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Abstract

In property testing, we are given oracle access to a function f, and we wish to test if the function satisfies
a given property P, or it is e-far from having that property. In a more general setting, the domain on which
the function is defined is equipped with a probability distribution, which assigns different weight to different
elements in the domain. This paper relates the complexity of testing the monotonicity of a function over the
d-dimensional cube to the Shannon entropy of the underlying distribution. We provide an improved upper
bound on the query complexity of the property tester.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In property testing [4,8,10,14], we are given oracle access to a function f, and we wish to randomly
test if the function satisfies a given property P, or it is e-far from having that property. By e-far we
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mean, that any function g that has the property P differs from f in at least e-fraction of places. We
allow the property tester to err with at most constant probability, say 1/3 (in this paper we assume
one-sided error, meaning that the property tester is allowed to err only on negative instances). In
many interesting cases there exist property testers querying only a sublinear portion of the input £,
which is crucial when the input is a giant dataset.

The query complexity of the property is the minimum number of f-queries performed by a tester
for that property (the classical “number of operations” quantity can be considered too). A query
to a function reveals partial information about it, which gives rise to the relation between property
testing and information complexity [4]. We will make this connection precise in what follows.

An interesting ramification of property testing problems [4,6,11] can be considered by allowing a
more general definition of distance between two functions. Instead of defining the distance between
f and g as the fractional size of the set {x | f(x) # g(x)}, we attach a probability distribution D to
the domain of the function, and define

dist(f,g) = Pr(fx | f(x) # g()}).

The “old” definition reduces to the case D = U (the uniform distribution). This definition allows
assignment of importance weights to domain points. It also allows property testers to deal with
functions defined on infinite domains, though it may be necessary to assume additional structure
(for example, measurability of f). Such functions arise when dealing with natural phenomena, like
the temperature as a function of location and time. Of course, in these cases we could not read the
entire input even if we had unlimited resources.

The distribution should not be considered as part of the problem, but rather as a parameter of
the problem. Fischer [4] distinguishes between the case where D is known to the tester, and the case
where it is not known. The latter is known as the “distribution-free” case [11]. In the distribution-
free case, the property tester is allowed to sample from the distribution (but it does not know the
probabilities). The main techniques developed in our work will be used for the distribution-known
case, but we will also show an application to the distribution-free case.

The following question motivated the results in this paper: what happens when the distribution
D is uniform on a strict subset S of the domain, and zero outside S? Intuitively, the “effective”
domain is smaller, and therefore testing the property should be simpler. For general distributions, a
natural measure of the “size” of the effective domain is the Shannon entropy H of D. In this paper
we show a connection between the quantity A and the query complexity, which further supports
the connection between property testing and information theory.

One interesting, well-studied property is monotonicity [2-4,7,9,11-13]. A real function f over a
poset P is monotone if any x, y € P such thatx < y satisfy f(x) < f(»). In this paper we assume that
P is the d-dimensional cube {1, . . ., n}4, with the order: (xi, . . . ,xg) < V.o ya) ifx; < yforalli =
1,...,d. In what follows, we will us [n] to denote {1,...,n}.

d
Halevy and Kushilevitz [11] describe a property tester with query complexity O (2”’10%) in the

.. . . . d4? log
distribution-free case. In [12] they show a property tester with query complexity O T"), for
the special case of known uniform distribution (D = Uf). If d is fixed, this result i;nproves a result

2
by Dodis et al. [2], who describe a property tester with query complexity O (“’%) (For large d,
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n must be doubly-exponential in d for Halevy—Kushilevitz’s result to be better than that of Dodis
et al.). The main result of our paper is as follows.

Theorem 1. Let D be a (known) distribution on [n]? with independent marginal distributions (in other
words, D is a product Dy x --- x Dy of distributions D; on [n)]). Let H be the Shannon entropy of
D. Then there exists a property tester for functions over ([nl¢, D) with expected query complexity

o(¥%).

