INFORMATION AND CONTROL 68, 105-124 (1986)

New Upper Bounds for Neighbor Searching
B. CHAZELLE*

Brown University, Providence, Rhode Island 02912

R. CoLg’

New York University, New York, New York 10012

F. P. PREPARATAY

University of Hlinois/Urbana—Champaign, Urbana, Illinois 61801
AND

C. Yar?

New York University, New York, New York 10012

This paper investigates the circular retrieval problem and the k-nearest neighbor
problem, for sets of n points in the Euclidean plane. Two similar data struc-
tures each solve both problems. A deterministic structure wuses space
O(n(log n log log n)?), and a probabilistic structure uses space O(n log? n). For both
problems, these two structures answer a query that returns k points in Otk + log n)
time. @ 1986 Academic Press. Inc.

1. INTRODUCTION

Intersection search problems have a central place in computational
geometry, and have been the object of intense study in recent years. These
problems are formulated as follows: “Given a file S of n points in d-dimen-
sional space E% and a query, represented by a domain D of E7 of chosen

* This research was supported in part by NSF Grants MCS 83-03925 and ONR and
DARPA under contract N0O0Q14-83-K-0146 and ARPA Order 4786.

* This work was done under the auspices of the NYU/CIMS Laboratory for Robotics and
Experimental Computer Science, which is supported by grants from Digital Equipment Cor-
poration, The Sloan Foundation, and ONR Grant N00014-82-K-0381. Also supported in part
by NSF Grant DCR-84-01633 and by an IBM Faculty Development Award.

 This research was supported in part by Joint Services Electronics Program under Contract
N00014-79-C-0424,

105
0019-9958/86 §3.00

Copyright < 1986 by Academic Press, Inc.
All rights of reproduction in any form reserved.

106 CHAZELLE ET AL.

type (defined by a fixed number of real parameters), report all the points of
S contained in D.” Searching occurs repeatedly, and the file S can be
organized into a data structure particularly suited to achieve a fast query
response. Thus—as is typical of all searching problems—there are three
significant measures of performance: the storage M(#n) of the data structure,
the query time Q(n, k) (where k is the size of the retrieved set), and the
preprocessing time P(n) necessary to construct the data structure. The one-
time cost P(n) is usually assumed to be less important than the continuing
costs M(n) and Q(n, k). Moreover one wishes that Q(n, k) be of the form
O(f(n)+ k), which exhibits two separate additive terms, one dependent
upon the file size (search overhead), the other given by the size of the
retrieved set. In such a case the pair (M(n), f(n)) is an appropriate
measure of the performance of a searching technique.

The investigation of intersection searching problems has met with sub-
stantial success in the case of hyperrectangular ranges, where the search
domain D is the Cartesian product of ¢ one-dimensional intervals, each on
a distinct coordinate axis (Bentley, 1975; Chazelle, 1983; and Willard,
1978). Here the task is facilitated by the fact that each one-dimensional
interval identifies a “slice” of E¢ within which the original d-dimensional
problem can be suitably transformed into a small set of (d — [)-dimensional
problems. Unfortunately, no such property can be exploited for another
important class of ranges, that of spherical ranges, where D is a sphere (in
the L, metric), specified by its center ¢ in £ and a radius 4. Since the (con-
tinuous) set of queries can be partitioned into (a finite number of)
equivalence classes, each class being identified by the retrieved set (a subset
of §), a possible approach to spherical range searching consists of
classifying the query in its equivalence class and then accessing the subset
of S associated with that class. Such an approach would exhibit the desired
behavior Q(n, k)=0O(f(n)+ k), but presumably M(n) would be
prohibitively large. Most of the known results concern the plane (d=2),
and we also refer to this case in this paper. Although our method is poten-
tially extensible to higher dimensions, for that reason we speak of circular
range search.

The original idea of the technique can be traced back to a paper by
Bentley and Maurer (1979). Since circular range search involves proximity,
they used higher order Voronoi diagrams as the structure supporting the
search. Specifically, given a set S of points in the plane, and a nonempty
subset T of S, V(T) denotes the set of points of the plane that are closer to
each member of T then to any member of S— 7. The kth order Voronoi
diagram of S, denoted Vor,(S), for k=1,.,n—1 is defined as

Vor(S)= |J WD)

NEW UPPER BOUNDS FOR NEIGHBOR SEARCHING 107

We say that & is the scope of Vor,(S). Clearly, Vor,(S) is a partition of the
plane (a planar subdivision) and for some 7 the region V(7T) may be empty
(only O(n?) of the 2" — 2 possible choices of T yield a nonempty V(T) (Lee,
1982). Higher order Voronoi diagrams have been extensively studied (Lee,
1982; Preparata and Shamos, 1985) and we simply recall two of their
salient properties (k=1,..,n—1):

(i) Vor,(S) is a planar graph, whose vertices have degree >3, with
O(k(n— k)) vertices, edges, and faces;

(ii) each region of Vor,(S) is a (possibly unbounded) convex
polygon. As for any planar subdivision, a query point can be located in a
region of Vor,(S) in time O(log), using a data structure stored in space
O(k(n — k)) (Kirkpatrick, 1983; Lipton and Tarjan, 1980).

The technique of Bentley and Maurer uses the sequence of Voronoi
diagrams (Vor,(S): i=0, 1,..,[logn|— 1) (as usual, logarithms are taken
in base 2); associated with each region V(T) of any of these diagrams is the
list of the members of T, called the neighbor list. The circular range search
proceeds as follows: Given a query (g, d), where ¢ is a point (the center)
and d is a positive real number (the length of the radius), ¢ is successively
located in Vor,(S) for i=0, 1, 2,..., and the neighbor list is examined until
a point is first encountered that lies further than d from q. At this stage, we
know that the desired points all lie in the neighbor lists examined so far,
and only the last one may contain undesired points.

