violation test

in R with probability > 2/3.
Suppose e is δ-bad. There exists some interval I (with e at one end) such that the

number of violators is more than a (1/2 − δ) fraction. If the size is ≤ √
n, e will be

declared “δ-bad” during violation search in S. If the interval is >
√

n, then by an
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Fig. 7. Find a close good edge.

argument similar to the one given here, we can show that some interval in R will have
more than a (1/2 − 3δ/2) fraction of violations with probability 2/3.

We will henceforth assume that goodness-test takes a fourth argument k, and boosts
the probability of correctness to (1− 1/k) - the time complexity will now be Õ(

√
n log k).

The boosting can be done by repeating the algorithm log k times and then taking a
majority vote. We now have a procedure that separates from 2δ-good edges from δ-bad
ones. The strategy for reconstruction is the same as before: If the output is “2δ-good,”
keep the edge. Otherwise, change the edge.

Before we describe the main procedure convexify, we need a procedure find-closest
(refer to Figure 7) that, given an input of an ordered set of edges S and another edge e,
tries to find the closest 2δ-good edge to e that is larger in the order (it is easy to modify
so that we find a smaller good edge).

CLAIM 2.11. The procedure find-closest(S, e, δ) (where S is an ordered set of edges
and e is 2δ-bad) either outputs nothing or it outputs a δ-good edge e′. With probability
> 1−n−3 - the interval [e, e′] contains at most a 2δ-fraction of 2δ-good points. If it outputs
nothing, then S has less than a 2δ-fraction of 2δ-good edges. The running time is Õ(

√
n).

PROOF. The running time is easy to see. The proof here is essentially a repetition of
arguments used in the proof of Lemma 8. Using Chernoff arguments, with probability
> 1 − n−3, if any of intervals Ij has more than a δ-fraction of 2δ-good edges, then some
e′ ∈ I will be output as “2δ-good.” Therefore, e cannot be δ-bad. If nothing is output,
S certainly has less than a 2δ-fraction of 2δ-good edges. On the other hand, if some
interval Ij has more a 2δ-fraction of 2δ-good edges, then Ij−1 will have more than a
δ-fraction of 2δ-good edges. This completes the proof.

Call an edge unsafe if it belongs to an interval that contains less than a 2δ-fraction
of 2δ-good points.

CLAIM 2.12. Number of unsafe edges ≤ 16δ × Number of 2δ-bad edges.

PROOF. Consider an unsafe edge e that belongs to [u, u′]. We can argue that at least
one of [u, e] and [e, u′] has less than a 4δ fraction of 2δ-good edges. Let all the e’s that
satisfy the first condition be called downward. By a charging argument used in the
proof of Lemma 2.3, we can show that the number of downward edges is ≤ 4δ× number
of 2δ-bad edges. Similarly, we can show the same for nondownward edges. Adding all
the bounds, we prove the lemma.

We now complete the proof of the main theorem of this section. The main filter
procedure is convexify, described in Figure 8.
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Fig. 8. Correcting edge e in D, with parameter δ.

THEOREM 2.13. There exists a (Õ(
√

n), 3+δ)-filter for 2-dimensional convexity, where
the input is a terrain given as a linked-list and there is an ordering oracle present.

PROOF. The first call to goodness-test takes Õ(
√

n) time. The calls to find-closest takes
Õ(

√
n), proving the running time bound. Since the calls to goodness-test and find-closest

error with probability n−3 and there are at most O(n2) such calls (over all queries), we
can assume that they always output the correct answer. To show that the output is
convex, note that any edge that is committed initially must be δ-good. Furthermore,
the interpolation is done only between δ-good edges (Claim 2.11). Therefore, the output
is always convex.

Suppose e is 2δ-bad (when e is 2δ-good, it is committed). Let Fe be the smallest
interval of size (1 + δ) j (for some j such that the with left end e) which has more
than a 4δ-fraction of 2δ-good points. If |Fe| ≤ √

n, then find-closest(S, e, δ) will find a
δ-good edge fs such that [e, fs] contains at most a 2δ-fraction of 2δ-good edges. Suppose
|Fe| >

√
n. By a Chernoff bound, we can show that with probability > 1 − n−3, the

number of 2δ-good edges in R ∩ Fe is at least a 2δ-fraction of R ∩ Fe. This implies that
a δ-good edge in Fe will be detected when find-closest(R, e, δ) runs. A similar argument
can be made for intervals with e at their right end. The only edges that are changed are
those that are either 2δ-bad or are unsafe. By Lemmas 2.12 and 2.3, the number of 2δ-
good points changed is O(δεDn). This shows that convexify is a (Õ(

√
n), 3 + O(δ))-filter.

(Rescale δ to complete proof.)

2.3. Testing

First, we describe a convexity tester. The input polygon D is given as in linked list
format with an ordering oracle. A tester is a randomized algorithm which, given D and
0 < ε < 1, will do the following in sublinear time.

—If D is convex, output “convex” with prob > 2/3.
—If D is ε-far from being convex, output “not convex” with prob > 2/3.

We prove that the procedure is-convex, described in Figure 9, is a valid property tester.

THEOREM 2.14. There exists a tester for convexity of polygons given in linked
list format (and with ordering oracle present) using O(ε−1n1/3) lookups and takes
Õ(ε−1/2n1/3) time.

We contrast this with the convexity tester obtained in Czumaj et al. [2000]. Their run-
ning time’s dependence on n is O(n2/3). In their model, there is “polygonal information”
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Fig. 9. Testing if polygon D is convex.

and the input is just a set of points in the plane. Hence, they have a higher running time
(a matching lower bound was also given in Czumaj et al. [2000]). It is interesting to note
that the time complexity comes down when we use the linked list structure of the edges.

We will analyse the procedure is-convex and show that it satisfied the requirements
of Theorem 2.14. If D is convex, then the tester obviously accepts with probability 1.
From now on, we assume that D is ε-far from being convex.

The set of edges is denoted by E. Consider a set of εn edges whose removal makes
D convex. Let these edges be called unsound edges (this set will be denoted by U ,
|U | ≥ εDn). The remaining edges are sound (this set will be S). Note that all of S is in
convex position and that there cannot be a set of convex edges whose size is > |S|.

LEMMA 2.15. There exists a one-to-one function α : U → E such that ∀u ∈ U, α(u)
violates u.

PROOF. We will construct α through an iterative process. Initially, we start with the
set T = U . If there exists a violating pair 〈u1, u2〉 (u1, u2 ∈ T ), we assign α(u1) = u2 and
α(u2) = u1. Then we remove u1, u2 from T and repeat. In the end, we end up with a
set T of unsound edges which do not violate each other. In other words, T is in convex
position. Let us now construct a bipartite graph G with T on one side and S on other.
Any two violating edges are connected. Take any set T ′ ⊆ T . T ′ is in convex position
and is totally unsound. Therefore, T ′ should have at least |T ′| violators in S. If not, we
could replace all these violators in S by T ′, and we would have a set of convex edges
whose size is greater than |S|. The number of neighbours of T ′ in G is ≥ |T ′|. By Hall’s
Theorem, G has a perfect matching. For every u ∈ T , we set α(u) to be the edge in S
that matches u. This completes the construction of α.

A contiguous set of unsound edges in convex position will be called a stretch.