In the special case D = U, this theorem improves Halevy and Kushilevitz’s result by replacing the
49 with 27 (because then H = d logn). It also generalizes previous work to any product distribu-
tion and gives an interesting evidence of the connection between property testing and the Shannon
entropy of the underlying distribution. One of the main ingredients used are Lemmas 13 and 16
which relate the distance of a function to monotonicity to the sum of its axis-parallel distances
to monotonicity. A slightly weaker version of Lemma 13 was proven in [11] for uniform discrete
distributions, but Lemma 16 is a new continuous version of the lemma, enabling us to obtain results
for the general product-distribution case.

Although this paper discusses mainly the known distribution case, the techniques developed here
are used to show the following:

Theorem 2. Let D be a distribution on [n]? which is a product of n marginal unknown distribu-
tion on [n]. Then there exists a property tester for functions over ([n]%, D) with query complexity

d2?1
0 (—;’g”) .

Note that although Theorem 2 assumes that the distribution D is unknown, it will in fact be im-
plicitly assumed by the property tester that D is a product of d marginal distributions. This is a
weakening of the notion of distribution-free property testing: the distribution is assumed to belong
to some interesting (yet small) family of distributions. We call this a product distribution-free prop-
erty tester. This improves Halevy and Kushilevitz’s O (longnZd) property tester [11] for this weaker
notion of distribution-free (in their result, however, nothing is assumed about the distribution D).
The rest of the paper is organized as follows: Section 2 starts with preliminaries and definitions,
Section 3 proves Theorem 1 for the case ([n], D), Section 4 proves Theorem 1 for the case ([n1%,U),
and Section 5 completes the proof of Theorem 1. In Section 6 we prove Theorem 2. In Sections 7 and
8 we prove two important technical lemmas. Section 9 discusses future work and open problems.

2. Preliminaries

Let f be a real valued function on the domain [n]¢, with a probability distribution D = D; x
-+ x Dy. Assume that D; assigns probability pj’- to j € [n], and therefore D assigns probability

]_[Zzlpl.’; to (i, 2, . ..,iq). In case d = 1, we will write p; as shorthand for p}.
Definintion 3. The distance of f from monotonicity, denoted by &, is defined as

min %r({f 91,
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where the minimum is over all monotone functions g. We say that £ is ¢/-far from monotonicity if
e>¢.

Definintion 4. The ith axis-parallel order <; on [1]? is defined as
O, enXd) < (V-5 Ya) ifx; < yyand x; = y; for j # .

Definintion 5. The ith axis-parallel distance of f to monotonicity, denoted by ¢;,ismin Prp({ f* # g}),
where the minimum is over all functions g that are monotone with respect to <;.

It is a simple observation that f is monotone on [r]¢ if and only if it is monotone with respect
to<;foreachi=1,...,d.

Definintion 6. An integer vector pair (x, y) (for x, y € [n]¢, x < y) is a violating pair if f(x) > f().
We say that “x is in violation with y” or “y is in violation with x” in this case.

Although this work deals with the finite domain case, it will be useful in what follows to con-
sider the continuous cube /¢, where I = {x € R | 0 < x < 1}. The probability distribution is the
Lebesgue measure, denoted by u. The distance between two measurable functions «, 8 : I¢ — R
is w({a # B}) (the set {@ # B} is measurable). The distance of o from monotonicity is inf dist(c, 8)
where the infimum is over all monotone functions .

Fori=1,...,d, consider the following sequence of subintervals covering /:

AL =10.p). Ay = [pl. pi + ph)..... AL = 11— pi. D).

For a number x € I, define int;(x) = jifx € Aj-, that is, x belongs to the jth interval induced by D;.
If d =1 we omit the superscript and simply write A; and int(x). It is obvious that if x is distributed
uniformly in 7, then int;(x) is distributed according to D;.

For a given f : [n]? — R, denote by f : I¢ — R the function

Fx1,. .., xq) = finti(x)),int2(x2), . . ., intg(xq)).

The function 7 is constant on rectangles of the form All.l N Afd, forany iy,...,i; € [n]. More-
over, any function « : /¢ — R which is constant on these rectangles can be viewed as a function
over [n]¢. The following lemma formalizes an intuitive connection between ([n]¢, D) and (I%,U).
The proof is postponed to Section 7.

