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LOWER BOUNDS ON THE COMPLEXITY
OF POLYTOPE RANGE SEARCHING

BERNARD CHAZELLE

1. INTRODUCTION

Orthogonal range searching and simplex range searching have received much
attention recently in the computational geometry literature. Whereas the for-
mer problem is nearing a definitive solution, however, the complexity of simplex
range searching has long remained elusive. To state the problem simply, suppose
that we are given »n points in Euclidean d-space, fixed once and for all, and m
units of computer memory. We wish to organize the memory to be in a position
to answer the following type of queries efficiently: Given an arbitrary simplex
g, how many of the »n points lie inside ¢ ? A natural variant of the problem
calls for reporting the points in question and not simply counting them. More
generally, it is customary to weight the points ahead of time and then ask for
the cumulative weight of the subset of points that fall within the query. There
is abundant practical application to motivate research on this problem [5, 6, 7,
10, 11, 15, 18, 20, 22]. For example, clipping and removing hidden surfaces
in computer graphics are fundamental tasks whose computational bottlenecks
are instances of simplex range searching. Also of great interest is the central
theoretical question lying underneath: What is the most efficient way of orga-
nizing information to support a given class of queries? What takes this question
apart from the classical problem of searching a linear list is the power of re-
dundancy. While oversupply of memory space is usually of marginal interest
when searching a linear list, it is often the key to efficiency in multidimensional
searching. For this reason, the principal research activity in that area has been
the investigation of space-time trade-offs.

Our main result is a family of lower bounds on the space-time complexity of
simplex range searching. We prove that the worst case query time is Q(n/\/m)

in the Euclidean plane, and more generally, Q((n/logn)/ m'/ d) in d-space, for
d > 3, where n is the number of points and m is the amount of storage

available.' These bounds hold with high probability for a random point-set
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(from a uniform distribution in the unit d-cube) and thus are valid in the
worst case as well as on the average. Interestingly, they still hold if the queries
are restricted to congruent copies of a fixed simplex or even a fixed slab.

What is the practical significance of these lower bounds? The main lesson
to be learned is that virtually no gain in query time can be expected unless
we have close to unlimited storage. For example, in 11-space, a query time as
uninspiring as, say, O(y/n) still requires at least on the order of n’ storage.
Our average case result makes matters even worse by saying that most input
point-sets are hard, and not just some small pathological subset. In practice,
therefore, the naive algorithm—which involves checking each of the n points
for inclusion individually—stands as the method of choice.

Our complexity results are established in the arithmetic model for range
searching (Fredman [9, 10], Yao [19], Chazelle [4]). Briefly, a data structure
in that model is a collection of precomputed values corresponding to the cu-
mulative weights of certain subsets of the points. To answer a query involves
adding together some of these weights. The model is tailored for lower bounds
because the query time is made to reflect only how many weights must be added
together to answer the query (hence the name “arithmetic”) and not how long it
takes to locate the needed information in memory. For this reason, any lower
bound proven in the arithmetic model can be trusted to hold on any reasonable
sequential machine (which, in particular, allows bucketing, hashing, etc.). How
close do our lower bounds come to meeting known upper bounds? It has been
shown (Chazelle and Welzl [5]) that simplex range searching on » points in d-

space can be performed in O(nl_l/ da(n)) query time and O(n) storage, where
a is a very slow-growing functional inverse of Ackermann’s function. This up-
per bound, which holds in the arithmetic model, matches our lower bound very
closely. On a random access machine [2] supplied with linear storage, the best
upper bound on the query time to date is O(y/nlogn) in 2-space (Chazelle
and Welzl [5]) and O(nd(d_l)/(d(d—”“)“) in d-space, for any d > 3 and any
fixed ¢ > 0 (Haussler and Welzl [11]). A query time of O(nz/ 3 log2 n) can be
achieved in the three-dimensional case, if O(nlogn) storage is available [5].
We also refer the reader to Willard [18], Edelsbrunner and Welzl [7], and Cole
and Yap [6] for earlier results on the problem and variants of it.

Our results constitute the first (nontrivial) family of lower bounds for simplex
range searching in the static case. These complement an earlier lower bound for
the dynamic version of the problem: Fredman [10] established that a sequence
of n insertions, deletions, and half-plane range queries may require Q(n4/ 3)
time. His ingenious proof technique rests on the fact that a single deletion
may invalidate a large segment of the data structure. Indeed, any precomputed
cumulative weight which involves a point to be deleted becomes useless after
the deletion, since a semigroup has no inverse and no quick update is therefore
possible. Interestingly, our lower bound can be used to strengthen Fredman’s
result by removing the need for deletions. Indeed, we can exhibit a sequence of
n insertions, followed by »n queries which, together, require at least on the order
of n*? time. To see this, set m = n*? and apply our two-dimensional lower
bound. It states the existence of a set P of n points which no data structure of
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size m can preserve from a query of cost Q(n/\/m) = Q(n'/ 3) . So, insert each
point of P one at a time and then ask the hardest query » times. Since many
cumulative weights might be computed between successive queries, we will not
necessarily be asking the same query all the time; however, we will always ask
the hardest query in light of all precomputed information so far. If the total
running time exceeds n*? | then our point is made. Otherwise, the algorithm
does not have the time to compute a data structure of size in excess of n*?
(up to within constant factors). Therefore, each query will cost Q(nl/ 3) , which
will bring the total running time to Q(n4/ 3). In dimension d > 2, we have
the result that » insertions followed by n queries cost at least on the order of

(n*/1ogn)”“*V time in the worst case.

Returning to the main lower bounds of this paper, our approach is to reduce
space-time trade-offs for range searching to certain inequalities in integral ge-
ometry. To achieve this goal we need some machinery which we build in three
main stages. First, we define a model for static range searching (§2) which places
the problem within the scope of bipartite Ramsey theory (§3). The complexity
of a given problem is then fully described by certain properties of its so-called
characteristic graph. This involves two distinct tasks: proving integral-geometric
inequalities about the query space (§4.2) and studying various uniformity cri-
teria for random point-sets (§4.3). Incidentally, these investigations lead to
results of independent interest regarding an intriguing generalization of Heil-
bronn’s problem (Moser [16]). Briefly, the problem in two dimensions is this:
Given two integers » and k < n, place n points in a unit square so that the
convex hull of any k of them has an area at least ck/n, for some fixed constant
¢ > 0. We show that this can be done if k exceeds logn . This result completes
the set of tools needed to prove the lower bounds for simplex range searching

(§4.4).

2. A COMBINATORIAL FRAMEWORK

We describe a graph-theoretic model for range searching. The emphasis of
this model is the arithmetic complexity of a problem, that is, the maximum
number of operations needed to answer any query. The model purposely ig-
nores the cost of searching the memory for the information needed during the
computation. In this way, lower bounds can be trusted to hold on any sequen-
tial computer. Of course, from a practical viewpoint, upper bounds set in that
model may not necessarily have much meaning, except to indicate how good
or how bad a certain lower bound might be. The arithmetic model—as it is
customarily called-originates in Fredman [9, 10] for the dynamic case and Yao
[19] for the static case.

The main purpose of this section is to introduce a general technique for
proving lower bounds (the Core Lemma). The basic idea is to relate the static
complexity of a range searching problem to the existence of large complete bi-
partite subgraphs in its characteristic graph. This graph provides a combinatorial
characterization of a range searching problem.
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A. Some terminology. In the following, .#" will denote the set of natural num-
bers {0, 1, 2, ...}, and for any integer » > 0, [1...n] will be the set {1, 2,

..., n}. Weuse &, to denote the unit d-cube [0, l]d. As a shorthand, we
say that a finite set of points P in a compact set K is random in K if each
of its points has been drawn randomly from a uniform distribution in K (we
assume mutual independence). In general, K willbe &, . Finally, we introduce
the notion of a faithful semigroup (Yao [19]). Let (S, +) be a commutative
semigroup with an operation denoted +. We say that (S, +) is faithful if for
each n>0, 9CT,,T,C[l...n], T, # T,, and every sequence of integers
a;, B ;> 0 (ieT,, jeT,), there exists an assignment of semigroup values to
the variables s, , ..., s, , such that

doasi# Y B

i€T, JET,

Note that this definition does not prohibit idempotence or more general identi-
ties, e.g., s, +2s, = 3s, +4s, . For example, (/, +), (#', max), and ({0, 1},
or) are faithful, but ({0}, or) and ({0, 1}, exclusive-or) are not.