CLAIM 2.16. For any stretch L of length k, there exist sets of edges AL, BL such that
AL ⊆ L, BL ∩ L = ∅, |AL|, |BL| ≥ k/4, and every edge in AL violates every edge in BL.
Furthermore, for two different stretches L and L′, BL and BL′ are disjoint.

PROOF. Let α be the function given in Lemma 2.15. For every u in the middle k/2
edges of L, consider α(u). Without loss of generality, we can assume that at least half of
these edges lie in front (along D) of L. Let all these edges be BL, and let the rightmost
k/4 edges of L be AL. By transitivity, every edge in AL violates every edge in BL. For
the last part of the claim, we observe that α is a one-to-one function.

We now need some notation for certain probabilistic events. Consider the edges
sampled in the first step of is-convex. For stretch L, let kL denote the size of L. Let EL
denote the event that some element of AL is chosen in the first 32ε−1/2n1/3 samples
and that some element of BL is chosen in the next 32ε−1/2n1/3 samples. (We will denote
the former event as EL(A) and the latter as EL(B). Hence, EL = EL(A) ∩ EL(B).) For every
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stretch L, let random variable XL be the indicator variable for the event EL. We use
var(X) to denote the variance of random variable X.

CLAIM 2.17.

(1) E [XL] = Pr(EL) > [1 − e−8kLε−1/2n−2/3
]2

(2) var(
∑

L(XL)) ≤ E [
∑

L XL].

PROOF. The probability that EL occurs is:

[
1 −

(
1 − kL

4n

)32ε−1/2n1/3]2

>
[
1 − e−8kLε−1/2n−2/3

]2
.

We now bound the variance of
∑

L XL. Observe that the XL’s are negatively corre-
lated. Consider two distinct stretches L and L′. Conditioned on XL = 1, the probability
that XL′ = 1 decreases. This is because AL ∩ AL′ = BL ∩ BL′ = ∅. For a more formal
treatment, consider EL(A) and EL′(A). We have

Pr(EL(A) ∩ EL′(A)) = Pr(EL(A)) + Pr(EL′(A)) + Pr(EL(A) ∪ EL′(A)) − 1

= 1 −
(
1 − kL

4n

)32ε−1/2n1/3

−
(
1 − kL′

4n

)32ε−1/2n1/3

+
(
1 − kL + kL′

4n

)32ε−1/2n1/3

=
[
1 −

(
1 − kL

4n

)32ε−1/2n1/3][
1 −

(
1 − kL′

4n

)32ε−1/2n1/3]
−

[(
1 − kL

4n

)(
1 − kL′

4n

)]32ε−1/2n1/3

+
(
1 − kL + kL′

4n

)32ε−1/2n1/3

≤ Pr(EL(A)) Pr(EL′(A)).

We can argue analogously for EL(B) and EL′(B). Since Pr(EL(A) ∩ EL′(A)) and
Pr(EL(B) ∩ EL′(B)) are independent, we get that E [XLXL′ ] ≤ E [XL]E [XL′]. We can
conclude that var(

∑
XL) = E [(

∑
XL)2] − E [

∑
XL]2 ≤ E [

∑
XL].

PROOF OF THEOREM 2.14. The lookup complexity bound is obvious. The time com-
plexity of checking if cε−1/2n1/3 edges are in convex position requires Õ(ε−1/2n1/3) time.

We need to show that with high probability, a violation will be detected. The tester
has two stages - the first involves sampling O(n1/3) edges, and the second involves
walks of length n1/3. We split into three cases.

Case 1. There exists a stretch L of length k > δε1/2n2/3 (for some small enough
constant δ > 0). By Claim 2.17, the probability that EL occurs (and hence a violation
is detected) is at least 2/3.

Case 2. At least εn/2 unsound edges lie in stretches of length < n1/3. Such an edge
will be found with high probability in the second stage. Walking for n1/3 steps in both
directions along D ensures that a violation will be detected.

Case 3. At least εn/2 unsound edges lie in stretches of length ≥ n1/3 and all stretches
have length ≤ δε1/2n2/3. By Claim 2.17,

E

[∑
L

XL

]
>

∑
L

[
1 − e−8kLε−1/2n−2/3

]2
≥ εn

2n1/3

64n2/3

4εn4/3
≥ 8.

(Since no stretch has length > δε1/2n2/3 and x > 0, we can use the inequality
e−x < 1 − x/2. A standard convexity argument then gives us the above bound.) By
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Claim 2.17, var(
∑

XL) ≤ E [
∑

XL]. By Chebyschev’s inequality,
∑

XL will take a pos-
itive value (and therefore a violation will be detected) with probability at least 2/3.

2.4. General Polygons

So far, we made the simplifying assumption that D looks like a function in 2-
dimensions. We now show how to remove this assumption, for both testing and
reconstruction. The algorithms given will remain the same - only the correctness
proofs need to be changed. We choose some arbitrary edge (referred to as e0) and orient
the axes such that e0 is parallel to the y-axis and points in the negative direction.

We now modify the definition of a violation. First, we call an edge forward if it points
in the positive x direction (otherwise, it is called backward). Given edges e1, e2, the
pair (e1, e2) is a violation if any of the following holds.

(1) e1 and e2 are not in convex position.
(2) e1 and e2 are forward edges, they are in the cyclic order e0, e1, e2 and the x-projection

of e2 is not strictly in front (along the x-axis) of the x-projection of e1.
(3) e1 and e2 are backward edges, they are in the cyclic order e0, e1, e2 and the

x-projection of e1 is not strictly in front (along the x-axis) of the x-projection of e2.
(4) e1 is a backward edge, e2 is a forward edge, and they are in the cyclic order e0, e1, e2.

We can now modify the proof of Claim 2.16. (Note that the proof of Theorem 2.14
will then hold for general polygons.)

PROOF OF CLAIM 2.16. For any u in the middle k/2 edges of L, consider α(u). Note
that if the cyclic order is e0, u, α(u), then the cyclic order is e0, v, α(u) for any v ∈ L.
(A similar statement can be made if the order is e0, α(u), u.) Using this (and the new
definition of a violation), it can be shown that α(u) violates either the first k/4 or the
last k/4 edges. Without loss of generality, we can assume that half of the α(u)’s (let this
be BL) violate the first k/4 edges of L (let this be AL).

Proving that reconstruction still works is relatively easy. Essentially, we need to
prove that Lemma 2.3 is still correct. The proof of (i), (ii) only uses the transitivity
property of convexity. Given edges e1, e2, the transitivity property now holds in either
[e1, e2] or [e2, e1]. In the proof of (iii), we perform a charging procedure that starts from
the rightmost end of D. Now, since D now has no “rightmost” end, we need to choose
some place to start the charging. We can use an argument similar to the one used in the
proof of Lemma 2.12 to show there exists some e′ that does not belong to any badness
interval. The charging argument used to prove (iii) can now be done by starting from
e′ (and moving in cyclic and reverse cyclic orders) without affecting the proof.

2.5. Lower Bounds

Our first lower bound is for convexity reconstruction for 2-dimensions when the
polygonal chain is given as a balanced binary tree of edges. We prove that any filter
that guarantees to change at most O(εDn) edges has a worst-case lookup time of
�(log3 n). All our lower bounds are in terms of lookup complexity. We do not deal with
the actual computing model. Our main assumption is that knowledge of any set of
input edges tells us nothing about edges that we have not looked up. Our lower bounds
are essentially information theoretic in nature.