Lemma 7. The distance & of f from monotonicity in I¢(with respect to the Lebesgue measure) equals
the distance € of f from monotonicity in [n]? (with respect to D). This is also true with respect to the
axis-parallel orders <; .

Finally, we give a precise definition of a property tester:

Definintion 8. An e-tester for monotonicity is a randomized algorithm that, given f : [1]? — R,
accepts with probability 1 if /' is monotone, and rejects with probability at least 2/3 if f is e-far
from monotone w.r.t. a fixed distribution D. In the distribution-known case, the probabilities of D
are known. In the distribution-free case they are unknown, but the property tester can sample from
D.
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In what follows, the notation [a, b] will denote an interval of integers if @ and b are integers, and an
interval of reals if they are real. We use the standard parenthasis notation for endpoint inclusion or
exclusion in the interval (i.e. [a, b], (a, b), (a, b], [a, b)). The symbol I/ will denote both the continuous
and the discrete uniform distribution. For instance, if a, b are integers, then x €4 [a, b] means that
x is chosen uniformly at random among {a,a + 1,.. ., b}. If they’re real, then x is chosen uniformly
in the corresponding real interval.

3. A property tester for ([r], D)

The algorithm is a generalization of an algorithm presented in [11]. Let f : [#] — R be the input
function. We need a few definitions and lemmas.

Definintion 9. For a violating pair (i, j) we say that i is active if

kP%(kin violation withi |k e [i +1,7]) > 1/2.

Similarly, j is active if

kPrD(k in violation with j | k € [i,j — 1]) > 1/2.

Intuitively, an active integer in a violating pair (i, j) is also in violation with an abundance of
elements in the interval [Z, j].

Definintion 10. For a violating pair (i, /), we say that i is strongly active if it is active and
pi < Pr([i +1,/]). Similarly, j is strongly active if it is active and p; < Pr([i,j — 1]).

Lemma 11. If (i, j) is a violating pair, then either i is strongly active or j is strongly active (or both).

Proof. It is immediate that for any i < k < j, either (i, k) or (k, j) is a violating pair. So either i or
j is in violation with at least half the weight of the integers in [i 4 1, j — 1]. This proves that either
i or j is active. So assume i is active but not strongly active. This means that p; > Pr([i 4+ 1, ]). But
this would imply that j is strongly active. Indeed, p; is greater than half of Pr([i,j — 1]), and i is in
violation with j, so j is active. But p; < p; so j is strongly active. [J

Lemma 12. Let J be the collection of strongly active integers from all violating pairs of f. Then
PriJ) = e.

Proof. Actually, any collection J of at least one integer from each violating pair has this property.
Proof of this simple fact can be found in [11]. O

To describe the algorithm, we need another piece of notation. For x € 7, let left(x) denote the left
endpoint of the interval Ay, and similarly let right(x) denote its right endpoint.

The following algorithm is an e-property tester for monotonicity of f, with expected query
complexity O <HT+1> We show how to eliminate the added 1/¢ shortly. The algorithm repeatedly
chooses a random real number in x €, 7 and a sequence of real numbers y at exponentially growing
distances from x, and checks for violation between int(x) and int(y).
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monotonicity-test (f : [n] > R,D,¢)

1 repeat 0(8_1) times
2 choose random x €y 1
set 8 < pintw
set r < right(x)
while r+6 <2
choose random y €y [r,min{r + §,1}]
if fint®) > fint()
then output REJECT
§ <« 26
set & < pinte
set [ <« left(x)
8 while [—6> —1
choose random y €y [max{/ — §,0},x]
if fint(y)) > f(intX)
then output REJECT
set § <« 2§
output ACCEPT

~N oUW

monotonicity-test. The number of iterations of the internal while loops (lines 4,8) is clearly at most
log(2/ Pint(o) (all the logarithms are base 2 in this paper). Clearly

E, ¢, /11082/pintr))] = Eiepllog2/p)l = H + 1.