B. Range searching. Let (S, +) be a faithful commutative semigroup. We

define a query space @ to be any collection (finite or infinite) of subsets g C r? ,
called queries. For example, £ might be the set of all hyperrectangles, simplices,
balls in Euclidean d-space, etc. Let P = {p,, ..., p,} be a set of n points
in %, and let { (the weight function) be an assignment of each point p, to a
semigroup value in S. We define a function answ : & — S as follows:

answ(q)= Y {(p).

pPEPNg

If PNg is empty, then we write answ(q) = null, which is a special symbol
notin S . In practice, the semigroup can be chosen as (.#", +) for counting the
number of points in the desired query, (2P , U) for reporting the points in ques-
tion, ({0, 1}, or) for testing if there are any points in the query, etc. To sum-
marize, a range searching problem & is specified by a quadruple (S, &, P, {)
consisting of a semigroup, a query space, a finite set of points, and a weight
function. We say that & is of size (n, p) if |P|=n and {PNqlge&}| =p.

C. The model of computation. Let s,,...,s, be n variables with values in
S. A generator g(s,,...,s,) is a linear form }_, _, , s, where the «o;’s
are nonnegative integers (not all 0). For example, —2s—1 + 0Os, + s, stands for
s, + 5, +5;. A storage scheme T for & of size m is a collection of m
generators {g,, ..., g, satisfying the following property. For any ¢ € &
such that PN g # O, there exist K C [1...m] and a set of labeled integers

{B, > 0|k € K} such that the relation
(2.1) answ(q) =Y _ & (L), ..., {(b,)
kek

holds for any weight function { over P. This means that a storage scheme can
be dependent on the particular semigroup under consideration and also take
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advantage of any property which P may enjoy; however, it must hold for any
assignment of semigroup values to P. This last point is important. It implies
that our lower bounds do not apply to, say, counting the number of points inside
a query simplex. Indeed, a data structure for this problem need work only for
the particular weight assignment {(p)=1.

Ideally, we would like S to be rich enough to simulate (i.e., to map homo-
morphically onto) the semigroup (P*, U) of all nonempty subsets of P. But
this would exclude too many important semigroups, so we move this require-
ment over to the storage scheme. By insisting that a scheme should work for
all weight assignments, we are in effect no longer dealing with S itself but with
the additive semigroup of n-variate linear forms over S . Faithfulness can then
be called upon to ensure that the semigroup of linear forms is, indeed, rich
enough. Given a linear form ), , a;s;, call the set of points {p,|a; # 0}

its cluster.* By means of this correspondence, the semigroup generated by the
elementary forms (s,,...,s,) s, (1 <i<n) maps homomorphically onto
the semigroup (P*, U). Thus, the meaning of (2.1) is that any set of the form
PN g can be expressed as a union of clusters; the union need not be disjoint.
Note that the basic irrelevance of the weight function allows us to say that a
storage scheme is defined not only with respect to &%, but more generally, with
respect to the triple (S, &, P).

Next, we define the complexity of a storage scheme I" with m generators.
Given g € &, let K be the smallest subset of generator indices such that (2.1)
is true. We define #(P, I', q) = |K|, and we say that I" is a (¢, m)-scheme for
P if t > max ., t(P,T,q). If & is now considered as one element in an
infinite family (as P and n vary), we define the time complexity of this family
as the function ¢(n, m), where

t(n, m) lrgli)’(l |11]|1i?n %?t(P, I',q).
By abuse of notation, we will refer to #(n, m) as the time complexity of
(when the notion of a family is understood). We also define the expected time
complexity of & as
tnh,m)= E|P|=n Illrllilrln %?t(P, I',q),
where P is random in &,. We do not average over & because the query space
cannot always be assumed to admit a natural probability measure.

D. The graph model. We begin with some terminology. Let H C V' x W be a
bipartite graph. We denote the number of edges of H by |H|. Forany w e W,
let N,(w) denote the neighbor set {v € V|(v, w) € H}. By extension, if
U C W then Ny(U) = U,y Ny(w). Given an arbitrary set Z, a bipartite
graph C C V x Z is called a cover of H if for every w € W there exists a
subset Z, C Z such that N (w) = N.(Z,). Asubset Z  of minimum size is
called a min-cover of w . If the cardinality of no min-cover exceeds 7, we say

2 To make this definition independent of the fact that S is faithful, we should regard a cluster
as being associated with a formal linear form. Otherwise, a cluster is not uniquely defined if S is
not faithful and a linear form can be expressed over two different set of variables.
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that C isa (¢, |Z|)-cover of H. The graph C is called a disjoint (¢, |Z|)-cover
if
(i) for each w € W, there exists Z, C Z such that N, (w) = N.(Z,)
and all the sets in {N.(z)|z € Z,} are pairwise disjoint, and
(ii) the maximum value, over all w € W, of the size of the smallest Z
satisfying (i) does not exceed ¢.

In light of our discussion of generators and clusters the meaning of all this should
be obvious. We can use H to model a range searching problem, with the V-
nodes acting as points and the W-nodes as queries. A cover C corresponds
to a storage scheme, with the Z-nodes acting as generators and the N.(z)’s
(z € Z) as clusters. To conclude this string of definitions, we call a rectangle
of H any complete bipartite subgraph V' x W' C H ; the width and height of
the rectangle are, respectively, |V'| and |W'|.

Given a range searching problem &£ = (S, &, P, {) of size (n, p), the set

{PNgqlq € &} partitions & into p equivalence classes. Let ¢, ..., g, be rep-
resentatives of each class. We define the characteristic graph of & as a bipartite
graph HC V x W ,where V ={v,...,v,} and W = {w, ..., wp},andan

edge connects v, and w ; if and only if p; € q;. The graph fully describes the
combinatorial nature of the range searching problem in question. Conversely,
any bipartite graph can be regarded as the characteristic graph of some rea-
sonably natural range searching problem: for example, P might consist of n
distinct points in the plane, with & defined as the set of polygonal curves. We
are now in a position to formalize the relationship between schemes and covers,
and present a methodology for proving space-time trade-offs. Generators are to
schemes what clusters are to covers. The following lemma uses faithfulness to
establish that link.

Lemma 2.1. Let # be a range searching problem, and let H be its characteris-
tic graph. If P admits a (t, m)-scheme, then H admits a (t, m)-cover. Con-
versely, if H admits a disjoint (t, m)-cover, then P admits a (t, m)-scheme.

Proof. Suppose that & admits a (¢, m)-scheme, and let I' = {g,, ..., &,}
be the storage scheme in question. If g, (s,,...,5,) =2, <, ay S;, We can
rewrite this linear form as ZieNk ay ;5;, where N, = {iley ;> 0}. We define
a bipartite graph C C V x Z, where Z = {z, ..., z,,}, by placing an edge
between v, and z; if and only if 7 € N;. We now show that C isa (t, m)-
cover of H. Let w; be an arbitrary vertex of W, and let 4, = {ilp,€q;}. It
suffices to establish the existence of Z, € Z, where |Z ;| <t and

(2.2) NH(wj) =N.(Z)).
Since T is a (¢, m)-scheme for P, we have

answ(qj) = Z ﬂkgk(C(Pl)a ceey C(pn))a

keB,



THE COMPLEXITY OF POLYTOPE RANGE SEARCHING 643

where B I is a subset of [1---m] of size < ¢. Since the equality above holds
for any weight function and S is a commutative semigroup, we can write

Zsz: Zﬂkgk(sl""’sn): Z TSk

€A, kGBj kECI

where CJ. = Uk€ p N, . Because of faithfulness we have A ;= C ’E therefore,
J

Ny(w)={vlied}= U {vlieN}= U Nc(z),

kGBj kEBj
which establishes (2.2), since |B;| < r. The first part of the lemma is now
proven. We omit the second part, which is straightforward. O

Now that range searching problems have been couched as combinatorial ques-
tions about bipartite graphs, we are ready to describe the lower bound proof
technique which underlies much of what follows. Although the technique tends
to weaken somewhat on problems of low complexity (e.g., orthogonal range
queries), it is, we believe, a powerful tool for determining the complexity of
“hard” problems, such as simplex range searching or problems defined by ran-
dom characteristic graphs. The starting point is the observation that, informally,
clusters are “good” if they are big and can be used to answer many representative
queries. Translated in the language of covers, this means that for problems of
low complexity the characteristic graph must contain many rectangles of large
“area”; their widths tell us how big the clusters can be and their heights indicate
how many representative queries they can help to answer. Thus, lower bounds
are obtained by proving that rectangles can never be too large.