THEOREM 2.18. Consider filter for 2-dimensional convexity where the polygon is
expressed as a balanced binary tree which errors with probability < 1/n. The filter
requires �(log3 n) lookups per query.
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A

B
C1

C2

C3

C4

C5

Fig. 10. An input in 	i .

PROOF. The proof essentially uses Yao’s minimax lemma. We define a distribution
of polygons of size n, which are to be reconstructed. We then consider a deterministic
filter that guarantees with probability > 1 − 1/n to change < cεDn edges, where D is
the input polygon and c is any constant. We then show that there exists a query that
will require �(log3 n) time to process. We will make the natural assumption that we
have no geometric information about edges that we have not seen.

The final distribution 	 is a mixture of distributions 	i, where
√

n ≤ (2c)i ≤ δn
(for δ a sufficiently small constant). We assume henceforth that c is a power of 2, and
denote 2c by d. Let us first describe 	i. First, we start from a convex polygon for every
	i. Also, for every different possible input, this initial polygon is different. These two
facts ensure that there does not exist one fixed geometric solution that works for a
query. In other words, we are forced to actually search the polygon for reconstruction.
The query will be made for edge e0, and we modify e0 to ensure that it is not in convex
position with any subsequent edge. To construct an input in 	i, we will make some
changes to this starting polygon. These changes will be made randomly, generating
the distribution of polygons 	i. Figure 10 shows one such input.

We now describe how the edges are changed. The first n/2 edges will not be
changed. In Figure 10, this is the group of edges A. Let us denote the remaining edges
e0, e1, . . . , en/2 in polygonal order. The interval of edges from e0, . . . , edi is where all
the changes are made; these edges will be modified according to some distribution to
generate 	i. First, the edges e0, . . . , edi−1 are rendered “useless” - they are modified to
ensure that these edges are not in convex position with any of the other edges. This is
denoted by group B in Figure 10.

The remaining edges (edi−1+1, . . . , edi ) are divided into 2i contiguous groups, each of
length of (d − 1)di−12−i. Each of these groups consists of the leaves of subtrees of size
depth i. These are denoted by C1, C2, . . . in the figure. A (1/d)-fraction of these are
chosen uniformly at random and are rendered “useless.” In Figure 10, the group C4 is
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made useless. Therefore, groups of useless edges are interspered in the convex regions
at random. The number of edges that need to be modified to make the input convex is
< di/c.

The distribution 	 is generated by choosing log2c(
√

n) ≤ i ≤ log2c(δn) uniformly at
random and then choosing a random input from 	i. A query is made for e0. Since
the filter errors with probability < 1/n, for at least half of these values i, the filter
errors on 	i with probability < 2/n. Consider any such 	i. The edge e0 needs to be
replaced, and edges used to choose this replacement must come from e1, . . . , edi . If
no edge from here was detected, then some edge outside this range is used. In that
case, since we assume that we have no knowledge about the geometric structure of
edges in this range, the replacement will essentially destroy all edges from e1, . . . , edi .
In other words, all these edges will need to be changed. This cannot happen, since
that would mean that at least cεDn edges are changed. Therefore, a nonmodified edge
from e1, . . . , edi must be chosen. This involves finding a group with unchanged edges.
Given a group, the probability that it is unchanged is �(1/c). To ensure probability of
error < 2/n, �(log n) groups needs to be chosen (and an edge from group needs to be
taken). Since each of these groups are in different subtrees of depth i, the total time
to get these edges is �(log n). Finally, there are �(log n) distributions 	i on which the
filter errors with probability < 2/n. Note that the replacement edges required for each
distribution 	i is different (an edge which can be used for reconstruction for some
input of 	i cannot be used for an input of any other 	 j). This gives that the total
number of edges that the filter needs to query is �(log3 n).

Before giving a lower bound for filters reconstructing convexity when the input
is given in linked list format, we show the optimality of the convexity tester (upto
polylogarithmic factors in n).

THEOREM 2.19. Testing convexity in 2 dimensions (in the DCEL model) requires
�(ε−1/2n1/3) lookups.

PROOF. We will give a lower bound for the following problem: Given an input polygon
in DCEL format which is ε-far from being convex, output a violation. We use Yao’s
minimax principle. We will consider a distribution on the input, and prove a lower
bound on any deterministic algorithm that gives the correct answer with probability
2/3 over the input.

Suppose some deterministic algorithm makes δε−1/2n1/3 lookups (δ is a sufficiently
small constant). The input is a linked list of all the edges. In our model (taken from
Chazelle et al. [2003]), the list is accessed through a table T [1 · · · n], where the i-th
element is stored in location σ (i) - so T [σ (i)] = i. Consider the following polygon - D has
εn2/3 stretches of length n1/3. Each stretch violates 3n1/3 edges. Figure 11 shows a por-
tion of D with the stretches in bold. D is constructed by stitching together many copies
of this structure. The stretches occur far apart and therefore don’t violate with each
other.

The input distribution is formed by choosing the permutation σ uniformly at
random from the symmetric group on n elements. Any deterministic algorithm can
be seen as executing a sequence of steps of the form: (A) choose a location T (l) and
look up T (σ (i ± 1)), where l = σ (i) (this is equivalent to walking along the polygon);
(B) compute a new index l based on previous indices and look up T (l). We can see that
σ−1(l) is equally likely to lie anywhere in the unvisited portion of D.

For every stretch L, let XL be the indicator variable for the event that a violation
from L is detected by 2 B-steps. XL is 1 iff an edge from L and an edge from the
violations of L (having size 3n1/3) are chosen.
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n1/3 3n1/3

Fig. 11. Testing lower bound.

E [XL] <

[
1 −

(
1 − 4n1/3

n

)δε−1/2n1/3]2

<
[
1 − e−8δε1/2n−1/3]2

<
64δ2

εn2/3

E

[∑
L

XL

]
≤ εn2/3E [XL] < 64δ2.

By Markov’s inequality (and choosing a small enough δ), the probability that
∑

XL
exceeds 1 is less than 1/10. In the following, c1 and c2 denote some sufficiently large
constant. Let YL be the indicator variable for the event that a B-step falls within
ε−1/2n1/3/c1 of either boundary of L.

E [YL] < 1 −
(

1 − 4n1/3

c1
√

εn

)δε−1/2n1/3

<
δ/c2

εn1/3

E

[∑
L

YL

]
≤ εn2/3E [YL] < (1/c2)δn1/3.

Again by Markov’s inequality, the probability that
∑

YL exceeds (1/10)δn1/3 is less
than 1/10. With probability at least 8/10, B-steps by themselves did not detect a
violation, and at most a 1/10 fraction of edges visited by B-steps fall within ε−1/2n1/3/c1
of a stretch boundary. Assume that this happens. Any violation detected must involve
an A-step. With probability at most 1/10, ≤ ε−1/2n1/3/c1, A-steps were needed for
detection. Since the total number of steps is δε−1/2n1/3 < ε−1/2n1/3/c1, (a union bound
shows that) the algorithm will fail with probability > 7/10.

We show that the filter for convexity (when the input is a linked list) is essentially
optimal with respect to n (within log n factors).

THEOREM 2.20. Any filter for 2-dimensional convexity requires �(
√

n) lookups per
query, where the input is given in linked list format.