We prove correctness of the algorithm. Obviously, if f is monotone then the algorithm accepts.
Assume that f is e-far from monotonicity. By lemma 12, with probability at least ¢, the random
variable x chosen in line 2 satisfies int(x) € J. This means that i = int(x) is strongly active with re-
spect to a violating pair (i, j) or {j, i) for some integer j. Assume the former case (a similar analysis
can be done for the latter). So i is in violation with at least half the weight of [i + 1, /], and also
pi < Pr([i + 1, j]). Consider the intervals [r,r + p;2'] for t = 0,1,2,... with r as in line 3. For some
t, this interval “contains” the corresponding interval [i + 1, ] (i.e. Ajy1U--- U Aj), but pi2! is at
most twice Pr([i + 1, j]). The latter by virtue of i being strongly active. For this ¢, with probability
at least 1/2 the y chosen in line 5 is in [i + 1, j]. In such a case, the probability of y being a witness
of nonmonotonicity in lines 6-7 is at least 1/2, by virtue of i being active. Summing up, we get that
the probability of rejecting in a single iteration of the loop in line 1is at least £ /4. Repeating O(s ™)
times gives a constant probability of rejecting.

We note that the additive constant 1 in the query complexity can be eliminated using a simple
technical observation. Indeed, notice that, for x chosen in line 2, if Pint(x) > 1/2 then x cannot be
strongly active by definition, and therefore that iteration can be aborted without any query. If
Pint(x) < 1/2 then we can eliminate one iteration from the while loops by initializing § = 2pj,qy
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instead of § = py(,, and by slightly decreasing the probability of success in each iteration of the
repeat loop. This gets rid of the additive constant, and concludes the proof of Theorem 1 in the
([n],D) case. O

4. A property tester for ([n]¢, U)
We start by noting that a more efficient property tester for this domain and distribution can be

achieved using the methods of [2], but we prove an important inequality here (Lemma 13) that is
generalized for the product-distribution case in the next section.

Letf: [n]Y — U denote theinput function. For adimension j € [d]and integersij, . .. Ajyeeanig €
[n],let f/ .  denote the one-dimensional function obtained by restricting f to the line {i} x

ipeeesdfyeensld
coox o) X D] X i) X - x ia).

highdim-mon-uniform-test (f : [n]? — R, ¢)

repeat O(e7'd2?) times

1 choose random dimension j €y [d]

2 choose random i],...,f/,...,id ey [n]

3 run one iteration of repeat loop of
monotonicity-test(/ ’1 i U, %)

output ACCEPT

To prove that the above algorithm is an e-monotonicity tester for f, we will need the following
lemma. It is an improved version of a theorem from [12], with 2¢ replacing the 47 on the right hand
side. Recall Definition 5 of ¢;.

Lemma 13. Y7 &; > /2%,

The correctness of highdim-mon-uniform-test is a simple consequence of Lemma 13. If f is mono-
tone, then the algorithm accepts with probability 1. So assume f is e-far from monotonicity. By

Lemma 13, the restricted one-dimensional function fljl Py chosen in line 3 has expected dis-

tance of at least y = % dei > %8/2d+1 from monotonicity, in each iteration of the repeat loop. A
single iteration of monotonicity-test has an expected success probability of 2(y) by the analysis of
the previous section. Repeating O(e~'d27) times amplifies the probability of success to any fixed
constant.

As for the query complexity, line 3 makes O(logn) queries, which is the entropy of the uniform
distribution on [#]. So the entire query complexity is O(¢12¢d log n) = O(¢~12¢H), as required.
It remains to prove Lemma 13:
Proof. Fori=1,...,d, let B; denote a minimal subset of [#]¢ such that f can be changed on B;
to get a monotone function with respect to <;. So |B;| = ne;. Let B = UleBl-. So |B] < Y en?. Let

]d
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x5 : [n]¢ = {0,1} denote the characteristic function of B: xz(x) = 1if x € B, otherwise 0. We define
operators ¥; and Wi on boolean functions over [n] as follows:

1 if there exists j € [1,{] s.t. Zk vk = >GE—j+1D/2
0 otherwise

(W) (i) = {1 if there exists j € [i,n] s.t. Zf;:,- vk) = (G —i+1)/2

(Wrv)(@) = {
0 otherwise

Given a {0, 1}-function over [n]%, we define operators ng) (respectively lIJg) Jfori=1,...,d by
applying Wg (respectively W;) independently on one-dimensional lines of the form

{er} x - x {xoa} x [m] X {xi} x oo x {xa}

Finally, for i = 1,...,d we define the functions (pL ,(pg) [n]¢ — {0,1} as follows:

= () 04" 00 4f?) 1 0
oV = (WP owi o . 6w yp.