The following result formalizes the relationship between the space complexity
of a range searching problem £ and the presence of large rectangles in its
characteristic graph H . We define &/ (x) to be the largest “area” of a rectangle
of H whose width is no less than x > 0:

& (x) = max{xh|H has a rectangle of width > x and height 4} .

Lemma 2.2 (The Core Lemma). Let H be the characteristic graph of a range
searching problem of size (n,p). If H has a (t, m)-cover, then m >
3|H|/ (|H|/2pt).

Proof. Using the previous notation, let C C V x Z be a (¢, m)-cover of H
and let {C, C Z|w € W} be a complete collection of min-covers. Form the
graph G by removing from H each edge in the set

|H|
U {NC(Z) x{w}weW, zeC,, |N(z) < TR

Since C is a (¢, m)-scheme and |W| = p, at most pt|H|/(2pt) edges are
removed, and so the resulting graph G contains at least half the edges of H .
But to cover the sets N (w) (w € W), only subsets N.(z) of size > |H|/2pt
are now used. Therefore Z must have at least |G|/ (|H|/(2pt)) vertices. O

3. How HARD CAN RANGE SEARCHING BE?

Any range searching problem of size (n, p) admits two trivial solutions:
an (n, n)-scheme and a (1, p)-scheme. Two natural questions arise: (1) Is
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it always possible to improve over the two naive solutions? (2) What is the
complexity of the hardest range searching problem? Answering these questions
will help us assess the relative position of other range searching problems on the
complexity ladder. Theorem 3.1 says that a small speed-up in query time can
always be achieved with an amount of storage almost but not quite maximum,
in other words, the worst of all possible worlds. Surprisingly, this result is in
fact optimal, as we can show by a probabilistic argument (Theorem 3.2).

Theorem 3.1. For any range searching problem of size (n, p), with p > n, there
exists a (t, m)-scheme, where t = O(n/[log(p/n)]) and m = O(p/[log(p/n)]).
Proof. We follow a strategy used in Yao and Yao [21] and Burkhard et al. [3].
Let o = [log(p/n)] and, as usual, let H C V x W denote the characteristic
graph of the range searching problem, with ¥ = {v , ... ,v,}. For each i
such that 0 < i < [(n—1)/a], define V] as the set {v,, TR vmin{n,(i+l)a}}'
We construct a cover C C V x Z as follows. Originally, Z is empty; for
each i between 0 and [(n — 1)/a], consider each nonempty subset A4 of v,
in turn, and perform the following operations: add a new vertex z to Z and
augment C with the edges of A4 x {z}. It is easily verified that C is a disjoint
(t, m)-cover of H, where t <1+ [(n—1)/a], and

m< 2=+ |(n-1/a)).

Since p < 2", we easily derive that ¢ = O(n/[log(p/n)]) and that m =
O(p/[log(p/n)]). Lemma 2.1 completes the proof. 0O

Theorem 3.2. There is a constant ¢ > 0 such that the following is true. Given any
integer function p = p(n) (n < p <2") there exists a class of range searching
problems of size (n, p) for which any (t, m)-scheme with t < cn/log(p/n) also
satisfies m = Q(p).

Proof. Let m be areal (0 < m < 1), and let H C V x W be a random
bipartite graph (|[V| = n and |W| = p), where each edge (v, w) is chosen
independently with probability 7. A rectangle of H is called wide if its width
a is at least In(p/n) and its height is equal to [n/a]. To rid the graph of wide
rectangles, we use a standard technique for removing forbidden subsystems
(Erdds and Spencer [8]). Let x(H) be the number of wide rectangles in H .
We modify H by taking each wide rectangle in turn, and removing exactly one
edge from it (which one does not matter). After at most y(H) such operations
we obtain a new graph G free of wide rectangles, with |G| > |H| — y(H).
Taking expectations we derive

E(G) > npn— 3 (2)([n1/’a]>naf"/a1.

In(p/n)<a<n

Using the inequalities (%) < (eb/a)*, for 0 < a < b, and (n/a)* < ", for
1 <a<n,where e =2.718---, we derive that for n large enough,

n P\ pelnel _ (12)2"/“ et Inalente _ (4+2/in(p/m)tinmn
[n/a] n

If n=¢" , it then follows that for n large enough,
(6+Inm)n

E(|G|) > npm — ne >np/e7,
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so there exists a bipartite graph G C V x W, with at least np/e7 edges
and no wide rectangle. With respect to this graph, we have &/ (x) < 2n,
for x > In(p/n), so from the Core Lemma, any (¢, m)-cover such that ¢ <

c(n/log(p/n)) will satisfy m > p/e9 , for ¢ small enough. From Lemma 2.1
and our earlier observation that a range searching problem can always be defined
to have a prespecified characteristic graph, the proof is now complete. O

The comparison between the last two theorems is a little startling. On the
one hand, for p large enough, a time speed-up is always possible without using
maximum storage. However, trying to improve this speed-up by even a con-
stant factor will immediately force upon us the use of maximum storage (up
to within a constant factor). The conclusion to draw is that, in practice, hard
range searching problems do not offer any viable alternative to the two naive
algorithms.

Remark. There is an intriguing parallel between this result and an equally pes-
simistic trade-off between update and query time given in Burkhard et al. [3].
Roughly speaking, the trade-off says that for some range searching problems any
attempt to update weights faster than the naive way will cause a dramatic rise
in the query time. Of course, the two situations cannot really be compared,
however, because of the difference in settings: storage vs. query time here, as
opposed to update time vs. query time in [3]. Without pursuing this digression
too far, let us point out just one major difference between the static and the
dynamic models. In the former, a cluster is charged unit cost, regardless of
its size. In the dynamic model, however, a large cluster, although still charged
unit cost, is in effect more costly than a small one because it is more exposed
to enemy fire: if any of its points is updated the information provided by the
cluster must be thrown away.

4. THE COMPLEXITY OF SIMPLEX RANGE SEARCHING

We begin by stating the main result of this section: simplex range searching on
n points requires Q(n/\/m) query time in two dimensions and Q((n/logn) /ml/ d)
query time in any dimension d > 3. These bounds hold for a random point-set
(uniform distribution in the unit d-cube) with high probability, and thus are valid
in the worst case as well as on the average.

For technical reasons, queries will be slabs of fixed width instead of simplices
(since slabs can always be clipped and triangulated, this will actually strengthen
our results). The heart of the argument comes from the Core Lemma: a gen-
erator can be very useful to a small subset of all possible queries or it can be
moderately useful to a large set of queries, but it cannot be very useful to lots
of queries. We assess the “effectiveness” of a generator by the Lebesgue mea-
sure of the convex hull of its associated cluster. Why? Suppose that we set our
sights on a very low query time. Then, presumably, to answer a random query
requires the use of big clusters. Since the points are uniformly distributed in
%, , big clusters occupy a lot of space and therefore can be used by only a small
set of queries. This suggests a trade-off between the effectiveness of a generator
and its ability to be used by many queries. One will notice the similarity of this
reasoning with the Core Lemma.
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Our approach has two components. We begin with an integral-geometric anal-
ysis of the containment property between a convex body and a slab. The goal
is to produce a continuous analog of the discrete complexity trade-off sought.
To carry out the analogy we must be able to place n points in the unit d-cube
so that the cardinality of any subset is at most proportional to n times the
measure of its convex hull. This entails a study of pseudouniform point-sets.
The questions raised are akin to a classical problem of Heilbronn (Moser [16])
to which we provide new answers.

In §4.1 we define a measure for slab systems, and we prove its invariance
under the group of motions. This will give us a convenient probability measure
for queries to work with. In §4.2 we argue that a large convex set cannot be
moved too much within a given slab (in other words, a big cluster cannot be
used by too many queries). Two fundamental lemmas are derived to formalize
this concept. In §4.3 we turn to the problem of approximating uniform point
distributions. Several criteria of uniformity are investigated, one of which leads
to new results on a generalization of Heilbronn’s problem. Finally §4.4 puts all
the above results together and derives the desired lower bounds.

4.1. Preliminaries. We begin with some geometric terminology. Let d be a
fixed positive integer, and let E? denote Euclidean d-space. Unless specified
otherwise, we will always assume that d > 1. We endow E¢ with a Cartesian

system of reference (O, e, ..., e;), where (e, ..., e,) formsan orthonormal
basis (e;-e; =9,;). We define Ef ={(x;,....,x,) #0|x; 20; 1 <i<d}.
If p=(x,,....,x;) and ¢ =(y;, ..., y,) are two points of E* , then we let

(p, q) denote the inner product -, ;. X,»; . Similarly, we put |p| = /{p, p) .