PROOF. We prove a lower bound for the following problem - given D and an edge
e, output whether e is good or bad. If e is deemed bad, then a violating edge must be
provided. All good edges must be in convex position, and the number of edges deemed
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√
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Fig. 12. Reconstruction lower bound.

bad must be < cεDn (for some constant c). We use Yao’s minimax principle and proceed
exactly as in the proof of Lemma 2.19. We prove a lower bound for a deterministic
algorithm that gives the correct answer on a distribution of inputs with probability
> 2/3. Consider a polygon that has distance εn (for some ε > 0) from convexity that
has stretches of violating edges as shown in Figure 12. Essentially, the polygon is
constructed by pasting together many stretches as given in the figure, and ensuring
that the stretches do not violate each other. The downward pointing part that comes
after the stretch of

√
n is just one edge. It is obvious that the bold edge e is bad. The

problem here is to find some edge in the c
√

n range.
The distribution is formed by choosing the permutation σ at random (in the same

model as that in the proof of Theorem 2.19). We are given a query for the edge e. Using
an argument similar to the one for the testing lower bound, we can show that at least
δ
√

n (for some constant δ) lookups are required to detect a violation.

3. A CONVEXITY FILTER FOR 3D TERRAINS

The dataset is an n-face triangulated terrain D represented in standard DCEL fashion.
We assume that the xy-projection of any face of D is a triangle with both edge lengths
and angles bounded above and below by constants (bounded aspect ratio condition).
The reconstructed terrain Dc is convex in the sense of being the boundary of the upper
hull of its vertex set. There are various equally reasonable definitions of the parameter
εD. For simplicity, we define εDn as the minimum number of faces of D that need to be
removed in order to make the terrain convex. Note that this definition does not require
us to “patch the holes.” Choosing to do so, however, would only increase the distance
by a constant factor, which, for the purpose of our filter, is immaterial. The edge table
allows us to sample random edges. From this, it is elementary to implement a uniform
sampler for triangular faces as well. (To sample vertices would be more difficult but,
fortunately, we do not need that feature.)

The filter processes the terrain during the first query in sublinear time and then
uses the resulting data structure to answer subsequent queries. The (sublinear) cost of
the processing is charged entirely to the first query. The idea is to break up the terrain
into connected patches of suitable size by removing a small set F of separating faces.
The fence F decomposes the terrain into connected patches of suitable sizes. A critical
feature of F is to be of sublinear size. To achieve this, we use a sublinear version
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OFFLINE-RECONSTRUCTION

Initialization: T ← ∅
for each face f of D:

if f is in convex position with T
then T ← T ∪ { f }
else find face g ∈ T not in

convex position with f
T ← T \ {g}

output Dc ← T

of the classical planar separator theorem. The weakening is required to make the
computation sublinear. The final processing step is to convexify F . This is a delicate
operation which cannot be performed in isolation with the rest of the terrain: this is
a perfect illustration of why early decisions are crucial in online filtering.

We define a suitable range space (of unbounded VC dimension!) whose sampling
gives us enough global information about the whole terrain to guide the reconstruction
of F . The convexified F fences off the patches in such a way that it is possible from then
on to answer any subsequent query by treating its associated patch in isolation from
the rest of the terrain. But, before we can get to online reconstruction, we need to define
two key procedures: one is an offline algorithm for convexifying the terrain within twice
the minimum distance; the other estimates the distance εD in sublinear time.

Any filter must explore both global and local properties. The difficulty lies in gather-
ing enough information in sublinear time. Any approach must involve a combination
of sampling and local search. The filter essentially works as follows: first, it estimates
εD using the sublinear time procedure. If the distance is very small, then the offline
algorithm is used for convexification. Otherwise, it constructs a fence F and convexi-
fies it. It is critical that this convexification be done by taking the global structure into
account—this is achieved by choosing a large enough sample of faces of D (which then
is used to define the range space mentioned in the previous paragraph) and convexifing
F so that it is in convex position with most of the sample. This creates a “skeleton”
that captures the global properties of D and also splits D into a set of small connected
patches. Next, each patch is reconstructed independently, ensuring that it stays in con-
vex position with the convexified F . Since a patch is a small connected portion of D, it
can be visited exhaustively by local search (thereby, the filter gains information about
the local properties of D). In the following sections, we discuss the various components
that constitute the filter. Finally, we put the pieces together and describe the filter itself.

3.1. Offline Reconstruction

We describe a 2-approximation offline convexification algorithm, that is, one that,
given D as input, returns a terrain Dc that is convex and is at distance at most 2εDn
from it. Note that Dc can have holes. The convexification proceeds incrementally.
Beginning with the empty terrain T , we consider each face of D one by one and add it
to T if it is in convex position4 with every face currently in Dc. To do this in quasilinear
time, we maintain T in a dynamic data structure which supports insertion, deletion,
and queries in amoritized polylogarithmic time.

4 Two triangles are said to be in convex position if both of them are faces of their convex hull.
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Denote by Tv (respectively Tp) the set of vertices (respectively face-supporting
planes) in T . A terrain face f is in convex position with T if and only if (i) its three
vertices lie below each plane in Tp; and (ii) the points of Tv all lie below the plane
supporting f . By duality, both tests can be reduced to dynamic halfspace emptiness
in 3D: maintain a set of points under insertion and deletion, and for any query plane
find whether whether all points lie on one side, and if they do not, report one point on
each side. Chan [2006] has given a halfspace range reporting algorithm which allows
us to do that in O(log6 n) amortized time for each query/insert/delete.

Whenever the procedure finds a face f that is not in convex position with T , then
a face g ∈ T that is not in convex position with f is removed. Consider a minimal
subset U of εDn faces that need to be removed to make D convex. One of f or g has to
be present in U . This ensures that the total number of faces removes is at most 2εDn.

THEOREM 3.1. Offline convex reconstruction of an n-face terrain can be performed
with an approximation factor of 2 in Õ(n) time.

3.2. Estimating the Distance to Convexity

Consider the violation graph G whose nodes are the faces of D and whose edges join
any two faces not in convex position. Removing all the faces that correspond to a
vertex cover of this graph makes D convex. The minimum vertex cover is of size εDn,
and any maximal matching M in G is of size |M| ≤ εDn ≤ 2|M|. The offline reconstruc-
tion algorithm essentially finds such a maximal matching in G. Fix any constants
0 < α < β < 1 such that α ≥ 1

2 (3β − 1), α ≥ (2β − 1), and let S be a random sample
formed by picking each vertex of G independently with probability p = nα−β log n. The
offline reconstruction algorithm can be used to build a maximal matching MS for the
subgraph GS of G induced by S. The sample S can be easily specified in O(|S|) time,
so that computing MS takes Õ(pn) time, which is Õ(n1+α−β). As we show the following,
in knowing MS allows us to distinguish between the two cases: εD ≥ n−α and εD ≤ n−β .

Case 1 εD ≥ n−α. Fix some maximal matching M of G. The size of M is ≥ n1−α/2. If
ξ is the number of edges of M in GS, then E ξ = p2|M|. Since M is a matching, ξ can
be expressed as the sum of independent random variables. By Chernoff ’s bound [Alon
and Spencer 2000], Prob [ ξ < 1

2 p2|M| ] < e−�(p2|M|) = e−�(p2n1−α) = e−�(n1+α−2β log2 n). Since
α ≥ 2β − 1, with high probability ξ ≥ 1

2 p2|M|. This implies that GS contains a perfect
matching of size at least 1

2 p2|M| ≥ 1
4 p2n1−α. Its minimum vertex cover is at least that

size; therefore, |MS| ≥ 1
8 p2n1−α.