Note that <p(’) = \Dg)rp(lﬂ) and (p(l) = \IJ(I) (IH) . We claim that outside the set {(p(l) 1} U {go(l)
=1} C [n)? the function f is monotone. Indeed, choose x, y € [n]? such that x < y and <p£1 (»)
= g) (x) = 0. We want to show that f(x) < f().

Claim 14. Any b € B satisfies <p(’) (b) = <pg) b)y=1fori=1,...,d

By the above Claim, x, y ¢ B. Now consider the two line segments:

SR = [xla_yl] X {x2} X - X {xd}a
Sp =[x, ] x {p2} x -+ x{ya} .

By definition of \IJ() (respectively \I’( )) the average value of (pR) (respectlvely goL)) on Sg
(respectively Sy) is less than 1/2. Therefore there exists z; € [x1, y1] such that goR (zl X2, ..., Xxd) +
(,022 (z1, 2, ..., vq) < L Since these values are in {0, 1}, we get that

2
0P G132, oxa) = 00 @1 2, va) = 0. (2)

Denote x = (z1,x2,...,x7) and y = (2, 1, ..., yz). By Claim 14 and (2), both x(’ and y(l) are
outside B. Since x <; xV we get that f(x) < f(xV). A similar argument shows that f(y) < f(y).
We make an inductive argument, using the functions (pi and <p(2) to show that f(x1) < f(yM).
The general inductive step generates points x < y that agree in the first i/ coordinates, and such
that (p(l+1)(x(’)) (’+1)( yDy = 0 (consequently, x®@, y@ ¢ B). In the base step we will end up with
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x@=D and y@=D that differ in their last coordinate only. Therefore, they are <;-comparable and
F(x4=Dy < f(»@D) because @D, y@=D ¢ B,

It remains to bound the size of the set {(pg) = 1}. A similar analysis can be applied to {gog) =1}.
We claim that |{<pg) = 1}| < |B|2¢. This is a simple consequence of the following lemma.
Lemma 15. Let v be a boolean function of [n]. Then the number of 1's in Wrv is at most twice the
number of 1's in v. A similar result holds for Wg.

We will prove this lemma shortly. As a consequence, the combined size of {(/)g) = 1}and {<p(1) =1}
is at most |B|29t!. This means that f is monotone on a subset of [n]¢ of size at least n? — |B|29+1.
It is a simple fact that any monotone function on a subset of [n]? can be completed to a monotone
function on the entire domain (see Lemma 1 [7]). So the distance & of f from monotonicity is at
most 271 Y ¢, as required. O

It remains to prove Lemma 15. Imagine walking on the domain [#] from 1 to n, and marking inte-
gers according to the following rule (assume on initialization that all domain points are unmarked
and a counter is set to 0):

If the value of v on the current integer i is 1, then mark i. Also, in this case increase the counter
by L. If v({) = 0 and the counter is > 0, then mark integer i and decrease the counter by 1. Otherwise
do nothing.

It is obvious that the number of marked integers is at most twice the number of 1’s in v. It is also
not hard to show that (¥ v)(i) = 1if and only if i is marked. Indeed, if (¥zv)(i) = 1, then for some
j < i, vector v on integer segment [/, {] has at least as many 1’s as 0’s. This implies that either v(i) = 1
or the counter at i is positive, therefore i is marked. This proves the lemma. [

5. A property tester for ([n]¢, D)

Let f:[n]Y — R be the input function, where [n]¢ is equipped with a (known) distribution
D =D x - -+ x Dy. The following algorithm is a monotonicity tester for f.

highdim-monotonicity-test ( f : (n]? —> R,D,¢)