The width (resp. diameter) of a compact convex set K is the smallest (resp.
largest) distance between two distinct hyperplanes of support parallel to each
other. The diameter of K is denoted D(K). It is also defined as the greatest
distance between any pair of points in K. Finally, if P is a finite set of points
in E¢ , then x(P) denotes its convex hull.

Let o be a real value (0 < a < 1/12) to be considered a parameter in the
following. We define a slab as the closed region of E® between any pair of
parallel hyperplanes distant from each other by 2a. For any ¢q € Ed\{O} , let
S . denote the slab

S,={peE"  |(p. ) lal| < alal}.

We use slabs as queries, instead of simplices, because they are easier to manipu-
late. Straightforward reductions will show that this does not artificially increase
the complexity of the problem (if anything, it makes the problem easier). Using
the notation of the exterior calculus, it is well known (Santal6 [17]) that the
point-set density dx, Adx,A---Adx, is invariant under the group of motions

(i.e., isometries). Given X C E® , the integral

Ad(X)=/dx1/\-~~/\dxd
X
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is the measure of X in E“ (provided that the integral exists in the Lebesgue
sense). Next we define the measure u of a set of slabs X :

dy, A---Nd
ﬂ(X)z/dSq=/ y_ITyd,
X S,€x lq]
where ¢ = (¥, ..., y,) (again, provided that the integral exists). Since Sq is

not defined for ¢ = O, we may assume that X does not contain slabs whose
bisecting hyperplanes pass through the origin. This is not necessary, however,

because the integral
/ dy,N---Ndy,
0<|ql<t i

is well defined and tends to 0 as ¢ — 0. (The set of slabs whose bisecting planes
pass through the origin has measure zero.) Our choice of measure is motivated
by the following.

Lemma 4.1. The measure u is invariant under the group of isometries in E°.

Proof. We use the techniques of Santal6 [17], and in particular, Cartan’s method
of moving frames. Let P, ={p € Ed|(p ,q) = |q|2} be the bisecting hyperplane
of Sq ,and let u , ..., u, , be an orthonormal basis for P, . We define u, as
a unit vector normal to P, such that det(u,, ..., u;) = 1. Let .# be the group

of motions in E¢ , and let § be the subgroup of motions that leave invariant the
hyperplane Pq . We have a one-to-one correspondence between the hyperplanes

of E? and the elements of the homogeneous space .Z/§ = {g§|lg € £}: to
each coset of the form g§ (g € #) corresponds the hyperplane gP , and
conversely, to each hyperplane P, corresponds the coset g§, where g is a
motion that carries P, to P,. Following [17], finding an invariant density for
hyperplanes, and hence for slabs, is then reduced to finding an invariant density
dL, , on .#/F. The theory of moving frames gives us the Pfaffian system
dq ‘u; =0 and du,-u;=0 (1 <i<d-1). Therefore, dL,_, can be chosen
as the differential exterior d-form

A du,-u,ndg-u,.

i<d
Let ¢ = (¥,,..., ;). Since u, = q/|q|, we have du, = dq/|q| + d(1/|q|)q .
From u;-u, = 5,'1‘ we derive

1
dL,_, = A\ (mdq -ul.) ANdg-u; =
i<d

A
—dyl/\/\dyd,

g~

_}1‘-‘1 A D2 dyj(u;-e))

|‘1| i<d 1<j<d

where
A =det(u;,...,u,)=1.

This establishes that dL,_, = (1/|q|d_1)dyl A---ANdy,, which is precisely the
differential form claimed for . O
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Now that we have the appropriate tools to handle random queries, we need
some machinery to study the convex hull of clusters. Arbitrary convex subsets
of %, are a little unwieldy. Fortunately, they can be approximated quite well
by rectangular shapes. We need some additional terminology. A hyperrectangle
is the Cartesian product of d closed intervals in %R. If each interval is of
the same length, then we have a hypercube. A parallelotope is the image of a
hyperrectangle under an isometric mapping. Two parallelotopes are said to be
parallel to each other if they are congruent modulo a homothetic transformation.
It seems that the following equivalence result has been rediscovered many times
over the years. (I thank J. Pach for pointing out this 1951 reference (Macbeath
[14]) to me.)

Lemma 4.2 (Macbeath, 1951). Given a compact convex set K in E?, there
exist two parallelotopes 11, and I1,, such that 11, C K CI1, and 4 ,(I1,)/d! <

A (K) <d?a,(11)).

4.2. Two fundamental lemmas on the measure of slabs. Let K be an arbitrary
compact convex subset of E® . Our main concern in this section is to show that
the set of slabs

H(K) = {S,lq € E'\{O} and K C S, }

shrinks fast enough as K grows. We will distinguish between the general case
(Lemma 4.5) and a rather special case (Lemma 4.6) to be used later for simplex
range searching in 2-space. The reason for this distinction is that we can obtain
sharper lower bounds in the two-dimensional case by using more refined tools.

We begin our investigation by assuming that K is a hyperrectangle of the
form [[,.;,[1, 7], where y,, ..., 7, are d reals > 1. We will simplify our
study of H(K) by considering the smaller set

H'(K)=H(K)n{S,lq € E{}.
This substitution is fairly innocuous, as the following result shows.
Lemma 4.3. For any hyperrectangle K = ngisdll , ¥;], where y, > 1, we have
the inequality u(H(K)) < 2° u(H*(K)).

Proof. The idea is to consider the symmetry group of the polytope K and iden-

tify 24 automorphisms, at least one of which maps any given point of EY to
a point with nonnegative coordinates. The proof will immediately follow from
the fact that these automorphisms carry K into itself and the measure u is in-

variant under the group of isometries. Let j = (j,, ..., j,) € {-1, l}d , and let
g, be the isometry mapping p = (X, ..., X;) € E? to gj(p) =(215..4524),
where
Jj, 0 -~ 0 1 +1
2 0 j, - 0 X =ty e
=1 .. L% : + :

i oo e gl 71
Zq 0 0 - J, X4 2
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Since K is centrally symmetric about ((y, +1)/2, ..., (y,+1)/2), each trans-
formation g carries K into itself. Given a point ¢ = (y, ..., Vi) € Ed\{O} ,
let g(q) be the sign vector (j,, ..., j;), where Ji =1 (resp. j, = —1) if

y; 20 (resp. y; < 0). To complete the proof, we will show that 8,(y) Maps

Sq into Sé , where § € Ef. The inverse transformation ga_(;) maps a point

(X, ..., Xx,) into (z, ..., z;), where

Z; =j,'x,'+(1 _],)(1 +y,‘)/2-

Consequently, the slab Sq is the set of points (x,, ..., x;) € E? such that
. 1 . 2
o Uxyits 2L (=i 4y = Y v <Sa [ 3 v
1<i<d 1<i<d 1<i<d 1<i<d

We obtain an equivalent expression by noticing that

B = (Z (1—1,~)<1+y,->,v,.)/ St <o,

1<i<d 1<i<d

and multiplying the previous inequality by 1 — /2. This shows that § =
Pys---5Y,), where .
Vi=01-8/2)jy;>0.

Noticing that || = (1 — 8/2)|q| > 0, we can conclude that § € Ef. o

Throughout this section the term “constant” refers to a quantity which may
depend only on d, and not on «a or any other parameter later defined. We will
use ¢ as a generic symbol to denote a constant, avoiding subscripts whenever
we can. Sometimes, however, we will have to resort to subscripts to be able
to distinguish between different constants. The following result shows that if a
slab is forced to contain a big hyperrectangle, then it cannot be moved around
too much.

Lemma 4.4. For any dimension d > 1, there exists a constant ¢ > 0 such that
any hyperrectangle K =[], ,.,[1,v,], where y, > 1, satisfies the inequality

A (K) - u(H"(K)) < ca®™.

Proof. We will assume throughout this proof that ¢ = (y,, ..., y4) € Ef and
K € §,. To begin with, observe that |g| can be neither too large nor too small.
Indeed, since (1,1,...,1)¢e Sq , we have
2
(4.1) > v—lal’| < algl.
1<i<d

Since x < 1+ x2/2 for all x, this implies that

2 2
lgI" —algl < > y;<d+l4l’/2,

1<i<d
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|q|<a+\/a2+2d.