The analysis of this method is both simple and revealing. First, we note
that the storage requirement of Vor,(S$) (search data structure and
neighbor lists) is O(2*(n—2')), and the global requirement, for
i=0,..,[logn]—1, is O(n*). Second, if k denotes the size of the target set
(ie., the set within the query range), the total size of the examined neighbor
lists is at most 1+2+4+4 - f2L0e8I+1 -4k moreover, if
k <log nlog log n the search overhead (point location in O(log k) Voronoi
diagrams) dominates the size of the retrieved set, while the opposite holds
for k =lognloglogn. Thus Q(n)=O(k +log nloglog n), resulting in an
O(n®, log n log log n) algorithm. The high storage requirements are clearly
undesirable.

The technique displays—in an elementary form—an algorithmic concept
recently fully developed by Chazelle (1983): the concept of filtering search.
This notion prescribes to trade tradictional searching techniques for a two-
step approach: scoop-and-filter. The idea is to collect (scoop) a set of O(k)
points that is guaranteed to include the k desired ones and, in a second
stage, filter out the extraneous items. In this paper we show how a
subtle and thorough exploitation of this approach leads to an
O(n(log nlog log n)?, logn) algorithm for circular range search. This

108 CHAZELLE ET AL.

represents the first attractive solution for a problem that for several years
has eluded the development of an efficient algorithm. The only efficient
solution for circular range search previously known uses linear space and
allows us to answer any query in time O(k + n*), for « slightly less than 1
(Yao, 1983). Before describing and analyzing the algorithm, in the next
section we introduce a data structure which is crucial to the efficiency of
the technique.

We also show that this algorithm (with minor changes) solves the k-
nearest neighbor problem, with the same complexity. In this problem, the
query consists of a pair (g, k) and the answer is the set of & points closest
to g (if there are ties for the kth nearest point, we return any one—we will
use this convention throughout). Finally, we describe a probabilistic
method for building the underlying data structure that gives our algorithm
a complexity of O(n log? n, log n).

2. THE ATH NEIGHBOR DIAGRAM

Given an n point set S= {p,..., p,} in the plane and an arbitrary point
g, the kth neighbor of g in S is some p;e S such that dist(p;, ¢) is the kth
term in the ascending sequence {dist(p,, g): i=1,..,n}. The kth neighbor
diagram for S, denoted near,(S), is the partition of the plane into the
regions of points that have identical kth neighbors. We now elucidate the
structure of near,(S).

Consider first the diagram Vor,_(S). The reader is referred to Lee
(1982) and Preparata and Shamos (1985) for a thorough treatment of
higher order Voronoi diagrams. Referring to Fig. 1, each region of
Vor, _ (S) (a convex polygon) is associated with a subset T of S of car-
dinality k—1. To construct Vor.(S) we partition polygon V(T) in

2

e

5

FIGURE 1

NEW UPPER BOUNDS FOR NEIGHBOR SEARCHING 109

Vor, _ (S} by intersecting in with Vor (S — T): in this manner V(T) is par-
titioned into a collection of convex polygons, each belonging to
V(Tu { p;}) for some p,e S—T. Assuming that V(T { p;})# &, consider
now the polygon Q,=V(Tu{p,})nV(T) (a convex polygon, being the
intersection of two convex polygons). For any ge Q,, T is the set of the
(k — 1) points of S closest to ¢, while TU { p;} is the set of k closest points:
it follows trivially that p, is the kth neighbor of ¢, according to the earlier
definition, or equivalently, that Q, belongs to the region associated with p,
in near,(S). This discussion also shows

near,(S)= Vor,_ (S)u Vor,(S).

This simple relation has the following interesting consequences:

1. If the points of S are in general position (no four are cocircular),
each vertex of near,(S) has either degree three or degree six: the degree-6
vertices are exactly those that are Voronoi vertices both in Vor, (S) and
Vor,(S), whereas the degree-3 vertices are Voronoi vertices either in
Vor, _,(S) and Vor, _ (S) or in Vor,(S) and Vor,, (S);

2. near,(S) is a planar graph with O(k(n—k)) vertices, edges, and
faces. Inded, the sets of the vertices and edges of near,(.S) are the unions of
the homologous sets of Vor, _ (S) and Vor,(S), and all the latter have car-
dinalities O(k(n — k));

3. Point location in near,(S) can be done in O(log n) time, using a

data structure stored in O(k(n — k)) space (Kirkpatrick, 1983; Lipton and
Tarjan, 1980).

We also observe that, since near,(S) has O(k(n— k)) faces, the regions
R, of near (S} associated with p.e S consists of O(k) polygons on the
average. It is also relatively easy to show that the polygons of R; form a
chain, two consecutive terms of which share a vertex (a degree-6 vertex of
near,(S)). An instance of near,(S), for |S| =7 and k=4, is shown in Fig. 2.
The search algorithm described in the next section will require that with
each face Q of near,(S) we associate the neighbor list of the region of
Vor,(S) containing Q. Our next objective is to exhibit a representations of
near,(S) and its neighbor lists that can be stored in only O(k(n—k))
storage.

