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This is a personal account of some of the most exciting challenges computational geometry faces

today. Needless to say, my choice of open problems reflects my own taste and bias. I did not wish to

cover the whole spectrum of the field and give a bland, comprehensive assessment of what’s ahead

for computational geometers. Rather, I chose to discuss a few problems that sprang to my mind as

being both fundamental in the issues they raise, and plain fun to work on.

Some of these problems are as old as the field and can be stated in one or two sentences. In this

category, one of my favorites is the problem of sorting X + X , the set obtained by adding elements

pairwise from a set X of n numbers: Can it be done in o
(

n2 log n
)

? After Fredman’s 1976 paper

[31] that showed that, in essence, O(n2) comparisons suffice, precious little progress has been made.

What makes Fredman’s result impractical is that to find the right sequence of comparisons can only

be done at this point with an exponential-size look-up table. The importance of this problem in

geometry is that without a solution to it, hopes to sort the slopes formed by n points in the plane

optimally or equivalently, sort the vertices of a line arrangement along a given direction, all vanish.

This is old, hard and still open, but hardly an isolated case by a long shot. I will discuss more of

these old unsolved cases and then gradually move on to newer trends, e.g., probabilistic algorithms

and their derandomization, or the decomposition of real-algebraic manifolds. For each open problem

mentioned I will also try to indicate what seems to be missing in our current understanding and

what might be reasonable lines of attack.
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Capsule 1: Polygonal Curves

The time has come to elucidate the mystery of polygonal curves once and for all. After many years

of effort [19,25,35,42,43,69,71], the problem of triangulating a simple polygon was finally resolved

last year [13]. It now appears to me that simplicity is not the issue but connectivity is. I conjecture

that the planar subdivision created by a polygonal curve can be triangulated in linear time, whether

the curve is simple or not. If the curve has self-intersections, then of course the term “linear” is

to be understood with respect to the output size. More generally, if we are in the presence of p

connected polygonal curves (simple or not) I believe that a triangulation should be computable in

time O(k +p log p), where k is the size of the triangulation. We assume here that we are not allowed

to add new vertices, except for the intersections. Such a bound would be tight and would unify in

a beautiful manner a number of seemingly separate optimal algorithms: the one just mentioned for

triangulating a simple polygon, another for intersecting line segments [14], and finally methods for

merging convex planar subdivisions [39,44,53]. Such a lofty goal might be difficult to attain, and a

good starting place might be the easier problem of intersecting two simple polygons.

Capsule 2: Dynamic Point Location

The problem of locating a point in a planar subdivision has been studied thoroughly and, by and

large, it is completely solved. The dynamic version of the problem is interesting in its own right and

also because it is tied to efficient solutions to static point location in a three-dimensional polyhedral

cell complex [60]. The dynamic operations we have in mind consist of inserting or deleting an

edge. The best known solutions are due to Cheng and Janardan [20] and Goodrich and Tamassia

[37], which improve on an earlier solution by Preparata and Tamassia [59]. The storage is linear,

the update time is O(log n), but the query time is O(log2 n). The reason for the relatively high

query time is that the data structure forces the algorithm into repeated binary searches. Fractional

cascading [17] is a general technique for speeding up such operations, and it is indeed used in most

of the optimal static solutions. Given a graph G with sorted lists of numbers attached to its nodes,

fractional cascading is a way of interconnecting those lists so that binary searching for a key in the

lists along a path of G can be done in time proportional to the length of the path, with logarithmic

additive overhead.

What seems to be needed for efficient dynamic point location is an implementation of dynamic

fractional cascading. Not dynamic in the sense of modifying the lists at the nodes (this is well

understood [17,49]) but in the sense of adding and deleting edges from the graph G. These changes

represent balanced search tree rotations in the context of dynamic point location. A naive imple-

mentation which consists of updating the list interconnections in the fractional cascading structure

is doomed because it might entail too much work. A more “lazy” approach whereby only portions

of the interconnections are updated in some incremental, persistent manner might lead somewhere,

but the answer is far from clear at this point.



Capsule 3: Convex Hulls

The convex hull of n points in the plane can be computed in O(n log n) time by a variety of methods

[29,58]. But what if we want to maintain the convex hull dynamically under insertions and deletions?

The data structure should let us access the current convex hull at any time and perhaps allow us

to compute such things as the vertex closest to a query line. Is it possible to achieve O(log n) time

per update? The best bound known at this time is O
(

log2 n
)

(Overmars and van Leeuwen [56]).