Case 2 εD ≤ n−β . Now, the size of M is ≤ n1−β . If χ denotes the number of vertices of
M in S, then E χ = 2p|M| and, by Chernoff ’s bound, Prob [ χ ≥ 2p|M| + y ] < e−y2/|M|,
for any y > 0. Setting y = 1

8 p2n1−α − 2p|M| > 1
9 p2n1−α, we find that

Prob [ χ ≥ 1
8 p2n1−α ] < e−�(p4n1+β−2α) = e−�(n1+2α−3β log4 n). Since the vertices of M

provide a vertex cover for G, it follows that, with high probability, |MS| < 1
8 p2n1−α.

THEOREM 3.2. Given any small δ > 0 and any constants 0 < α < β < 1 such that
α ≥ 1

2 (3β − 1) and α ≥ (2β − 1), we can compute a 0/1 bit b(D) in Õ(n1+α−β) time, such
that b(D) = 0 if εD ≥ n−α, b(D) = 1 if εD ≤ n−β , and b(D) takes on any value otherwise.

3.3. Fencing off the Terrain

Here we describe an algorithm that finds a sublinear set of faces (the fence) of D whose
removal breaks D into connected components (patches) also of sublinear size. Refer
to Figure 13. The thick black line represents the fence, which breaks the terrain into
small patches. As we discussed earlier, this procedure will be run in the first query. Let
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Fig. 13. The thick black line, the fence, is itself a collection of o(n) triangles.

G be the planar triangulation formed by the projection of D onto the xy-plane. Note
the because of the bounded aspect ratio condition, any triangle in G has bounded sides
and angles. The main step in constructing the fence is to design a sublinear algorithm
to find balanced planar separators in such graphs. A balanced planar separator for
a planar graph G with n vertices is a set of vertices whose removal separates G into
connected components, each having size < cn (where c is some constant less than 1).
Lipton and Tarjan [1979] gave the first linear time algorithm to find a balanced planar
separator of size O(

√
n). Henceforth, by planar seperator, we always refer to balanced

separators. Our aim is to find a set of faces in G to remove (note that upto constant
factors, this gives a vertex separator of the same size). We are able to beat the linear
time bound because we are provided with a geometric embedding of the graph. We
also assume the bounded aspect ratio condition.

The algorithm first randomly selects a set of c
√

n log n faces, for some sufficiently
large constant c. This sample (call it R) is then used to guide the separator. A random
starting vertex v in G is chosen, and then R is used to find geometric paths (paths in
the plane) from v to the boundary of G that pass through at most O(

√
n) faces. These

paths can then be shown to generate a planar separator of O(
√

n) size. We begin by
stating the main lemma of this section (this lemma is of independent interest).

LEMMA 3.3. For any vertex v ∈ G (where G is a bounded aspect ratio planar
graph with an embedding), there exists a geometric path from v to the boundary of
G that passes through O(

√
n) faces. Furthermore, this path can be shown to be x and

y-monotone, consisting only of vertical or horizontal line segments. This path can be
constructed in Õ(

√
n) time.

We will need to prove some smaller claims before we can attack this lemma. Consider
the area defined by a horizontal line segment, and two rays pointing in the positive
y-direction. This is called a vertical slab. We will only consider line segments that have
�(1) length. Now, we assign a charge to each triangle t (face) of G, and spread the
charge out evenly in the area of t. The total amount of charge throughout G is n. The
charge contained in a slab S can be determined by the following fact - for a triangle t,
if an f -fraction of it (area-wise) lies inside S, then t contributes f amount of charge.

CLAIM 3.4. A line segment  of constant size can only intersect a constant number
of triangles.

PROOF. First consider two triangles �ABC and �BCD and suppose that  intersects
AB, BC, CD. Let  intersect AB at E and BC at F. Refer to Figure 14. Wlog, assume
that BF > FC. Take �BEF. If BE > BF/2, by the bounded angle condition, we get the
EF is at least a constant. On other hand, if BE ≤ BF/2, then by triangle inequality,
we get that EF ≥ BF/2 and is therefore a constant. The portion of  inside �ABC and
�BCD has length �(1). Now, take all triangles that intersect  (let us not consider the
triangles that contain the endpoints of ; there are only two of them). Take the set of
triangles that all share one endpoint and put them in the order in which they intersect
 - there can only be a constant number of them, because the angles are bounded. Note
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Fig. 14. Wedge.

that the last two triangles in this sequence have the structure of �ABC and �BCD,
where  intersects AB, BC, CD. This shows that there can only be constant number of
such sets of triangles, completing the proof of the claim.

CLAIM 3.5. If a slab intersects k triangles, then it contains �(k) amount of charge.

PROOF. Any triangle that is completely inside the slab S contributes one unit charge
(all the charge it contains). The main problem is to deal with triangles that intersect the
boundary of S. Let us denote by  the line segment (assume its horizontal) defining S,
and let r1 and r2 be the rays. Abusing notation,  also denotes the length of this segment.

By Claim 3.4, only a constant number of triangles can intersect . We shall now only
consider triangles that intersect r1 or r2 – if a triangle does not intersect any edge of
the boundary of S, then it contributes one unit of charge to S. First consider a triangle
t with no vertex inside S. Two edges of t intersect both r1 and r2. Because the slab has
constant width, wlog, the portion of r2 between these edges is of constant length. This
implies that t contributes �(1) units of charge to S.

Take a triangle t which has a vertex v inside S and whose edges intersect both r1 and
r2 (call this a triangle of Type 1). Consider the triangle with vertex v and the intersection
points of the edge opposite to v with r1 and r2. This triangle has constant area and again
t contributes �(1) units of charge. Now take a triangle t with a vertex v inside S which
only intersects some ri (i is either 1 or 2). Furthermore, assume that the perpendicular
distance of v from ri is ≥ /2. This is a triangle of Type 2. Such a triangle can be easily
seen to contribute �(1) units of charge to S. Finally, we take the last case: triangle t has
vertex v inside S, its edges only interesect some ri, and the distance of v to ri is < /2.
But, there must be some triangle having v as a vertex which is of type 1 or 2. Since
the number of triangles incident to one vertex is �(1), this implies that only a constant
fraction of k triangles can be of the final kind. This completes the proof of the claim.

We now complete the proof of Lemma 3.3.

PROOF. We first describe the algorithm used to find such a path from a starting
vertex v. A random sample of faces R, of size c

√
n log n (where c is a sufficiently large

constant) is chosen. It is easy to show that if some slab intersects > c log n triangles
in R, then the slab intersects > c1

√
n triangles in G. On the other hand, if the slab

intersects ≤ c log n triangles in R, then it intersects < c2
√

n triangles in G (c1, c2 are
some fixed constants, and these hold with high probability).

We draw a constant length horizontal segment  from v in the positive x-direction.
By Claim 3.4,  intersects at most a constant number of triangles. Suppose the vertical
slab defined by  intersects ≤ c log n triangles of R. Then, we draw a vertical line (going
in the positive y-direction) from  to the boundary (thereby completing the path). If the
vertical slab intersects > c log n triangles of R, then we move in the horizontal direction
by drawing another constant length horizontal segment from the right endpoint of .
If the horizontal segments eventually hit the boundary of G, then the path is complete.
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The path finally obtained has size O(
√

n). Note that the vertical part of the path can
intersect at most O(

√
n) triangles. Each constant length horizontal segment (except

for probably the rightmost one) defines a vertical slab intersecting �(
√

n) triangles. By
Claim 3.5 the amount of charge in this slab is also �(

√
n). All these slabs are disjoint

and the total amount of charge overall is n. There can only be O(
√

n) such horizontal
segments, and the total number of triangles intersected by these is O(

√
n).