We denote by Del,(S)—the Delaunay graph of order k on S, (Lee, 1982;
Preparata and Shamos, 1985—the well-known dual graph of Vor,(S),
where vertices of the former and faces of the latter are in one-to-one
correspondence, and adjacent vertices on Del,(S) correspond to adjacent
faces in Vor,(S) (faces are adjacent if they share an edge and not just a ver-
tex). We have already observed that if no four points in § are co-circular,
the vertices of Vor,(S) have degree three, therefore Del, (S) is a

110 CHAZELLE ET AL.

FIGURE 2

triangulation. In all cases, Del,(.S) is connected, which makes it possible to
define a spanning tree of Del (S), denoted T,. For the sake of simplicity,
we transform 7, into a binary tree 7* (ie., a tree with all degrees at most
three), by reducing high degrees if necessary. To do so, assume that v is a
vertex of T, of degree m>3 and let v,,.., v, be its adjacent vertices in

clockwise order. We replace v by m —2 vertices w,,.., w,, _,, defined as
follows: w, is adjacent to v,, v,, w,, and w,, _, to W,,_5, U, _,, U,,; €ach
other vertex w, is adjacent to w;_, v, ., w, ., (cf. Fig. 3).

This transformation of T, at most doubles the original number of ver-
tices of Del,(S): indeed, let u denote the number of vertices of Del,(S) and
let v; be the number of vertices of degree / in T,. If is the maximum
degree in T,, we have 3, ;s v,=pand X, ., cs iv,=2(n— 1) (since T is
a tree). Let |T*| denote the number of vertices of T*. Since a vertex of T,
of degree i > 3 is replaced by i — 2 vertices in T*, the size of T* is given by

IT* =v,+v,+ Y vl(i=2)= Y iv,—v,~2 ¥ v,<2u-2.

3<i<o 1<i<d I<ikd

The following is a folk theorem; thus given without proof.

i,

|

e

NEW_UPPER BOUNDS FOR NEIGHBOR SEARCHING 111

FIGURE 3

FacT. Let T be a binary tree with m vertices. It is possible to find, in
O(m) operations, an edge of T whose removal leaves two (connected) sub-
trees TV and T, with ar most 2m/3 vertices each.

The decomposition process embodied by this fact can be applied recur-
sively on the tree T*, until we achieve a decomposition of the original tree
into connected subtrees T¥..., T*, each one having between k and 3k ver-
tices. This is always possible since in each splitting step each component
has at least one third as many vertices as its parent. Note also that a given
face of Vor,(S) (mapped to a vertex of Del,(S)) may be represented as a
vertex in several of the subtrees T, ..., T due to the node splitting incurred
in the transformation of 7, to T* We will, however, allow only one
instance to be accessible in the search process.

Let us now refer to one such subtree T* and consider the neighbor lists
associated with each of its vertices. We argue that these neighbor-lists can-
not be substantially different from each other. Let g(«) be the neighbor list
of the face of Vor,(S) that corresponds to the vertex v of T*. Two adjacent
vertices u, ve T* correspond either to the same face of Vor,(S) or to two
adjacent faces. For this reason, o(u) and ¢(v) differ in at most one element
(1.e., the symmetric difference of o(«) and o(v) has cardinality either O or 2).
This allows us to set up an implicit representation of neighbor-lists within
each subtree T#. The simplest solution consists of merging all the neighbor
lists pertaining to T into a superset S;=), o(u) for i=1,..., /. Since T*
does not have more than 3k vertices and each neighbor-list has exactly &
elements, we have the relation |S,| < 4k. Since on the other hand, |T}| > &,
we have /< |T*|/k, from which we readily derive 3", ., <, |S:| </max |S;] <
(IT*|/k) 4k =4|T*|. The inequality |T*| <2u—2 derived earlier implies
that 37, <, </ <8p.

We can now give a complete specification of the search data structure for
given S and k, denoted N,(S). The diagram near,(S) is preprocessed and
organized for efficient planar point location (Kirkpatrick, 1983; Lipton and

643/68/1-3-8

112 CHAZELLE ET AL.

Tarjan, 1980). With each face f of near,(S) we associate the index i of a
subtree T* containing the dual vertex of f (in case several vertices qualify
as duals of f the tie is broken arbitrarily); with this index we associate, via
a pointer, the list of the members of set S; defined above. Since the planar
point location structure can be stored in space proportional to the number
O(k(n—k)) of vertices of near,(S), and the total storage requirement of
{S;| i=1,.,1} is bounded by 8u=O(k(rn—k)), our claim is established.
We note that using N,(S) we can find the k nearest neighbors of a point in
time O(k + log n).

3. THE CIRCULAR RANGE SEARCH PROBLEM

We begin with an informal description of the approach. The main draw-
back of Bentley and Maurer’s method is to use higher order Voronoi
diagrams with prohibilively large scopes. We can circumvent this difficulty
by turning to the fundamental principle of filtering search: the larger the
output, the more naive the search. The idea is to estimate increasingly
tighter lower bounds on the number of points to be reported and use these
bounds as credits to pay for less efficient searching.