Since a < 1/12 and d > 1, it follows (conservatively) that |g| < 34 . Similarly,
from (4.1) and the fact that g € Ef , it follows that

from which we derive

2
lgl” +algl> Y v, >1dl,
1<i<d

hence |¢| > 1—a > 1/2. To summarize, we have shown that
(4.2) $<lql<3d.
Let

Ai(K)={q=(y1,...,yd)€E | KCS, and y, >2\/_}

From (4.2) it follows that g belongs to at least one of the sets A;(K) (1 <i<
d) ; therefore,

(4.3) WHTE) < S MK

1<i<d

MK = | N MYy
AK) gl
To estimate the value of M,(K), we set i = 1 without loss of generality,
in order to avoid overburdening the notation. Let us consider the following
change of variables: given ¢ = (y,,...,¥,),let u, =J =|q|, and for i > 1,
let u, =y,;/d . Note that the transformation acts bijectively between

(D)5 >v,) €EN{O} |y, 2 0}

where

and

1<i1<d

{(ul,.-., )| u, >0 and Zug }

To compute its Jacobian, J, , we notice that

J =

u

yj/é, ifi=1;
g;f: 1/6-y2/8>, ifi>landi=j;
’ —yy;/8>,  ifi>landi#j.
It follows that
y./6 V,/0 Yalo
8 15 -y3)8> o —yy,/8°

—y /80—y, 8t e 18 —y3)8’




THE COMPLEXITY OF POLYTOPE RANGE SEARCHING 651

We derive
+1 +£ . 41
2
_ (MMiicqy)” |71 @/y)" =1 - ~1
Tu=—""5 % ) . _
y16 . : .. :2
SLoml e (@) -

The determinant above is made triangular by subtracting the first column from
the others, which gives J, = yl/dd. If T= fqu.(K) du, A---Ndu,, we imme-
diately derive

Y= 4

1
V) » ) EA(K) (yl2 R yj)
From (4.2) and the definition of A,(K), we have

d/zdyl/\-~-/\dyd.

1
4.4 T>——M(K).
If g €A,(K), then we have |(p, g)—|q|*| < alg|, forboth p=(1,..., 1) and
p=(7,-..,7;) . Since g € E_‘: , this implies that
2 2
—algl< > yi—lal < D vy, —lal” <elql,
1<i<d 1<i<d

and from (4.2)
Z (y; = 1)y; £ 2a|q| < 6da.
1<i<d

Because y; > 1, for each i (1 <i<d), we have

6da
(4.5) 0< y; < y——_l ,

1
and for i > 1,

2
0<u; < .
=

When u,, ..., u, are fixed, u, always varies in an interval of length no greater
than 2« . It easily follows that

(22)
: H1<isd(3’i -1’

Note that the integration domain of Y assumes that y, > 1 /(2v/d). From
(4.5) we also have y, < 6da/(y, — 1); therefore,

y, — 1< 12dVda.
From (4.4) and (4.6) it then follows that
M, (K) < ba™' J2,(K),

for some constant 5. The same inequality holds for any M,(K), so in view of
(4.3) the proof is now complete. O

(4.6) T

Lemmas 4.3 and 4.4 give us a trade-off between the volume of a hyperrect-
angle and the measure of the slabs that contain it. We can use Lemma 4.2 to
generalize this trade-off to any compact convex set.
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Lemma 4.5. For any dimension d > 1, there exists a constant ¢ > 0 such that
given any compact convex set K, we have 2 ,(K) - u(H(K)) < et

Proof. We can assume that 1,(K) > 0; otherwise, the lemma is obvious.
Lemma 4.2 shows the existence of a parallelotope IT C K such that

(4.7) A, (K) < d®a, ().

Since IT is not of measure zero, it is congruent to a hyperrectangle of the form
K' =TI, <;<qll, 7,], where y, > 1. Obviously, the two sets H(IT) and H(K')
have the same u-measure. (Note that the two sets might not be congruent,
because S, is defined for ¢ # O, and Ed\{O} is obviously not closed under
the group of isometries. The difference, however, is simply a set of slabs whose
bisecting hyperplanes pass through the origin, and thus has measure zero.) From
Lemmas 4.3 and 4.4, it follows that for some constant ¢ > 0,

24(T0) - w(H (D)) < c2%a®"".

From (4.7) we derive

A4(K) - u(H(ID) < c(2d) " .

Since IT C K the proof is now complete. 0O

We now turn to the special case where K is of measure 0. While Lemma 4.3
is still meaningful, Lemma 4.5 becomes trivial and must be modified a little.
Recall that D(K) denotes the diameter of the point-set K .

Lemma 4.6. For any dimension d > 1, there exists a constant ¢ > 0 such that
given any compact convex set K, we have D(K) - u(H(K)) < ca’.

Proof. We follow the proof of Lemma 4.4, assuming that K is a hyperrectangle
of the form [], ., ,[1, 7], where y, > 1 and y, =1, for i > 1. It suffices to

show that (y, — 1)u(H(K)) < ca’ . From (4.5) we have 0 <y, < 6da/(y, - 1),
and from (4.2) we derive that 0 < y; < 3d, for 1 < j <d. Consider the case
of M(K), for i>1. Wehave 0 <u, <2a/(y,—1), u,=|q|, and for j > 1
and j # i, we have 0 < u; < 6d. This shows that

40’ (6d)" 2

T <
yl_l

b

and from (4.4)

- 4vd(6d)" "' o?

(4.8) M(K) —

If we assume that 6da/(y, — 1) < 1/(2Vd), then A,(K) is empty, and hence
M, (K)=0. From (4.3) and (4.8) we find

(4.9) w(H' (K)) < (64)" 20> /(y, - 1).
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Is this inequality still true if we relax the assumption on y, ? If 6da/(y, —1) >
1/(2v/d) , then using the previous reasoning, we find u, =|q|,and 0<u ;< 6d
(1 < j<d), from which it follows that

M, (K) < Vd(20)(6d)" < (6d)" (7, — 1).
From (4.9) we derive that

u(H'(K)) < 2(6d)"%a’ (v, - 1),

for all values of y, >'1. Lemma 4.3 and the invariance of x complete the
proof. O

4.3. Approximating uniform point-set distributions.

4.3.1. Introduction. We study the following discrepancy problem: Can we
place n points in %, = [0, l]d so that every subset of k > d points has a
convex hull of measure at least proportional to k/n ? This is the kind of result
we need in order to argue that big clusters occupy a lot of space. Let us consider
the case d = 2 and k = 3 for a moment. This is known as Heilbronn’s problem:
What is the largest area, over all point-sets P C &, of size n, of the smallest
triangle with vertices in P?

This problem has a rich history. If we look at the one-dimensional case for
inspiration, we might expect that in two dimensions the max-min area should be
proportional to 1/n. However, it has been shown by Komlés, Szemerédi, and
Pintz [12] that any set of n points in &, always contains a triangle of area less
than 1/ n¥7-¢ , for any & > 0. On the other hand, the same authors have shown
[13] the existence of point-sets with all (}) triangles of area Q((logn)/ n’). See
Moser [16] for a chronology of results on Heilbronn’s problem.

At the other extreme—the case k = Q(n)—we have what we would ex-
pect: the max-min area of the convex hull of any subset of k distinct points
is ©(k/n). Take the vertices of the largest regular n-gon inscribed in %,. A
natural question is thus to determine the smallest function k(r) for which the
max-min area is Q(k(n)/n). More generally, let

Ay(n, k) = max gﬂc_ig A4(k(S)),
|P|l=n |SIZ2k

where d < k < n; recall that k(S) denotes the convex hull of S. We know
that A,(n, n) = ©(n/n), but also that A,(n,3) = o(3/n). We will use a
probabilistic argument to prove that A,(n, k) = ©(k/n), for any k such that
logn <k <n.

4.3.2. On a generalization of Heilbronn’s problem. We begin with some ter-
minology. Let v be a positive integer. We say that a finite set P of points
in EY is V-scattdered if, for every subset S C P of size kK > v, we have
Aa(k(S)) > (1 /77 )k/|P|. As it turns out, a weaker version of this definition
will allow us to sharpen our lower bounds for range searching in the case d = 2.