This brings us to the final theorem of this section, where we show how a sublinear-
sized fence that leaves patches of sublinear size can be constructed in sublinear time.

THEOREM 3.6. There exists a Õ(
√

n) algorithm that finds a balanced planar
separator of size O(

√
n) in any triangulated bounded aspect ratio planar graph G

which is provided as a DCEL (G is given by straight line embedding) with the planar
coordinates of the vertices. For any 0 < a < 1, this can be used to find a fence of size
O(n1−a/2) in Õ(n1−a/2) time such that the patches have size O(na).

PROOF. First, we describe how to get a planar separator. Choose a vertex v at ran-
dom. With probability ≥ 3/5, the x-coordinate of v is the middle (3/5)n positions in the
sorted order of vertices based on x-coordinate. Similarly, this holds for y-coordinates.
Therefore, with constant probability, v is the middle (3/5)n positions for both x-sorted
and y-sorted lists of vertices. Without loss of generality, there are at least n/10 vertices
with both x and y-coordinates larger than those of v and at least n/10 vertices with
both x and y-coordinates less than those of v. By choosing O(log n) vertices uniformly
at random, we can ensure (with high probability) that we find at least one vertex that
satisfies this property.

Lemma 3.3 tells us that there is a geometric path intersecting O(
√

n) triangles that
starts from v and ends at the boundary of G. Also, this path (when directed from v) only
increases in the x-direction and decreases in the y-direction. Similarly, there is a path
starting from v that only decreases in the x-direction and increases in the y-direction.
These paths can be found in Õ(

√
n) time. Together, these paths form a separator of G.

This is also balanced, since no component can have size larger than 9n/10.
Recursive application of this procedure yields a fence of size O(n1−a/2) wth patches

of size O(na). The total running time is O(n1−a/2 log n).

3.3.1. Finding Separators in General Terrains. As an aside, we describe an algorithm that
finds a fence for a general planar graph G (not nessarily embeddable with bounded
aspect ratio). Pick a random sample of r = na edges in G, for fixed 0 < a < 1, and
build its (say, x-oriented) trapezoidal map Mr. As is well known, with high probability,
each trapezoid intersects O((n/r) log n) triangles. Consider the dual Hr graph of
Mr, where each node is a trapezoid and two nodes are joined if the corresponding
(closed) trapezoids intersect. The graph is planar and so, by iterated application of the
planar separator theorem [Lipton and Tarjan 1979], for any fixed 0 < b < 1, we can
find, in O(r log r) time, a set V of O(r1−b/2) nodes whose removal leaves Hr with no
connected component of size exceeding rb. The fence F is the set of all the terrain’s
faces whose projections intersect the trapezoids associated with the nodes of V . With
high probability, the fence consists of O(r1−b/2(n/r) log n)) = O(n1−ab/2 log n) triangles
and its removal from the terrain leaves connected patches, each one consisting of
O(n1+ab−a log n) triangles. Note that, because it involves triangles (and not trapezoids),
the removal may create much greater fragmentation than is caused within Hr by the
removal of V . Finding the fence takes time O(na log n + n1−ab/2 log n) time, Renaming
ab by b, we have proven the following.

LEMMA 3.7. Let G be any planar graph provided with a geometric embedding. For
any 0 < b < a < 1, in O((na +n1−b/2) log n) time, it is possible to find a fence F consisting
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Fig. 15. The fence is reconstructed by lifting its faces to the upper boundary of 	c.

of O(n1−b/2 log n) triangles, whose removal from the terrain leaves connected patches
consisting of O(n1+b−a log n) triangles each.

3.4. Reconstructing the Fence

Our aim is to first reconstruct the fence in sublinear time, and then use this structure
to reconstruct the various patches. Since the fence has sublinear size, we can hope to
perform the fence reconstruction quickly. Given a reconstructed fence, we will (later)
argue that the patches can be reconstructed in sublinear time. But how to convexify
the fence? A naive approach would be to simply apply the offline algorithm for the
fence triangles. Since the offline algorithm is essentially linear (in the fence size), the
total running time for this would be sublinear. But that would fail miserably, since it
does not allow the global shape of the terrain to influence the reconstruction. We need
a different approach.

We choose a random sample 	 of the faces of D—the size of 	 shall be set later. Let 	c

be the offline convexification of the terrain 	 provided by Theorem 3.1, and let 	 f the
intersection of the halfspaces bounded above by the planes supporting the faces of 	c

(the dual convex hull). The reconstructed fence F c is obtained by lifting the triangles of
F vertically and “wrapping” them over the surface of 	 f (refer to Figure 15). Note that
such a lifting could replace one fence face by many faces, but based on the bounded as-
pect ratio condition, we have a bound (proven later in this section) for the total size ofF c.
(The bound holds only when 	 is sufficiently large, but our choice of 	 will ensure that.)

LEMMA 3.8. The size of F c is Õ(n1−a/4).

We now explain why F c captures the global structure of D. Henceforth, the term
“face” refers to a triangle in 3-dimensions (we introduce this because we later use
“triangle” to refer to an object in the 2-dimensional plane). We define a range space
(X,R), which, although of unbounded VC dimension, has enough sampling power to
guide the convexification of the fence. Regarding both D and F as sets of faces, we
define the ground set X = D \ F . Given two sets S, T of faces, let κ(S, T ) be the set of
faces in T that are not in convex position with at least one face of S. Considering all
possible sets � of |F c| faces, we define R = { κ(�, X) : |�| = |F c| }.

Let us represent a face f by 12 reals - 9 for the vertices of the face, and 3 for the
point in dual space which corresponds to the plane containing f . The face f can be
seen as a point pf ∈ R

12. (Note that the latter 3 reals are completely determined by
the former 9 reals. This is a redundant description and actually not necessary for what
follows, but it will be helpful.) Consider faces f ∈ � and x ∈ X. The convex position of
f with respect to x is completely determined by - the position of the vertices of f with
respect to the plane containing x, and (in dual space) the position of f , which is a point,
with respect to the three planes corresponding to the vertices of x. Let us move to R

12.
There is an arrangement of 4 hyperplanes in this space, such that the convex position
x with respect to f is completely determined by the position of pf in this arrangement.
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Fig. 16. Wedge.

By taking the necessary planes for all x ∈ X, we get an arrangement of O(n) planes
which completely determine the convex position of f with respect to every face in X.

We can view � as a point in p� ∈ R
12|F c|. Using the construction given above for

every face in �, it is easy to see why the convex position status of each face in �
with respect to X is completely specified by the location of p� in a certain 12|F c|-
dimensional arrangement of O(n|F c|) hyperplanes - we have a set of O(n) hyper-
planes for every face in �. It follows that the primal shatter function ϕ grows as
ϕ(m) = O(m|F c|)12|F c|. With high probability, if 	 is chosen to be a random sample of X of
size O(r2|F c| log |F c|) = Õ(r2n1−a/4), it is a (1/r)-approximation for (X,R), for any r > 0.