1 repeat O(¢7'd29) times
2 choose random dimension j € [d]
3 choose random (i1,...,i7) €p [n]d
4 run one iteration of repeat loop of
monotonicity-test(f . . Dj, %)
Loeveskjireeesd .

output ACCEPT

Clearly, for D = U highdim-monotonicity-test is equivalent to highdim-mon-uniform-test.
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We start with the query complexity analysis. The call to monotonicity-test in line 4 has query
complexity O(H;) (the entropy of D;). Therefore, the expected query complexity in each iteration
of the repeat loop is é Z;lzl OH)) = éO(H) (we use the well known identity that the entropy of a
product of independent variables is the sum of the individual entropies). Therefore the total running
time is O(¢~129H), as claimed.

We prove correctness. Clearly, if f* is monotone then highdim-monotonicity-test accepts with
probability 1. Assume f is e-far from monotonicity. In order to lower bound the success (rejection)
probability of line 4, we want to lower bound the average axis-parallel distances to monotonicity
of f, similarly to Lemma 13. In order to do that, we consider the continuous case. Recall the defi-
nition of the function f : /Y — R from Section 2. Let & be its distance from monotonicity w.r.t. the
Lebesgue measure, and g; its corresponding axis-parallel distances. We need the following lemma,
which is a continuous version of Lemma 13.

Lemma 16. Y% & > z/24+!,

Proof. The proofis basically as that of Lemma 13, with a redefinition of B;, B, x5, ¥, Wg, \IJE, lllﬁe, (pg), ¢1(§).
We pick an arbitrarily small § > 0, and define the set B; C /¢ as the set { f # g} for some <;-mono-
tone g with distance at most &; + § from f (so & < u(B;) < & + 5). Let xp be the characteristic
function of B = UB;. Obviously, u(B) < >_&; + 8d. We then define the following continuous ver-
sions of Wy, Wg, which are now operators on measurable {0, 1} functions over /:

— ; X Lo _
(WL0)(0) = 1 ox) = 1 or there exists y € [0,x) s.t. fy v(dt > 3(x — )
0 otherwise

)1 v(x) =1or there exists y € (x,1] s.t. fy v(H)dt > %(y —X)
(Wr0)(x) = {O otherwise }

The operator \Ifi (respectively lIJj'e) on functions of /¢ applies ¥; (respectively Wg) on all lines of
the form

Pea - XL x g} x - x {xa)
The functions gog) and %(ei) are defined as in (1). The main observation is that ,u({(pg) =1}) < 2¢u(B)

(similarly, for <pg)). This is a simple consequence of the following lemma, which is a continuous
version of Lemma 15.

Lemma 17. Let v be a measurable {0,1} function defined on 1. Then
fol (Yo) () dt <2 fol v(t) dt . A similar result holds for Wg.

The mostly technical proof of Lemma 17 can be found in Section 8. The rest of the proof of Lemma
16 continues very similar to that of Lemma 13 and by taking§ — 0. [

As a result of Lemmas 16 and 7, we have: )" ¢; > /291 This means that the expected one-di-
mensional distance from monotonicity of fl J1 o in line 4 (w.r.t. the marginal distribution D;) is

atleasty = %8 /2441 By the analysis of monotonicity-test, we know that the probability of rejecting
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in a single iteration of the repeat loop is 2(y). Therefore, by repeating O(1/y) times we get constant
probability of success. This completes the proof of Theorem 1. [

6. The product distribution-free case

We prove Theorem 2. The theorem states the existence a property tester with query complexity
(0] @ in case the underlying distribution is a product of d unknown marginal distributions.
The family of product distributions is an interesting yet still very small subset compared to the
entire set of d-dimensional distributions, and the result therefore does not show the existence of a
distribution-free property tester with the claimed query complexity.

Let 1 : [n]Y — R be the input function, where [n]? is equipped with a distribution D = D; x
-+ X Dy, and the marginal distributions D; are unknown.