Given any positive real ¢, the set P is weakly e¢-scattered if there exists a subset
@ of P such that

(i) |@|=¢lP|;
(ii) for every subset S C & of size k > d, we have 4,(k(S)) > ¢k/(10|P]).
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Let R be a parallelotope in E“ of nonzero measure; the k-faces of R are called
vertices if k =0, and edges if k = 1. By edge-length, we refer to the Euclidean
distance between the two vertices at the endpoints of an edge. There are at most
d distinct edge-lengths, a,, ..., a,: the minimum value of q; is the width of

R, while \/af +--+ afi is its diameter. Let O be a positive real. We define

the 6-pads of R as a collection of 2¢ parallelotopes parallel to R, of edge-
length 6, attached to each vertex of R. More precisely, let g be an isometry
carrying R to the hyperrectangle [],.,.,[0,a;] (a; > 0). Each vertex v of
the hyperrectangle is of the form v = (j,a,, ..., j,a;), where (j,, ..., j,) is
a bit-vector in {0, l}d. We define the 6-pad of the vertex g~ '(v) of R as the
image under g_l of the hypercube of edge-length 6 centered at the point

(ya, —(=1)"6/2, ..., j,a;— (-1)6/2).
The notion of #-pads is useful for approximating the set of all convex subsets

of &, by a finite number of canonical polytopes. We begin by listing a few
interesting properties of 6-pads.

Lemma 4.7. Let R be a parallelotope in E¢ , and let 0 be a positive real. If
S is a point-set which intersects each 6-pad of R, then the convex hull of S
contains R.

Proof. Without loss of generality, we may assume that R is a hyperrectangle of
the form [],_,,[0, a]. Let s, ..., s,« be representative points of .S in each
6-pad of R, with s, the point in the 6-pad of O. Any (closed) halfspace that
contains O also contains at least one s, . To see this, consider the hyperplanes

P ={peEp,q)=lal"},

and notice that for each sign assignment of the coordinates of g there is at
least one desirable s,. This shows that O € k({s,, ..., szd}). By symmetry,
the same is true of all the other vertices; therefore, their convex hull, R, lies
inside x({s;,...,8,}). O

The next lemma provides a polynomial-size approximation of the set of all
convex subsets of &, of measure p. This enables us to use discrete probabilistic
techniques to study certain uniformity criteria for point-sets (Lemma 4.9).

Lemma 4.8. For any d > 1 and any real p (0 < p < 1), there exists a
d d
collection § of convex sets such that (i) |§| < 5 / pd2 , (ii) for each C € §, we

d
have C C &, and 4,(C) < 5° p, (iii) given any convex set K in &, of measure
p, there exists some C € § which contains K .

Proof. Let B = p/d®**"/? andlet £ be the grid of points
Z ={+if |i>0 n[-2d, 2d]".
We define § as follows:
F={k(S)N%,|SC¥Z and |S| = 2% and p < A,(k(S)) < 3dd!p}.
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We have |Z| = (2|2d/B] + 1)*, which implies that |&| < 5¢@>/@D/2)p?
since p < 1 < d, and hence (i). Note that (ii) follows directly from the
definition of J, so let us turn our attention to (iii).

Let K be a convex set in %, of measure p, and let R (resp. r) be the
circumscribed (resp. inscribed) parallelotope of least (resp. greatest) measure.
From Lemma 4.2, it follows that

(4.10) A (R)/dV < p<da(r).

Let ¥ be the set of (8v/d)-pads of R. It is not difficult to show that each pad
w of ¥ contains a grid point. Let & be the center of y, and let &* be the
infinite grid {£if |i > O}d . There is a point y € £* within a distance vd /2
of &; therefore, y lies within the pad w . We must now show that y is actually
a point of ¥ . By construction, no edge-length of R can exceed the diameter
of K. Since K lies in %j, , its diameter is at most v/d . This implies that the
diameter of R is at most d . Because the diameter of y is equal to df, it
follows that the distance from y to O is at most d + v/d + df, which is less
than 2d, since p <1 and d > 2. This proves that y belongs to [-24d, 2d]d ,
and therefore, is a point of & .

We thus have established the existence of a set S of 2¢ points in &, each of
which lies in a distinct (8v/d)-pad of R. Since r lies inside %, its maximum
edge-length is at most v/d ; therefore, the width of r, and hence the width of
R, is at least A,(r)/d““~"*. From (4.10) it then follows that the width of R

is at least pvd /d3d/ 2 Let l,,..., 1, be the edge-lengths of R. We have
> pVd)d*? > pvd;

therefore,

A k() < [T (U +28Vd) < 3°2,(R).

1<i<d
From Lemma 4.7 and (4.10) we derive

p <A, (k(S) < 3dlp.
This proves that k(S)N%, € § and therefore K C x(S)N%,. O

Lemma 4.9. For any d > 1 and n sufficiently large, a random set of n points
in &, is (logn)-scattered with probability greater than 1 —1/n.

d d
Proof. Let ¢ =1 /(24 b), where b = 5° is the constant used in Lemma 4.8.
d

Note that ¢ > 1/ 7. Throughout the proof, we will use the notation of Lemma
4.8, with the value of p set to 3c(logn)/n. (Note that this assignment is valid,
since for n > 1 we have 0 < p < 1.) We shall also assume that n is larger
than some appropriate constant. Let P be a random set of n points in %,
and let 7 be the probability that there exists a convex set K C %, such that
k =|KNP|>logn and A,(K) < ck/n. We can assume that the n points
of P are distinct since this happens with probability 1. It is then possible to
partition K into convex sets, each containing between logn and 2logn + 1
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points. To do so, choose a line L which is not normal to any of the hyperplanes
passing through a pair of points in KN P, and sort the projection of the points
of KNP onto L. Since there are no identical elements in the resulting list,
we can partition it into sublists of size [logn] (except for the last one, whose
size falls between [logn] and 2[logn] —1). For each pair of adjacent sublists,
find a point on L separating them and cut K by the hyperplane normal to L
passing through the point. Of the pieces of K thus created, let K* be the one
of smallest measure. We have

1K) < 38" = .

therefore, we can always enclose K* inside a convex set C &, of measure p.
From Lemma 4.8, it follows that the collection § contains at least one set C
which encloses K", where

(4.11) 24(C) < 3bc logn

Clearly, the set C contains at least logn points of P ; therefore,

<> 3 () )1 = a,0)" .

ceg j>logn

From (4.11) we have ni,(C) < logn ; therefore, we can use the Chernoff bound
[8] to approximate the tail of the binomial distribution. This yields

d n—logn ogn
@12)  meb ()" x (PO ALOD)T —nld(C))lg
) 3clogn n—logn logn )

Using Taylor’s expansion, we have

In(1 — (logn)/n) > —(logn)/n — (logn)*/n*,
for n large enough; therefore,
(4.13) n’(n—logn)""'®" > n" %",

On the other hand, it follows from (4.11) that

d

(4.14) (n2,(C)/logn)®" < 1/n* 72,

Putting (4.12)-(4.14) together, we find the desired (conservative) upper bound
n<l/n. O

As an immediate corollary, we obtain this new result on the generalization
of Heilbronn’s problem. Whether logn can be replaced by anything smaller
(asymptotically) is an intriguing open problem.

Theorem 4.10. The function A (n, k) isin ©(k/n), forany k such that logn <
k<n.

Proof. Because of Lemma 4.9 it suffices to show that A,(n, k) = O(k/n).
Given any set P of n points in %, partition &, into convex sets, each con-
taining between k and 2k + 1 points (using, for example, the method given
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in Lemma 4.9). Now, consider the convex hull of the set of smallest measure.
This set contains at least [k] points and its measure is O(k/n). O

Simplex range searching in 2-space requires a special treatment. The idea is
to adopt the weak version of scattering, which then allows us to “strengthen”
Lemma 4.9 in two dimensions.

Lemma 4.11. There exists a positive real &, < 1 such that forany ¢ (0 < e < ¢;)
and any n > 2, a random set of n points in %, is weakly e-scattered with
probability greater than 1 —¢.

Proof. Consider the inequalities
(4.15) 1-e/2<(1-69e"<1-6/2<1-2¢/9.

We claim that there exists some real ¢, (0 < &, < 1/2) such that for any &,
where 0 < & < ¢, there exists § which satisfies (4.15). To see this it suffices

to notice that if 1 —¢/2=(1-6 )e_o then |0 —¢/2| = O(e ) and
1-6/2—(1-6%e"=0/2+0(0%) =¢/4+ 0(e%).

Let P be a random set of n > 2 realsin [0, 1]. We say that x € P is isolated
if there is no other element of P in [x — 6/(2n), x + 6/(2n)]. Let v be the
expected number of isolated points, and let 7 be the probability that at least
en points of P are isolated. We have

(4.16) v<(l-nmn)en+nn.