By Theorem 3.1, the number of triangles in 	 that were modified during the con-
vexification is at most 2ε	|	|. Using an argument similar to the proof of Theorem 3.2,
we can show that, with high probability, this number is O(εD|	|). This implies that
|κ(F c, 	)| = O(εD|	|). Since ∣∣∣∣ |κ(F c, 	)|

|	| − |κ(F c, X)|
|X|

∣∣∣∣ ≤ 1
r

,

we could easily bound the “damage” caused by the convexification of the fence as follows:

LEMMA 3.9. κ(F c, X) ≤ nr−1 + O(εDn).

We now prove Lemma 3.8. For ease of notation, we shall assume that F has O(nu)
faces and 	 has size Õ(nv). We will be concerned only with xy-projections of D and 	 f .
In the following proof, triangle refers to the xy-projection of a face of D, while facet
refers to the xy-projection of a face of 	 f . Edges refer to the edges of triangles. Note
that all facets are convex, disjoint from each other (except for their boundaries) and
contain a triangle. By the bounded aspect ratio assumption, the radius lengths of the
incircle and circumcircle of any triangle are bounded from above and below (by some
constant). Let v′ be some value less than v.

Definition 3.10. For α < n−(1−v′), an α-thin facet is a facet with two edges e1, e2 such
that the minimum distance between e1 and e2 is less than α and the angle between e1
and e2 is also less than α. The edges e1 and e2 are called sharp edges. The min-thinness
of a facet f is the minimum α such that f is α-thin.

The sharp edges of an α-thin facet form a wedge that contains the facet (Figure 16).

CLAIM 3.11. With high probability, there are at most O(αn) α-thin facets.

PROOF. Consider some α-thin facet f which contains triangle t. The distance between
t and the sharp edges is at least �(α−1) (since t must be inside the wedge created by
these sharp edges, and has at least constant in-radius). There exists a rectangle of
�(α−1) width and �(1) height that is present completely inside f but does not intersect
t (Figure 16). Therefore, we can also show that there exist at least �(α−1) edges of D
that have at least a constant fraction of their length inside f (let these edges be bad
for f ). Note that the offline convexification must have removed these bad edges. Let
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C

Fig. 17. Facets intersecting with C.

Inward Outward

Fig. 18. Inward and outward.

the number of α-thin facets be M. Since all facets are disjoint, an edge can be bad for
only a constant number of α-thin facets. The total number of bad edges is �(α−1M).
With high probability (by taking a Chernoff bound), at least (cα−1Mnv−1 log n) of these
edges are chosen in 	 (for some constant c). But this quantity has to be O(nv log n),
since that is the number of edges removed by convexification. This implies that the
number of α-thin facets is O(αn).

CLAIM 3.12. For any v′ < v, the total complexity of the lifted fence is O(n1+u−v′ +
nv′

log n).

PROOF. The complexity of lifting a fence face is simply the complexity of the
corresponding triangle when laid over the xy-projection of 	 f . A triangle is said to
generate all the faces created by overlaying. The total complexity of all triangles
generating O(n1−v′

) faces is O(n1+u−v′
) (since there are at most O(nu) fence triangles).

Consider some triangle t generating k > n1−v′
faces. Each of these faces is created by

the intersection of t with a facet.
We will first show that many of these facets are k−1-thin. Since triangles do not

intersect, no facet can be completely contained inside t. At least �(k) facets intersect
some edge e of t. We take a circle C of constant (but large enough) radius such that C
contains e and the minimum distance between e and C is �(1). The intuition for the
following proof is quite simple—since C is a constant sized circle and many facets
intersect it, many facets have to be thin (Figure 17). Since the area of a facet is
�(1), there can be at most a constant number of facets contained completely inside
C. Therefore, at least �(k) facets intersect both e and C. A facet can intersect C in two
ways - inward and outward (Figure 18). Consider a facet f (containing triangle t′) that
intersects C only in the inward direction. Either more than half of t′ is contained in C or
the arc length of some intersection between C and f is �(1). Only a constant number of
facets can have only inward intersection. Therefore, �(k) facets intersect C outwards,
and (by a Markov argument) �(k) of these intersections have arc length < k−1. Consider
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3D-TERRAIN-FILTER

if first query
then if b(D) = 1

then convexify D using
OFFLINE-RECONSTRUCTION

else build fence F and convexify
into F c and go to (1)

else
(1) identify patch containing query face f

if needed, convexify extended patch
with OFFINE-RECONSTRUCTION

any such facet f ′ - the two edges intersecting C has a minimum distance of less than
k−1. Since f ′ intersects e, the angle between the edges must be O(k−1), and f ′ is O(k−1)-
thin. This shows that for any triangle t generating k faces, �(k) of these faces are
O(k−1)-thin facets. We will say that t is a witness for these O(k−1)-thin facets, since
the intersection of C with these facets shows their O(k−1)-thinness. For any facet f of
min-thinness α, note that at most (αn1−v′

)−1 triangles are witnesses for any thinness
(since the minimum distance between sharp edges is < n−(1−v′) and the angle is α.)

We sum up the constributions (in terms of complexity) of all triangles generating
more that n1−v′

faces. Let this sum be S. By the arguments given above, βS comes
from thin facets that are witnessed (for some fixed constant β < 1). Some facets are
counted more than once in βS because many triangles can witness one facet. Let us
consider all witnessed facets with min-thinness in the range [α/2, α]. There are at
most O(αn) such facets and each is counted in S at most 2(αn1−v′

)−1 times. Therefore,
the total contribution of this in S is O(nv′

). We apply this argument for the values
α = n−(1−v′), 2−1n−(1−v′), 2−2n−(1−v′), . . . , (cn)−1 (for some sufficiently large constant c)
and get that S = O(nv′

log n).

Noting that u = 1−a/2 and ensuring v > 1−a/4, we can set v′ = (1+u)/2. By the previ-
ous claim, the complexity of the lifted fence can be made Õ(n1−a/4), proving Lemma 3.8.

3.5. Online Reconstruction

We now have all the necessary tools required to make the filter. As we mentioned
earlier, the first query is the occasion of some preliminary processing whose cost is
entirely charged to the query itself. By Theorem 3.2, we estimate the distance to
convexity in Õ(n1+α−β) time. If b(D) = 1, then we convexify the terrain in Õ(n) time by
appealing to Theorem 3.1. Since εD < n−α, the running time is Õ(ε−α−1

D ).
Assume now that b(D) = 0, which implies that εD > n−β . By Lemma 3.9, setting r = nβ

shows that κ(F c, X) ≤ O(εDn). A crucial aspect of the reconstructed fence is that the
convexification of any patch can be done in isolation, as long as we include the fence tri-
angles bounding the patch in question. This follows from this transitivity lemma, which
we prove later. (We use the subscript xy to denote the projection onto the xy-plane.)

LEMMA 3.13. Let f, g be two faces of a (possibly discontinuous) terrain and let F, G
be two sets of faces in convex position such that: (i) removing the region Fxy disconnects
fxy from gxy; same is true of Gxy. If f (respectively g) is in convex position with F
(respectively G), then f and g are in convex position with each other.
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Given a query f , unless b(D) = 1, the filter finds the patch corresponding to f .
If it is the first access to the patch, then it proceeds to reconstruct the entire patch
together with all its bordering fence triangles (what we call the extended patch).
Otherwise, it simply outputs the corresponding face in the reconstructed patch. By
Theorem 3.6, computing the fence takes Õ(n1−a/2) time. By our setting of r = nβ , to
find 	 requires Õ(r2n1−a/4) = Õ(n1+2β−a/4) time, and convexification can be done in
time Õ(n1+2β−a/4). Reconstructing the fence adds nothing to the asymptotic complexity.
Any query that involves convexifying the corresponding patch takes Õ(na). Putting
everything together, we see that in the worst case the time for answering any query is

Õ(n1+α−β + ε−α−1

D + n1−a/2 + n1+2β−a/4 + na).