An essential ingredient of the method is an efficient device for handling
queries which generate small output. Let # be an arbitrary positive integer
(h determines the scope). Let T be any subset of S; we define L,(T) as the
set of structures

Ly(T) = {Na 10gn (T) 10 < i<max(0, [og(h/ log n) N}

For consistency, we define N (T)=T if k= |T]. In this way, L,(T) is
always well defined, even for very small subsets 7. Returning to the original
problem, we show how to use L,(S) to answer any query (g, d), provided
that the output size k does not exceed s To do so, visit the structures
{Nai1ogn (S)} in the order i=0,1,2,.,. Using Ny o, (S) find the
27 log n Jth neighbor p of ¢. I p is found to lie at a distance from ¢ greater
than d (or if all the structures in L,(.S) have been examined), then retrieve
the 2 log n_| nearest neighbors of ¢ and stop; otherwise proceed to the
next structure. Let j be the value of i upon termination. Note that since the
largest scope in L,(S) is at least A, the set of neighbors reported from the
structure Ny 10g.,(S) includes the & desired points. Filtering the set com-
plets the query answering in O(k) time. It is immediate to see that the cost
of all the planar point locations (except for the first one) is of the order of
the number of points reported, therefore the running time of the algorithm
s O(k +log n). It easily follows from Section 2 that the space required to
store L,(S) is O(hn). :

1
r
i

NEW UPPER BOUNDS FOR NEIGHBOR SEARCHING 113

We are now ready to describe the data structure for the general case. The
main (primary) component is a complete binary tree T whose leaves are in
one-to-one correspondence with the points of S. In this section we do not
make any assumption on the nature of this correspondence. Later in this
paper, we show how particular assignments can be used to our advantage
(see probabilistic algorithm in Sect. 6). A search, prompted by a query
(g, d), will be viewed as the visit of a subtree T, , of T, denoted T, when d
is understood, where the term “subtree” refers here to any connected sub-
graph of T that contains the root. With each node ve 7, we associate a set
of points S(v) < S and a scope k(v) > 0. S(v) is defined as the set of points
whose corresponding leaves have v as a common ancestor, and &(v) is for
the time being left unspecified. k(v) can be viewed as a parameter to the
algorithm in the sense that it conditions its efficiency but not its
correctness; any assignment of scopes to the nodes of T will provide a
correct algorithm. The secondary structure at node v is simply defined as
the pair (near,(S(v)), Liq)(S(v))).

From this description of the data structure, we can outline the algorithm
for answering a query (g, d). Starting at v =root, the algorithm operates
recursively as follows: retrieve the k(v)th neighbor of ¢ by searching
near,,,(S(v)). If this point lies further than d from g, the output size must
be within k(v), so searching L,.,(S(v)) will complete the computation.
Otherwise, we must pursue the exploration of T; to do so we distinguish
between two cases. If v is a leaf of T, we report the unique point associated
with it; in this case L,,,(S(v)) = S(v) is a singleton. Otherwise no reporting
takes place; instead, we iterate on the same process with respect to the two
children of v.

The algorithm is trivially correct, so we need only investigate its running
time Q(n, k). As mentioned earlier, the computation involves the visit of a
subtree T,. Let D, , (or D, if d is understood) denote the tree obtained by
removing from T, each of its leaves (i.e., nodes with outdegree 0 with
respect to T,). Note that D, may contain internal (i.e., non-leaf) nodes with
outdegree 0. The following lemmas are central to the ensuing analysis.

LeMMA 1. Q(n, k)=O0(k+ (1 +|D,|) log n).

Proof. Let v be an arbitrary node of 7. If v is a leaf of T, the k" points
of S(v) which lie within a distance d of ¢ are reported at a cost of
O(k' +log n) steps, as derived earlier in the discussion of the structure
L,(T). Otherwise the only cost incurred at v is that for a planar point
location, ie., O(logn). This shows that Q(n, k)=O0(k+|T | logn), from
which our claim is easily derived. ||

114 CHAZELLE ET AL.

Our next task is to provide a judicious assignment of scopes to nodes so
that

|D,| log n=0(k). (1)

From Lemma 1, this will ensure that Q(n, k)= O(k + log n). Suppose that
for each node ve T, we have k(v) =[log?n’]. Let m be the number of leaves
of D,. Each of these m nodes yields at least ['log® n] points in S(v) within a
distance d from ¢, and no point appears in more than one set S(v),
therefore k > m[log® n]. Since on the other hand |D | <m[log n (indeed,
the depth of D, is bounded by [lognl), we have |[D,|logn<
m[log? n7| < k, which satisfies (1) and therefore guarantees a running time
Q(n, k)= O(k + log n). The amount of storage, M(n), required by the data
structure is easily shown to be O(nlog? n).

A more careful assignment of scopes to the nodes of T can lead to a sub-
stantial reduction in space, as we proceed to show next. Let the level of
node ve T, denoted /(v), be the number of ancestors of v (including itself).
The smallest level is 1 (the root) and the maximum [log n]+ 1. We define
z(v) as the maximum number of trailing 0’s (i.e., consecutive (’s starting
from the right) in the binary representation of /(v). We easily check that for
any ve T and n> 4,

0<z(v)< | log(1 +[logn]) I<loglogn+ 1. (2)

Our most efficient algorithm for the circular range search problem will
be attained for the following scope assignment:

k(v)=2"""log nlog log n. (3)

After a trivial lemma, we will be ready to establish the major result of
this section.

LEMMA 2. Let i,j be two positive integers with i<j The sequence
{i,i+1,.,j—1, j} must contain at least one integer p (p = (i+ j)/2) whose
binary representation contains at least log(j— i+ 1) —2 rtrailing 0’s.

Proof. Any sequence of 2“ consecutive integers must contain an integer
with at least u trailing 0’s, therefore among the [(j— i+ 1)/27] candidate
integers, at least one will have at least | log[(j— i+ 1)/27 | trailing 0’s. |

THEOREM 1. It is possible to solve the circular range search problem in
O(k + log n) time, using O(n(lognloglogn)?) storage; k denotes the number
of points to be reported. The preprocessing time is O(nlog® n(log log n)?).