We cannot simply run highdim-monotonicity-test on f, because that algorithm expects the ar-
gument D to be the actual probabilities of the distribution. In the distribution-free case, we can
only pass an oracle[D], which is a distribution sampling function. Therefore our new algorithm,
highdim-monotonicity-test-distfree will take /', oracle[D] and ¢ as input.

highdim-monotonicity-testl ( /', oracle[D], ¢)

1 repeat O(¢~'d2?) times

2 choose random dimension j € [d]

3 choose random (i,...,1,...,id) €p [n]9-1

4 run one iteration of repeat loop of
monotonicity-testl(flim’l}mid, oracle[D;],*)

output ACCEPT

Note that oracle[D;] in line 4 is obtained by projecting the output of oracle[D]. Algorithm mono-
tonicity-test1 is defined to be exactly Halevy—Kushilevitz’s 1-dimensional distribution-free mono-
tonicity tester! [11]. We omit its description here and refer the reader to [11]. The running time of
a single iteration of the repeat loop of monotonicity-testl is O(log »), and the total running time is

,,,,,,,,,,
nicity-test1, and let ¢’ be its distance from monotonicity w.r.t. D;. In [11] it is proven that a single
repeat-loop iteration of monotonicity-testl ( /', oracle[D;], ) rejects with probability €2(¢"). But we
showed in Section 5 that E[¢'] > /2971 Repeating lines 2-4 O(¢~!d2¢) times amplifies this to a
constant probability. This concludes the proof of Theorem 2. [

! It is called Algorithm-monotone-1-dimp (£, ¢) there.
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7. Proof of Lemma 7

The direction € < ¢ is clear. It remains to show that ¢ < &. Pick an arbitrarily small § > 0, and
let § be some monotone function on /¢ with distance at most & + § to f. We are going to replace §
with a monotone function g over [#]¢ with distance at most & + 25 to f. To do this, we will make
it constant on tiles of the form A}l X Ai22 X oo X Al‘-ld , paying a price of at most one extra §. We will
do this one dimension at a time.

We show how to do this for the first dimension, and the rest is done similarly. Our goal is to
replace § with a monotone function § that has distance at most & + 8(1 + 1/d) from f, with the
property that it is constant on any line segment of the form

Aj X {x} x -+ x {xa} ,

for any i € [n] and x»,...,xq € I. For every i € [n], do the following: For every x| € A , consider
the restriction of the functlon g to the d — 1 dimensional cube {x;} x 797!, Denote this functlon by
Jx, (x2,...,xq). Let &, denote the distance between g,, and fx1 (where fx1 1s defined similarly to gy, ).
Let y = 1nfx eal &y,. Pick xj such that &, is at most y 4 6/d. We now “smear” the value of g at
(X1,X%2, . ..., xq) tO Al x {x2} x - -+ x {xg}, for all x»,...,xq. Doing this for all i = 1,...,n produces
the functlon g™ Itis not hard to see that the dlstance between § and f is at most £ + s(1+1/d),
and the function §" is monotone.

After obtaining ), we obtain §UtD by repeating the above process for the (j + 1)th dimension.
It is easy to verify that for j < d:

(1) If ¥ is monotone then so is g ™.
(2) If gV is constant on

1 2 A
A XAI-Zx---xA{jx{xjH}x---x{xd}

for all iy, ...,i; and x;41,. . . ,xq, then gU*D is constant on
Al x A2 x.ox AT X {xj10} X -+ x {xg}
i i2 1jt1 ]+2 Xd
foralliy,...,ijy1and xj42,...,x4.

(3) If the distance between §V) and f is at most & + j8/d, then the distance between §U*D and f
isatmost & + (j + 1)é/d.

Therefore, 5 is monotone, and it is defined over [7]? (because it is constant over A}] X oo X Ai{ ).
Denote the equivalent function over ([#]¢, D) by g. The monotone function ¢ has distance at most
& + 25 from f. The set of possible distances between functions over ([rn]¢, D) is finite, therefore by
choosing § small enough we obtain a function g which has distance exactly & from f. This concludes
the proof. [
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8. Proof of Lemma 17
Let B denote the set {x|v(x) = 1}, and C denote {x|(¥;v)(x) = 1}. We want to show that ©(C) <

2 (B). It suffices to show that for any ¢ > 0, u(C) < 2+ e)u(B).
For y < x, define

Jyvwdt  u@niyx)
y—x m(ly,xD)

p(y,x) =

That is, p(y,x) is the measure of the set {v = 1} conditioned on [y,x]. Clearly, p is continuous in
both variables.