On the other hand, we have v > n(1 — G/n)"_l .Since O0<f<e<l<n,we
have (Abramowitz and Stegun [1, p. 68])

v>n(l—0/n)" =ne"™' 7" 5 pe=t/1=0Im)
Using the inequalities e* > 1 + x and n > 26, we derive
v >ne UM 5 o701~ 20%/n).
Using (4.15) and (4.16) and the inequalities #» > 2 and ¢ < 1/2, we have

vin—c (1-6%e—¢ o 1=3¢2
1—¢ 1—¢ 1—¢

On the other hand, the convex hull of any k > 1 isolated points is an interval
of length at least (k — 1)0/n, which from (4.15) exceeds ¢k/(10n). O

4.4. The lower bounds on simplex range searching. We are now in a position
to attack our original problem. Let us recall our assumptions. The dimension
d is at least 2, and the parameter o is a positive real less than 5 . Let m
and n be two positive integers, and let I" be a function mapping any set P
of n points in %, to a storage scheme for P of size¢ m > 0. When P and
I'(P) are understood, we write ¢ to denote the worst case time complexity
max ., t(P,T(P), q). It will be important to keep in mind later on that ¢ is
actually a parameter depending on P and I'. Ironically, the higher-dimensional

case (d > 3) is easier to handle, so this is where we begin our investigation.

n> >1-¢
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4.4.1. Range searching in d-space. Let B,(p) be the closed d-dimensional
ball of radius p centered at (},..., 3). We define the query space & to be
the set of slabs {S | g € Bd(%)}. We begin our investigation with a technical

lemma saying that every query grabs a reasonable chunk of the unit d-cube:
neither too big nor too small.

Lemma 4.12. For any d > 1 there exists a constant 0 < ¢, < 1 such that for
any S, €@, we have c;a < 2,(S,N%;) <alc.

Proof. Because S, N B,(3) € S,N&, we have 1,(S,N&;) > 2ad,_,(B'),
where B’ is the intersection of Bd(%) with a hyperplane at distance % +
from the center of B,(3). This implies that B' is aball in E 4 of radius

r=4/1—-(}+a). Its (d - 1)-dimensional measure is therefore (Santalé [17])

2pld=1/2,d=1
(d-1DIr(d-1/2)°

where I' is the gamma function. Using simple approximations we easily verify
that, since a < 5, we have 4 (S, N %) > ca, where

Ay, (B =

n(d_l)/2
(d-13T(d-1)/2)

Conversely, the diameter of %, is equal to Vd ; therefore, ld(Sq N%;) <

2a4,_,(B"), where B* is a (d — 1)-dimensional ball of radius vd/2. We
derive

an(d—l)/Zd(d—l)ﬂ

(d-1)2°7°r(d - 1)/2)

2,(8,n %) <

Given a set P of n points in &, , we say that a slab Sq is heavy if S, € A
and |Sp N P| > c,an/2. We focus on heavy query slabs because they are both
well positioned and reasonably filled with points of P. Our next result says
that this focusing is not too restrictive when dealing with a random point-set
P. A random query of & is heavy with high probability.

Lemma 4.13. For any d > 1 there exists a constant ¢ > 0 such that for any
fixed real ¢ (0 <é& < 1) and a random set of n points in €,, the measure of
the set of heavy slabs exceeds (1 — c/(aen))u(&@) with probability greater than
1—¢.

Proof. Let P be a random set of # points in %ji , and let Sq be a slab of Z.
Put y =|S,NP| and 0 =5, N &, . The mean and variance of x are, respec-
tively, nd (o) and ni,(o)(1-2,(d)). Let n(q) be the probability that S, is
heavy with respect to a random P. Combining Lemma 4.12 and Chebyshev’s
inequality, we find

4nl (o)(1 - 2,(0)) '

2o

1 — 7(q) < Prob(|y — nd,(0)| > c,an/2) <
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Again from Lemma 4.12 it follows that

(4.17) n(g) >1— 4

cfan

By Fubini’s theorem, the expected value E of the measure of the set of heavy
slabs is equal to [; .- 7(¢)dS, , which from (4.17) gives
q

(4.18) E>(1— 34 )u(@’)-

cian
On the other hand, we have

E<(1-p) (1 - 35 )u(@’)wu(@’),
clasn

where p is the probability that the measure of the set of heavy slabs is at

least (1 —5/ (cfasn))u(@’ ). This inequality, combined with (4.18), shows that
p > 1 — ¢, which completes the proof. O

Let p,, ..., p, be the points of P. Recall that each generator g of I'(P)
is a linear form 21 <i<n@;S; and that its cluster is the set {p,| a; # 0}. By
abuse of notation we will refer to the clusters of I'(P). From the equlvalence
result of Lemma 2.1 we know that, for each Sq € @, the set Sq N P can be

expressed as the union of at most ¢ clusters. A heavy query contains Q(an)
points of P. To be answered in time ¢ therefore requires the use of clusters
of size Q(an/t). Just as we chose to focus on heavy queries, we will restrict
our analysis to those “fat” clusters. Specifically, we say that a cluster is fat if
it contains at least c jan/t points. For any S, €@, let v(q) be equal to the
number of points in S NP which belong to at least one fat cluster lying entirely
within S (Note that these clusters may not necessarily be used in answering
the query S .) Our next result says that with a random point-set P the average
value of 1/( ) (overall S, € @) is Q(an).

Lemma 4.14. For any d > 1 there exists a constant ¢ > O such that for any
fixed real ¢ (0 <& < 1) and a random set of n points in €, the inequality

/@ v(9)dS, > (an/c - c/e)u(@

holds true with probability greater than 1 —¢.

Proof. Given a random set P and S €@, let C,,..., C, beaset of clusters
such that # <t and S n°P =\, <i <uC By the plgeonhole principle, the
number of points of Sq N P that belong to at least one cluster C; such that
|C;| > |S, N P|/(2u) exceeds |S, N P|/2. Suppose that S, is heavy Then
because u <t, we have v(q) > c,an/4. From Lemma 4.13 1t follows that with
probability greater than 1 —¢ we have

/gu(q)dSq > %clan (1- %) we)

> (an/(4/c, +c,c/4) - (4/c, + clc/4)/s)/z(@’),
where ¢ is the constant of Lemma 4.13. O
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Suppose now that P is (logn)-scattered, with n > 2¢ ,and let .S be a subset

of P of size at least logn. By definition, we have 4,(x(S)) > (1 /7 )S|/n .
From Lemma 4.5 we derive that for some constant a, >0,

(4.19) IS| - w(H((S))) < a;a”*'n.

Put U
_(u@)\Y
3a,cm ’
where ¢ is the constant of Lemma 4.14, and suppose that we have the following
relationship between the storage m and the query time ¢:

(4.20) mt < —(cl”)d—”(g)d
a,c(8logn)

Observe that since m > n the condition « < 1/12 is satisfied for any n large
enough. Let C, ..., C 5 be the fat clusters of I'(P). From (4.20) we find that

any fat cluster contains more than logr points. Pursuing the basic approach
behind the Core Lemma, we turn our attention to the key inequality

/ v(@)dS, < 3 ICIu(HE(C)).
e 1<i<p

From (4.19) it follows that

/ v(g)dS, < a,a™ pn.
@
Assume that

(en)' (@)
(4.21) m < al(4c)2d+' .
Then Lemmas 4.9 and 4.14 imply that for any # large enough and any ¢
(0 <e< 1) arandom set P satisfies
an
2c
with probability greater than 1 — & — 1/n. But this leads to a contradiction, so

(4.20) or (4.21) must be false. Since u(&) is larger than some positive constant
(independent of ¢), we immediately derive the following result.

(@) <alad+lmn

Lemma 4.15. For any d > 1 and any ¢ (0 < &€ < 1) there exists a constant
¢ > 0 such that for any n > 1/c, a random set of n points in %, satisfies

mt® > c(n/log n)d with probability greater than 1 —¢.

4.4.2. Sharper bounds for 2-space. The two-dimensional version of Lemma
4.15 can be improved by using weak scattering and Lemma 4.11. The proof
is slightly more technical, although the basic approach remains the same. We
use the notation of the previous section. A parallelotope is now simply called
a rectangle. Given a slab Sq , we define R , as the largest rectangle S, N %,
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12
is well defined and unique. As before, the query space & is the set of slabs
{S,lq€ B,($)}. The proof of the following result is almost identical to that of

Lemma 4.12, so we omit it.

with two sides collinear with the bounding lines of S,. Since a < 1 R,

Lemma 4.16. There exists a constant 0 < ¢, < 1 such that for any Sq € g we
have cya < 2,(R,) < a/c,.