NEW UPPER BOUNDS FOR NEIGHBOR SEARCHING 115

Proof. Evaluating the running time is the most delicate part of the
complexity analysis, so we will start with the analysis of space and prepro-
cessing time. Consider the sequence of consecutive levels in 7, {1, 2,..,/}
with /=1+[logn). Exactly [,=[//27] have no trailing O’s, exactly
/,=[(/—1)/47 have one trailing zero, and more generally, exactly /,=
[(I—27+1)/2"*'7 have i trailing 0’s. This implies that at most [//27+!]
levels have exactly i trailing 0’s. We evaluate the storage by adding
up upper bounds to the contributions of all levels with exactly 0, 1, 2,...
trailing 0s. From (2) and (4) it follows that M(n)=
O(Z()Sislog log n+1 ([/2’+ l)2in lOg n log log n)’ hence

M(n)= O(n(log nlog log n)?). (4)

To evaluate the preprocessing time, we use Lee’s (1982) algorithm for
constructing both near,(S) and Vor,(S) in time O(k?|S| log|S|). We easily
derive that the construction time is

0 (Y (/2" ") 2%(log nlog log n)* n log n),
O<i<loglogn+1
that is, O(n log® n(log log n)?).

Turning now to the time complexity of the algorithm, we wish to show
that condition (1) is satisfied. To do so, we partition D, into a collection of
node-disjoint paths, P,,..., P,,, with m again.being the number of leaves of
D,. P, is the longest path from the root of T to a leaf of D,. This path
breaks off D, into a forest of trees each of them rooted at a child of a node
of P,. Remove P, from consideration at this point, and let P, be the
longest path in the forest. The parent of the root from which P, emanates
is a node of P,, called the parent of P,. Iterating on this process yields

P}s"'s Pm (Flg 4)
P, P

FiGure 4

116 CHAZELLE ET AL.

Since from the discussion of the structure L,(T) we know that each leaf
of T, “pays for itself,” the computational costs to be accounted for are
those of he paths P,,.., P, resulting from the decomposition of D,.
Specifically, path P, has a search cost |P, logn. This cost must now be
charged to the search “payoff,” i.e., to points of S retrieved at the leaves of
T,. Let P,={v,,.,v,}, with I(v;, ;) =1(v;)+ 1 for each j (1< j<1t). From
Lemma 2, we know that for some p such that (14 1)/2< p<t, we have
z(v,) = log t — 2, therefore k(v,) > (¢/4) log nlog log n. The node v, is called
the creditor of P, and is denoted w,. Note that if =1, we have w,=v,.
Observe that, since w,e D, each point in S(w;) will appear in the retrieved
set; a difficulty—to be confronted shortly—is that a reported point p may
belong to more than one set associated with a creditor node.

The charging scheme assigns the cost of P, uniformly to the points of
S(w;). Since |S(w;)| = (|P;|/4)log nloglogn, each pe S(w;) is charged at
most 4/log log n by P,. We now evaluate the maximum number of times a
point p may appear in sets S(w,),..., S(w,,). Suppose that p is retrieved at a
leaf of T, whose parent is a node of path P,. With reference to Fig. 5, we
ascend towards the root and traverse nodes of P,, P,,,..., P, in this order.
Assume now that pe S(w,) and pe S(w,), for a<b, and that for each
a<c<b, p¢ S(w,). The condition pe S(w,) and pe S(w,) implies that w,
is an ancestor of all nodes of P, . The mechanism that constructs the path
decomposition of D, ensures that |P, | is less than the path length from w,
to the leaf of P, ; moreover, since by construction w, belongs to the lower
half od P,, we conclude that 2|P, | <|P,|. It immediately follows that p
can be shared by at most loglogn creditor sets. Recalling that each

FIGURE 5

NEW UPPER BOUNDS FOR NEIGHBOR SEARCHING 117

creditor set charges at most 4/log log n units to a point we conclude that
each point is given a charge O(1), thereby collectively absorbing the search
cost. As a final comment we observe that the total cost of visiting D,, i.e.,
|D,| logn is upper bounded by the total payoff of the creditor nodes,
2 <i<mk(w;), multiplied by 4/loglogn; but >, _,_,. k(w,)<kloglogn,
whence

|D,|log n < 4k. (5)

The proof is now complete. ||

4. THE k-NEAREST NEIGHBOR PROBLEM

We show in this section how a local transformation of the algorithm for
the circular range search problem gives an efficient solution to the k-
nearest neighbor problem. The query is now a pair of the form (q, k) and
the output is the set of k points in S closest to ¢. Let 6 be the distance from
g to its kth neighbor. The problem can be solved by applying the previous
algorithm to the query (g, o). Since unfortunately is unknown, we must
find a guiding criterion which can work as a substitute for the knowledge
of 6. The algorithm will be described in two stages.

Let T, and D, be the subtrees of T defined as in the previous section
(with respect to the pair (g, 6)). Let n,(S(v)) be the k(v)th nearest neighbor
of ¢ in S(v), and let d(p, q) denote the Euclidean distance between p and gq.
Visiting T, involves growing a subtree of T, denoted T*, in the following
manner: the current leaf v of T* with the minimum value d(q, n,(S(v))) is
chosen and its two children (if any) are added to T*. When the tree T*
reaches a certain threshold size, i.e, when its number of nodes equals a
predetermined value «, or when no more nodes in 7 are available,
whichever happens first, we stop the process and retrieve the k-nearest
neighbors of ¢ from the sets {S(v)|v is a leaf of T*}. This terminates the
first stage. We implement these operations by maintaining a priority queue
with the values d(g, n,(S(v))). Every time nodes are added, we search the
relevant near,,,(S(v)) structures to update the priority queue.