Pick an arbitrary small ¢ > 0. Let C, be the set of points x € I such that there exists y < x with
o(y,x) > 1/2 — e. For x € Cg, we say that y is an e-witness for x if p(y,x) > 1/2 — &. We say that y
is a strong e-witness for x if forallz : y <z < x, p(y,2) > 1/2 — .

Claim 18. If x € C,, then there exists a strong e-witness y for x.

Assume otherwise. Let y be any e-witness for x. Since y is not a strong e-witness for x, there exists
z:y <z < xsuch that p(y,z) < 1/2 — e. Let zg be the supremum of all such z. Clearly, y < zg < x
(zo cannot be x because then by continuity of p we would get p(y,x) < 1/2 — ¢). We claim that zg is
a strong witness for x. Indeed, if for some 2z’ : zg < z/ < x we had p(zg,z") < 1/2 — &, then it would
imply p(y,z’) < 1/2 — ¢, contradicting our choice of the supremum. This proves Claim 18.

For all x € Cg, let y(x) be the infimum among all strong e-witnesses of x. We claim that for
x # x/, the intervals [ y(x),x) and [y(x"),x’) are either disjoint, or y(x) = y(x’). Otherwise, we would
have, without loss of generality, y(x) < y(x") with both x,x" > y(x’). But then any strong e-witness
for x that is strictly between y(x) and y(x") (which exists) is a strong e-witness for x’, contradict-
ing the choice of y(x). Therefore, the set Y = (C,) (the image of y(-)) is countable, and for any
1o € Y there exists an x(y3p) > yp which is the supremum over all x : x > yp such that y(x) = yy. For
two distinct y1, y» € Y, the intervals [y1,x()1)) and [y2,x()»)) are disjoint. Let D = U ey [y, x()).
Clearly, by continu_ity of p,forall y € _Y , [y, x(»)) < W. Therefore (D) < “1(/295). We
also have that w(D) = u(D) (where D is the closure of D), because D is a union of countably

many intervals. Therefore, u(D) < "1(/[_2)95) . By Claim 18, C, C D, therefore 11(C,) < %, and

thus w(C, U (B\D)) < lp/‘g )8. We now claim that up to a set of measure zero, C is contained in

C; U_(B\[)). Indeed, any point z € C that does not belong to neither C; nor B\D must belong to
B N D. But since the interior of D is contained in C,, we conclude that z € B N 4D, a measure-zero

set. We conclude that u(C) < 172()‘3 )8, asrequired. [

9. Future work

(1) Lower bounds: The best known lower bound for the one-dimensional uniform distribution non-
adaptive property tester [3] is (e~ !logn). An optimal lower bound of Q(log n) (for constant
¢) in the adaptive setting was proven by Fischer [5]. For arbitrary distribution it is possible,
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using Yao’s minimax principal, to show a lower bound of (¢ log(e/ Pmax)), Where pmax is
the maximal probability in the distribution. Note that log(1/pmax) can be arbitrarily smaller
than H. It would be interesting to close the gap, as well as generalize for higher dimension.

(2) High-dimensional monotonicity: It is not known if Lemma 13 is tight. Namely, is there a high
dimensional function that has axis-parallel distances from monotonicity exponentially (in d)
smaller than the global distance to monotonicity? We note that even if the exponential depen-
dence is tight in the inequality, it would not necessarily mean that the property testing query
complexity should be exponential in d (other algorithms that are not based on axis-parallel
comparisons might do a better job).

(3) Other posets and distributions: It would be interesting to generalize the results here to functions
over general posets [7] as well as arbitrary distributions (not necessarily product distributions).

(4) More information theory in property testing: It would be interesting to see how the entropy
or other complexity measures of D affect the query complexity of other interesting property
testing problems.
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