We must strengthen the concept of heaviness by bringing into play the notion
of weak scattering. Given a set P of n points in %,, we now say that a slab
S, is &-favorable if

i) S, e,

(ii) can/2 <|R,NP| < 2an/c,, and

(ii1) the orthogonal projection of the points of R ,NP on either bounding
line of S, is weakly (6'282 /2)-scattered in E b

We now have the analog of Lemma 4.13, saying that if we have a random
point-set P, then a random query is &-favorable with high probability.

Lemma 4.17. There exist two positive constants ¢ and &, such that for any real
¢ (0<e<e) andarandom set of n points in %,, where an > c, the measure
of the set of e-favorable slabs exceeds (1 — & — c/(agn))u(&) with probability
greater than 1 —¢.

Proof. Let n(q) be the probability that Sq is e-favorable, assuming that Sq €
@ . We have n(q) = n,(q)n,(q), where m,(q) is the probability that c,an/2 <
|R,NP| < 2an/c, and m,(q) is the conditional probability that the points of
R, N P projected onto a bounding line of S, are weakly (czs2 /2)-scattered,
given that c,an/2 < |R N P| < 2an/c,. Using Chebyshev’s inequality we
derive

(4.22) 7y(@) 21— .
cyan

On the other hand, since the point distribution is uniform in %, , given a fixed
subset S of PNR 4 the projection of S onto a bounding line of S . is uniformly
distributed along the corresponding side s of R . From Lemma 4.16, the
length of s isatleast ¢,/2 <1, so it follows from Lemma 4.11 that if |R NP| >
c,an/2, then for e <e (¢, >0) and an > 4/c,, the projection of R NP is
weakly (czzr:2 /2)-scattered with probability greater than 1 — ¢*. From (4.22) we
then derive that the expected value @ of the measure of the set of e-favorable
slabs satisfies

(4.23) ®> (1 (1— 2 >u<Q>.

can

But we also have

®<(1-p) (l—s— 35 )u(Q)+p/t(Q),

c,aen
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where p is the probability that the measure of the set of e-favorable slabs is
at least (1 —¢—5/ (cgasn))u(@’). Combining this inequality with (4.23), the
lemma follows readily. 0O

Let P be a set of n points in %, and let Sq be e-favorable with respect
to P. Then S contains a subset Q C P of size > czsleq N P|/2, with

the following properties. Let Q' be the orthogonal projection of Q onto a
bounding line of § e Then for every subset S C Q' of at least two points, we
have

6282|S |
20[R, N P| )
Since |R,NP| < 2an/c,, this implies that given any subset C of Q of at least
two points, the diameter of C satisfies

A (k(S)) >

c§.92|C|
40an

The subset Q is called the prime subset of Sq. Since Sq is e-favorable, we
have

(4.25) 10| > c3e’an/4.

Although Q is not necessarily unique we can always use a canonical ordering
to make the prime subset unambiguously defined.

Next, we replace v(q) by the function &(e, g), defined as follows. If Sq
is e-favorable, then &(e, ¢) is the number of points in the prime subset of Sq
which share a cluster with at least another point. More precisely, let .# be the
set of clusters which lie entirely within S, and contain at least two points in
the prime subset of S , - Then

(4.24) D(C) >

E(e,q) =

J (Cn prime subset of Sq)‘ .
ces

If Sq is not e-favorable then &(e, gq) =

Lemma 4.18. There exist two positive constants ¢ and &, such that for any real

¢ (0 <e<eg)) and a random set of n points in &, with an/t > 1/(ca2) the
inequality

L{(a, q)dSq > celan (1 —&— 21 )u(ﬁ)

c agn
holds true with probability greater than 1 —¢.
Proof. Let S be an e-favorable slab, let Q be its prime subset, and let C, ...
C, be a set of clusters such that ¥ < ¢ and S, NP = U, ., C;. All but at
most u points of Q belong to clusters C, each of which contalns at least two

points of Q. From (4.25) we derive that for an/t > 8/(c2 ),

§(e,q) > c2282an/4 -t> cjszan/S.
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Consequently, Lemma 4.17 shows that with probability greater than 1 —¢ a
random set P satisfies

/@6(8, q)ds, > %ciszan (1 —&— L) wa),

aén

provided that an > ¢ and an/t > 8/ (c%sz). Since ¢ > 1, the lemma follows
directly. 0O

Let C,, ..., C,, be the clusters of I'(P), and for each i (1 <i<m),let n,
be the maximum number of points in C; to be in the prime subset of the same
e-favorable slab Sq . If this number is strictly less than 2, then we set 7, = 0.

Clearly,
/ &(e, q)dS, < Y nu(HK(C))).

1<i<m

Using (4.24) for each i such that n, > 0, as well as Lemma 4.6, we derive
(4.26) / &, g)dS, < (4(3“;’) 3 D(k(C)u(H(k(C)) < o’ mn/e’,
lo:

for some constant ¢; > 0.
Finally, put

o=
2 cm

where ¢ is the constant of Lemma 4.18. Note that o < ; for any n large
enough (since n < m). Assume now that
38 2
(4.27) mit < & H@)n”
4c,

and
5.8 2
L Ce w@n .

(4.28) i

From (4.27) we have an/t > 1(682); therefore, Lemma 4.18 and (4.26) show
that with probability greater than 1 — ¢,

1
celan <1 —&—— ) wae) < c3a3mn/82,
c‘agn

for n large enough. From (4.28) we derive
cszan(l —-2e)u(@) < c3a3mn/s2 ,

which gives a contradiction if, say, ¢ < min{e, %}. This implies that (4.27)

or (4.28) has to be false. Since #(€) is bounded below by a positive constant,
with probability greater than 1 — ¢, we have mt* > (:4£-:8rz2 , for ¢, > 0 and
n large enough. Note that the condition ¢ < min{e , 5} can be relaxed by

choosing ¢, small enough.
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Lemma 4.19. There exists a constant ¢ > O such that forany ¢ (0<¢ < 1) and

n>1/c a random set of n points in &, satisfies mt* > ce®n® with probability
greater than 1 —¢.

4.4.3. Summary of results and closing remarks. Let us recap the main results
of this section (Lemmas 4.15 and 4.19) and state some immediate corollaries.

Lemma 4.20. Let S be a faithful commutative semigroup and let d > 1 be a
positive integer and ¢ any real (0 < & < 1). There exists a constant ¢ > 0 such
that the following is true. Let P be a random set of n points in %, and let T
be any storage scheme of size m for the range searching problem (S, &, P),
where @ s the set of all slabs of fixed (appropriately chosen) width in E 1 Then
if n is large enough, with probability greater than 1 — ¢, the time complexity
! = max ., tP,T, q) satisfies the inequality mt* > cn?, for d = 2, and

mt® > c(n/log n)d , for d > 2. As a corollary, the worst case and average case
time complexities satisfy

t(n, m)>tn, m)=Q(n/Vm)
for d =2, and

t(n,m)zf("””)=g<%>

for d > 3.

Of course, these lower bounds also apply to simplex range searching, since a
slab can always be clipped into a parallelotope without changing the nature of
the problem, and a d-dimensional parallelotope can always be triangulated into
at most d! simplices. We can therefore state our result in a more illustrative
manner.

Theorem 4.21. Simplex range searching on n points requires Q(n/\/m) query

time in two dimensions and Q((n/log n)/ml/ d) query time in any dimension
d > 3, where m denotes the amount of storage available. These bounds hold
Jor a random point-set, and therefore are valid in the worst case as well as on the
average.

As we mentioned in the introduction, simplex range searching on n points
in d-space can be performed in O(nl_l/ da(n)) query time and O(n) storage,
where « is a functional inverse of Ackermann’s function (Chazelle and Welzl
[5]). This upper bound, which holds in the arithmetic model, matches our
lower bound very closely. On a random access machine supplied with linear
storage, the best upper bound on the query time to date is O(y/nlogn) in 2-
space (Chazelle and Welzl [5]) and O(n@=1/@@=D+D+ey in 4 space, for any
d > 3 and any fixed ¢ > 0 (Haussler and Welzl [11]). An interesting open prob-
lem is to bridge the gap in higher dimensions and generalize the upper bounds
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to general space-time trade-offs. Another intriguing question is to determine
whether half-space queries are as hard as simplex queries.
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