We must choose a threshold «, so small that the visited tree T* is
guaranteed to contain T, as a subtree. We claim that o =1+ 8k/log n] is
an adequate choice. Let T* be the tree obtained by the process outlined
above, with | T*| = a. Since the visit of each node of T* costs time Oflog n),
the running time of the completion of this stage is O(k + log n). From (5)
we derive that |T,| <2|D,| + | <a=|T*|, which verifies the necessary con-
dition |T*| > |T,|. We now show that T, is a subtree of T*. For each leaf v
of T, that is neither the root nor a leaf of 7, we have d(q, n,(S(v))) > 6 and

118 CHAZELLE ET AL.

d(q,n(S(w))) <6, where w is the parent of v. The priority queue
mechanism ensures that the children of a leaf of T, cannot be added to T*
before all the leaves of T, have been added. Since a>|T,|, our claim is
now obviously true. This shows that the set of structures {L,,(S(v))|vis a
leaf of T*} contains all the necessary information for us to retrieve the k-
nearest neighbors of g. Recall that L., ,(S(v)) is a set of preprocessed
Voronoi diagrams with geometrically increasing scopes; L;.)(S(v))=
{Ly(v), Ly(v),...] with L(v) =N (og (S(v)).

We now begin the second stage of the algorithm, the search of
{Li)(S(v))|v is a leaf of T*}. To aid the intuition, let us figuratively
attach to each leaf v of T* a chain of nodes, each storing one of the struc-
tures Lo(v), L,(v),..., in this order. This representation allows us to restart
the computation in a similar fashion. We continue growing the tree T* by
visiting the nodes of these added chains, according to essentially the same
criterion as before. For the sake of consistency, we refer to the child of a
chain-node as its successor. Adding to T* the ith node in the chain from v
involves searching L,(v), examining the 2/ log n | nearest neighbors of g in
S(v) and computing the maximum distance from g to one of these points.
This value is then inserted in the priority queue. At the beginning of this
second stage of the algorithm, we assume that the priority queue contains
the distance from ¢ to its (log »)th neighbor in S(v), for each leaf v of T*.
At the generic step, the node corresponding to the top of the queue is
selected, and its child (if any) is added to T*; of course its corresponding
entry is deleted from the priority queue, while the child’s entry is inserted.
As usual, as soon as the tree T* grows over a certain threshold, f, we stop
the process. The measure of growth will be slightly different here, however.
Let N(w, gq), or simply N(w) if ¢ is understood, be the set of neighbors
associated with a node w of some chain; if w is the ith node of the chain,
we have |[N(w) =27logn | The process terminates as soon as no new
node is available or the sum of all quantities |N(w)| for all leaves of T*
exceeds f; this sum is denoted C(T*). At this point we form the set W,
defined as the union of all the sets N(w) for each leaf w of T*. Finally,
using a linear selection algorithm (Blum, Floyd, Pratt, Rivest, and Tarjan,
1973), we retrieve the k nearest neighbors of g from the set W.

Of course, it is crucial for the correctness of the algorithm to ensure that
the set W does indeed contain the k nearest neighbors of ¢g. To do so, we
set =8k +2logn. As in the previous case, the priority queue guarantees
that as long as T* has a leaf w with a child in its chain, yet with all the
points in N(w) within é from g, the child of a leaf w’ with a point in N(w’)
further than 6 from g will never be added to T*. Let z be any node of a
chain and let z’ be its child. Since N(z') is twice as large as N(z), it seems
that setting f# = 2k should be suficient. Unfortunately, it is easy to see that
in the worst case, the leaves of T* in its final stage will be the first nodes of

NEW UPPER BOUNDS FOR NEIGHBOR SEARCHING 119

all the chains, except for one of them. Let 1 be the number of leaves of T%;
in order to allow for the consideration of all relevant neighbors, we must
ensure that C(T*) can reach the value [logn |+ 2k. Since 1< |T, | <
a=[1+ 8k/log n, B does not have to exceed 10k + 2 log n. The time cost of
this second phase of the algorithm is clearly proportional to f, so here
again, the running time is O(k +log n). We will note that the threshold
values o and f could be fine-tuned to improve the algorithm by constant
factors. As in Theorem 1, we easily derive that the time to construct the
data structure in O(nlog® n(log log n)?).

THEOREM 2. [t is possible to solve the k-nearest neighbor problem in
O(k +log n) time, using O(n(log n log log n)?) storage; k denotes the size of
the output. The preprocessing time is O(nlog® n(log log n)?).

S. TRADING TIME FOR SPACE

It is possible to lower the space requirements of the previous algorithms
at the price of some increase in the query time. We will present an
O(n log n)-space data structure that allows a query to be answered in time
O(k log* n). Let T be a complete binary tree defined over the n points of S;
each leaf of T corresponds to a distinct point, with the n points appearing
sorted by ascending abscissa x from left to right. Each node v of T spans a
subset S(v) of S consisting of the points stored at the leaves of the subtree
rooted at v. The preprocessing involves computing the (order 1) Voronoi
diagram of each subset S(v). Each Voronoi diagram is preprocessd for
efficient planar point location. Using divide and conquer, the data structure
can be computed in time O(nlog n) (Preparata and Shamos, 1985).