The constraints 0 < a < 1, 0 < α < β < 1, and α ≥ 1
2 (3β − 1) are all satisfied if we

set α to be an arbitrarily small positive constant and a = 12/13 and β = 1/13. It is
immediate that the amortized query time is O(nα), proving the following theorem.

THEOREM 3.14. Any n-face 3D bounded aspect ratio terrain D has a convexity filter
with a worst case query time of O(n12/13+α + ε

−O(α−1)
D ) and an amortized time of O(nα),

for an arbitrarily small α > 0.

We now prove Lemma 3.13. We will prove the following claim, from which
Lemma 3.13 will be obvious.

CLAIM 3.15. Let f , g be two faces of a possibly discontinuous terrain and S be a set
of faces in convex position. If removing Sxy disconnects fxy from gxy and f and g are in
convex position with S, then f and g are in convex position with each other.

PROOF. Let B be the (possibly unbounded) convex body formed by the faces of S.
For simplicity, assume that S is minimal - we cannot remove any face from S and still
maintain the lemma assumptions. Take the region in the xy-plane disconnected by
the removal of Sxy. Project the boundary of this region onto B and call this curve CS

- note that the curve CS
xy separates fxy from gxy. By the minimality assumption, the

curve CS is simple. Without loss of generality, let fxy be contained in the inner region
defined by CS

xy. Let H f be the plane containing f and C f be the intersection curve of
H f and B. Note that CS lies completely to one side of H f . Suppose there is a vertex of
g that lies in the halfspace (defined by H f ) that does not contain CS. Note that g lie
inside B, since it is in convex position with S. Therefore, it must be the case that the
xy-projection of this vertex lies inside C f , which lies inside CS. This is contradicts the
fact that CS

xy separates fxy from gxy. The face g lies completely to one side of H f .
Defining Hg and Cg (which may not be closed), we can apply a similar argument to

show that f lies completely on one side of Hg.

3.6. Lower Bound

We show that any 3D convexity filter that works for arbitrary terrains has a worst
case query time of �(ε−1

D ) time, thus revealing a fundamental complexity gap between
the two and three-dimensional cases. Recall that the 2D filter made essential use of a
certain transitivity feature of convexity violation: if e, f, g are edges in clockwise order
and (e, g) is not in convex position, then at least one of (e, f ) or ( f, g) is not either. In
designing our filter, we used a 3D variant of this by letting the fence play the role of f .
But, unlike in 2D, the fence cannot be a constant size object. Why this implies a lower
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Pi

Pi+1

Fig. 19. The concentric rings of the xy-projection.

Pi

Pi+1

C

Pk−1

Pk

Fig. 20. A hard terrain to reconstruct.

bound is explained in this section. We stress that the terrain constructed here will not
have bounded aspect ratio.

We appeal to Yao’s minimax lemma to deal with the fact that our algorithms are
randomized. We will start with εD = �(log n/n). After describing the construction for
this value, we will show how to handle any value of εD = �(log n/n). Assume that
the filter changes at most cεDn faces, for some fixed c > 1. We define a distribution of
inputs and show that, for any deterministic algorithm that performs reconstruction,
some query takes �(n/ log n) expected time over that distribution.

We start with a fixed D and build the distribution around it. Fix some parameter
m > 0. The xy-projection of D consists of �(log m) concentric regular polygons
P0, P1, . . . , Pk−1 centered at the origin (Figure 19): (i) the innermost polygon P0 has
a constant number of vertices; (ii) Pi has 2i−1|P1| vertices and every other edge is
parallel to an edge of Pi−1; (iii) Pk−1 has m/(c1 log m) vertices, for fixed c1 > 0. The radii
of the Pi ’s are chosen so that the boundaries are fairly close to each other but disjoint.
Next, we lift these polygons vertically so that their edges are all horizontal tangents to
the paraboloid C : Z = −(X2 + Y 2) at their midpoints (Figure 20). Each band between
consecutive polygons is triangulated appropriately and the construction is lifted to C
to form a convex terrain with (lifted) P0 as its highest face. Finally, we add an extra
polygon Pk that is a slightly scaled-up version of Pk−1. The band between Pk−1 and Pk
consists of m/(c1 log m) trapezoids, each one of which is now divided up into a stack of
c1 log m parallel subtrapezoids. After lifting, each subtrapezoid finds itself tangent to
C. Setting m = �(n), triangulating all faces produces n faces.

The terrain D is convex: we introduce convexity violations by choosing one stack S of
subtrapezoids, and tilting them ever so slightly so that: (i) each subtrapezoid violates
one common triangle of P1; (ii) the stack S violates O(1) triangles per (Pi, Pi+1) band.
This tilting is done so that the common edge between this stack of subtrapezoids and
the trapezoid of Pk−1 does not move (the tilting is done with this edge hinged). Once
this tilting is done, there will have to be slight modifications performed on this stack
and the stacks adjacent to S to ensure that all stacks are in convex position with each
other. Note that εDn < c′ log n (for some constant c′). Suppose we decide to keep all the
stacks of subtrapezoids. There are only O(1) triangles in each (Pi, Pi+1) band which
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violate convexity with S. Since there are O(log n) bands, the total number of faces
which are not in convex position with the stack are c′ log n. All the remaining faces
are in convex position with each other. This constant c′ is independent of c1 - in other
words, we can make c1 arbitrarily larger than c′.

The filter guarantees to change at most cc′ log n faces. Set c1 log m > cc′ log n > cεDn.
In this way, a query to the common violating triangle of P1 cannot return the triangle
unchanged. Indeed, if it did, then the entire stack S of c1 log m triangles would later
have to be modified, which would prove the filter faulty. Modifying the violating
triangle of P1 appropriately requires knowing where the stack S is placed around the
(Pk−1, Pk) band, which takes �(|Pk|) expected time.

The extension to higher values of ε is quite straightforward. Essentially, the number
of concentric rings is (upto constant factors) equal to εn. Fix some parameter m. We
choose concentric regular polygons P0, P1, . . . , Pk−1 (where k = �(εm)) such that P0 has
a constant number of vertices, Pi has either |Pi−1| or 2|Pi−1| vertices, and Pk−1 has
(c1εD)−1 vertices (for some sufficently large constant c1). The outermost polygon Pk is
as before a slightly scaled up version of Pk−1 and the band (Pk−1, Pk) consists of stacks of
subtrapezoids (as before) with stack size of c1εDm. One of these stacks is tilted to ensure
that it violates one common triangle of P1 but violates the convexity of at most O(1)
subtrapezoids in each ring. The parameter m = �(n) is chosen to ensure that the total
number of faces is n. The distance to convexity εD is �(ε). Using the same argument we
can force a query for a common violating triangle in P1 to make a modification. For this,
the tilted stack of subtrapezoids must be detected, which will take �(Pk) = �(εD−1) time.

THEOREM 3.16. Any convexity filter for an arbitrary terrain D of n faces has a worst
case query time of �(ε−1

D ) for any n such that (log n)/n ≤ εD.
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