Consider now the k-nearest neighbor problem. We answer a query (g, k)
by first computing the nearest neighbor of ¢ in S, using the structure
Vor,(S(root)), where S(root)=S. Next we visit the two offsprings of the
roots and proceed as in the method described in the preceding section; in
the present case the priority queue yields the neighbors of ¢ in order of
increasing distance. There are a few obvious modifications, suggested by
the special nature of the problem: let p be the point just extracted from the
top of the queue, and let v be the corresponding node in T. It is easy to see
that p will “drag” the computation all the way down to the leaf, w, where it
is stored. Once this leaf has been reached, we will delete p from the queue
and iterate. Note that it is useless to search the structures Vor,(S(z))
encountered on the path from v to w, since this will always produce the
same answer, i.e., p. Instead, we shall just visit the siblings of the nodes on
this path, thereby cutting to a half the computational search work. Thus,
since the number of nodes of T visited by the search is O(k log n) (actually,

120 CHAZELLE ET AL.

O(k log(n/k)), as can be easily shown) and each visit has a cost of O(log n),
the running time is O(k log® n). The same technique applies to the circular
range search problem as well (discarding the priority queue for which we
have no use).

THEOREM 3. It is possible to solve the circular range search problem and
the k-nearest neighbor problem in O(k log> n) time, using O(nlogn) space;
in both cases, n (resp. k) denotes the input (resp. output) size. The pre-
processing time is O(nlog n).

6. THE PROBABILISTIC METHOD

We say this method is probabilistic because the algorithm to build the
data structure is probabilistic. However, once the data structure is built the
searches are wholly deterministic. We use the data structure described in
Section 3. The scope at node v is k(v)=clog|S(v)|, if |S(v)| =n,, and is
|S(v)| otherwise, ¢ and n, being constants chosen below. We define
Nearest, (X, x) to be the k points in X closest to x. We assign the points S
to the leaves of 7' in such a way that for each ve T, with |S(v)| = ng, if wis
a child of v, then there is a constant 4 such that for any location x:

|Nearest,,,(S(w), x) — Nearest,,,(S(v), x)| = dlog|S(v)|. (6)

In the Appendix we show that such an assignment can be found by a
probabilistic algorithm.

It is clear the space used by this data structure is O(n log® n). Next, we
show that a query runs quickly, assuming we have assigned the points of S
in the manner described above.

LEMMA 3. Q(n, k)= O(k +logn).

Proof. The following abbreviation is useful:

N(A, q) = Nearest, ., 4/(4, q).

Define New(w, ¢) = N(S(w), g) — N(S(v), q), where v is the parent of w
inT.

Consider a query (g, d); let T, and D, be as in Section 3. Let w be an
arbitrary node of T,. If w is a leaf to T, the k' points of S(w) that lie
within a distance d of ¢ are reported at a cost of O(k' + log|S(w)]) steps, as
derived earlier. Otherwise, if w is not a leaf of T, the only cost incurred at
w is that for a planar point location, i.e., O(log|S{w)|); at each such vertex
w (except the root) there are 0(log|S(w)|) points in New(w, q), each one

NEW UPPER BOUNDS FOR NEIGHBOR SEARCHING 121

within a distance d of ¢. So the cost incurred at nodes in D, is bounded by
O(log n+3.cp, - {roor} |INEW(W, g)|). We next show that the sets New(w,)
are disjoint. Let v, and v, be the children of v; since New(v;, g) # &,
i=1,2, we deduce N(S(v), g) = N(S(v,), ¢) v N(S(v,), q), where v, and v,
are the children of v. This implies, for w an ancestor of v, that
N(S(w), g)n N(S(v,), 9) = N(S(v),q), i=1,2. Hence New(w,g)n
New(v,, g) = & for w a proper ancestor of v;, /=1, 2. For w not a proper
ancestor of v, since Sw)nSw,)= we have New(w,g)n
New(v;, q)=¢5. Hence the sets New(w,q) are disjoint. Thus
Zwe Dy — {root} |NCW(W, ‘1)| = IUwe[)‘lf {root} NCW(W, 4)| = O(k) So the cost
incurrent at nodes in D, is O(k + log n). The cost incurred at leaves of T, is
bounded by

0<k+ Y log[S(w)[)<0<k+2 Y long(v)[+logn>

weTy— Dy ve Dy — {root}

sO(k+ Y |New(w, q)| +10gn>=0(k+logn).

ve Dy — {root}
So the search time is bounded by O(k +logn). |

In light of our previous results, we can conclude.

THEOREM 4. [t is possible to solve the circular range search problem and
the k-nearest neighbor problem in O(k +log n) time, using an O(n log®n)
data structure computed by a probabilistic algorithm; k denotes the size of
the output.

7. CONCLUSIONS

The contribution of this work has been to propose economical methods
for solving a number of neighbor problems in the Fuclidean plane. In all
the problems considered, the size of the output varies as a function of the
input. This allowed us to use filtering search and, by doing so, save storage.
None of our algorithms will be effective, however, if instead of asking for a
list of points meeting the specifications of the query, one was to require,
say, the cardinality of the set, or for that matter any single-valued function
thereof. The existence of efficient algorithms for handling these cases is still
an open question. As we already mentioned, we believe that our technique
can be generalized to higher dimensions: carrying out the generalization in
all its particulars, however, remains to be done.

122 CHAZELLE ET AL.
8. APPENDIX

We show that we can assign the points of § in the manner claimed.
It suffices to show that given a set X of n points, n > n,, we can divide X
into two disjoint sets 4, and A,, each of #/2 points, such that for each
location x:

IN(A,, x)— N(X, x)| >dlog|X|, i=1,2.

For the probabilistic construction we further require that at least half the
possible pairs of sets (A, A,) satisfy this condition.

As remarked in Section 1 there are O(cnlog|X|) possible sets N(X, x)
(the neighbor lists corresponding to the faces of Vor, .. 5 (X); let f be the
constant of proportionality.

Claim (proved below). There is a choice of ¢ such that given fenlogn
sets X, S X, each of size ¢ log n, at least one half of the disjoint pair of sets
A,, A, X, each of size n/2, satisfy |X;n A;| > glog n, for some constant
g>1,and for all 1 <i< fenlogn, j=1,2, and n2n,.

Let the sets X, in the claim be the fenlogn possible sets N(X, x). We
have

(1) |X;nA,l>glogn
(i) |N(A4,, x)"N(X, x}|=clogn—|X,n A,|, where X, = N(X, x).
(iii) IN(4,, x)| = clog(n/2).
Se |N(A4,,x)—N(X, x)| > clog(n2)—clogn+glogn = glogn—c >
dlogn=dlog|X|, withd=g—1, |[X]|22. As g> 1, d>0. Thus a proof of

the claim implies a probabilistic algorithm for assigning points to the leaves
of T, in the manner described.

Proof of Claim. Let ¢ =8/log(27/16). We count the choices of 4, which
make one of the conditions fail, and show that with probability >} a ran-
dom choice of A4, succeeds, for n>ny, and some g > 1.

Number of choices of A4, violating condition | X, A4,| > glog n,

clogn\/n—clogn
g < i)(nj2—i)
0<i<glogn

Number of choices of 4, violating some condition,

1 —cl
caoman 3 ()

Ogigglogn 4

NEW UPPER BOUNDS FOR NEIGHBOR SEARCHING 123

Number of Choices of 4, =(,},). Taking g =c/4, and for large enough n,
the fraction F of choices violating some condition is given by

clogn\/ n—clogn n
F<2 1 2 . 7
reentogn” (0t) oen) () ™
By Stirling’s approximation, for large enough #,
(c log n>
glogn
< 2(clog n)"*(c log n)“'oe"
~(2m) (g log (e — g) log n) (g log 1) ™" [(c — g) log n]* *¢"
8 . 41/’4(' log ;1(4/3)3;’4(* log n 8 . 4(' log n
< (27[)1/2(3(,)1/2 s (6cn)1/233/4(-logn (8)
and
172 . n n
Ve s 2 ©)
n/2) 7 22m)"n/2(n/2)" " (2nn)"?
Also

(n—clogn >
- \n/2 —glogn

2(n—clogn)'?(n—clogn)"<'o&"

< (27)'2(n/2 — c/4 log n)"*(n/2 — 3/4c log n)'?

< X (/2 — dj4 log ny"2~ 4198 (/3 3ac log ny? ¥4 los >
< 4 < n—clogn >"/2 “/dlogn
T (21)' 2 (n—2clog n)? \nj2 —c/4log n

n—ce log n n/2 —3/dclogn
X <n/2 ~3/4c log n>
<8,2r:7(-logn (/4 logn n/2 —cidlogn
(27n)'7? n/2 —cfdlog n
y <1 N C/4 lOg n >n/23/4(' log n
n/2—3/4clogn
g.on—c Iognz ‘e~ 1/4¢ logn el/2<' log n
(27n)'?
16_2n7<‘logn
<
(2mn)'?

for large enough n

=~

(10)

124 CHAZELLE ET AL.
By (7), (8), (9), and (10)

o 20fkn(log n)’8 41571627\ "(an)
= (6nc)1/233/’4clogn(2nn)l/22n

64fc’b(log n)*2< 08"
(67[(’) 1/2 33/4(- log n
16

c/dlogn
< 1/2n? (ﬁ) for large enough n,

1'12

n('/4 log(27/16)"

<12

Since ¢ =8/log(2}), we have F<4, and g > 1. Take n, to be the smallest n
satisfying all the conditions “for large enough ».” The claim now follows.

RECEIVED: June 28, 1984; ACCEPTED: August 19, 1985

REFERENCES

BENTLEY, J. L. (1975), Multidimensional binary search trees used for associative searching,
Comm. ACM 18, 509-517.

BENTLEY, J. L., AND MAURER, H. A. (1979), A note on Euclidean near neighbor searching in
the plane, Inform. Process. Lett. 8, No. 3, 133-136.

BLum, M., FLoyp, R. W., PraTT, V. R.; RivEsT, R. L., AND TarJAN, R. E. (1973), Time
bounds for selection, J. Comput. System Sci. 7, No. 4, 448-461.

CHAZELLE, B. (1983), Filtering search: A new approach to query-answering, in “Proc. 24th
Annu. Sympos. Found. of Comput. Sci., Los Angeles,” pp. 122-132.

KirkraTrICK, D. G. (1983), Optimal search in planar subdivisions, SIAM J. Comput. 12,
No. 1.

Leg, D. T. (1982), On k-nearest neighbor Voronoi diagrams in the plane, /[EEE Trans. Com-
put. C-31, No. 6, 478-487.

LiprToN, R. J., aND TAarsaN, R. E. (1980), Applications of a planar separator theorem, S/AM
J. Comput. 9, No. 3, 615-627.

PREPARATA, F. P., aND SHAMOs, M. 1. (1985), “Computational Geometry: An Introduction,”
Springer-Verlag, New York.

WiLLarp, D. E. (1978), “Predicate-oriented database search algorithms,” Harvard Univ,
Aiken Comput. Lab., Ph.D. thesis, Report TR-20-78.

Yao, F. F. (1983), A 3-space partition and its applications, in “Proc. 15th Ann. SIGACT
Sympos.,” pp. 258-263.