The case of insertions-only [58] or deletions-only [8,41] is well understood. Since a single insertion

(or deletion) might cause a massive change in the hull, one must represent the changes in a lazy

fashion by using a hierarchical representation of a convex hull. But even then, alternating deletions

and insertions can create havoc. There is nothing new in this phenomenon. The bane of dynamic

structures is that one element whose insertion or deletion deeply modifies the combinatorial structure

of the object represented, and which an ill-intentioned adversary will take pleasure in inserting and

removing in alternation. Again, a deeper understanding of laziness and persistence seems in order.

In arbitrary (but fixed) dimension, one of the most classical geometric problems of all is still

partly open: computing the convex hull of n points in d-space. Seidel has given an algorithm

that is optimal in even dimensions [66] and another algorithm [67] that reports every face of the

hull in logarithmic time, with a quadratic additive overhead. Clarkson and Shor [24] have given

an optimal randomized algorithm, later simplified by Seidel [68]. But how long shall we have to

wait for an optimal O
(

nbd/2c
)

-time algorithm, let alone one that is output-sensitive? Perhaps a

better understanding of derandomization (see Capsule 8) might allow us to make the randomized

algorithms deterministic without loss of efficiency.

Capsule 4: Polyhedra in 3-Space

Let us move up to three dimensions and discuss the current status of convex polyhedra. In 1983

Dobkin and Kirkpatrick [28] proposed an ingenious representation of a convex polytope as a nested

sequence of coarser and coarser approximating polytopes. They used it successfully to give polylog-

arithmic algorithms for detecting intersection between two polytopes. Later, by building on these

ideas, I showed how to compute the intersection explicitly in linear time [9]. But what happens if

the polyhedra are not convex? Mehlhorn and Simon [50] gave a solution for the case where one of

them is convex, but the general problem remains wide open. Interesting partial results were given

in [4].

In the same vein, here is another basic intersection problem whose answer is not yet known. Is

it possible to preprocess a polytope of n vertices using linear or, say, n×polylog(n) space, so that

its intersection with a query plane can be computed in time O(k + log n), where k is the size of the

intersection? To achieve O((k + 1) log n) is easy if we first look for a point of contact and then walk

around the intersection by repeated binary searches around the faces of the polytope. Again, the

bottleneck appears to lend itself to fractional cascading, but the appearance is deceptive. A closer

look reveals that the searches, although implemented on standard balanced search trees, are really

two-dimensional. So, perhaps, we need to generalize fractional cascading in the manner described

below.



Consider p planar maps, each of size O(n), which we wish to preprocess for the purpose of

performing point location in each of them. Using standard techniques, a point can be located in

each map in a total of O(p log n) time, using O(pn) storage. Note that this does not require spreading

information around among the different maps. If we do so, as in fractional cascading, can we hope to

achieve O(p+log n) time, while retaining optimal O(pn) space or slightly worse? Small steps toward

that goal can be made by trying to merge together the maps in small batches, but even then one

has to be very cautious. Indeed, the fundamental difference with the world of fractional cascading

is that unlike linear lists, two maps of size n might merge to produce a map of size Ω
(

n2
)

. Even if

the maps are parallel strips (with different slopes) how to proceed is unclear. Understanding this

problem would be very useful, not only for the intersection problem mentioned earlier, but also for

several searching problems whose current solutions involve data structures storing Voronoi diagrams

at the nodes of a master tree structure which is then searched by repeated planar point locations.

Capsule 5: Hidden Surface Removal

What is in our mind the most tantalizing open problem in 3d computational geometry is to resolve

the complexity of hidden surface removal. To take a simple example, consider n non-intersecting

opaque triangles, and think of computing the visible scene from a fixed viewpoint. Since Sutherland

et al.’s classic survey [70], some progress has been made but not a great deal. In practice, it seems

that the only tangible improvements have come from better hardware via image-space methods. If

the description size of the visible scene is k, the goal is to find an output-sensitive algorithm whose

complexity might be something like O(n + k) times a polylog(n) factor. No one knows how to do

this, which does not surprise me much, because I conjecture that it cannot be done.

A more realistic goal might be to shoot for a running time of the form O
(

n1+ε + kf(n)
)

,

where ε is a small positive constant and f(n) is a slow-growing function. The particular cases of

polyhedral terrains [63] or rectilinear scenes [5,36,61] are relatively well understood (even though

some unanswered questions still remain). But the general case is completely open. Under the

restrictive assumption of a partial order among the triangles, partial results have been given in

[54,55,3]. See also [34,57].

At the most basic level, it seems that the main bottleneck in hidden surface removal is what

is commonly referred to as Hopcroft’s problem: Given n points and n lines in the plane, check

whether none of the points lie on any of the lines. An elegant feature of this problem is that it

is invariant under duality. Its relevance to hidden surface removal can be seen by the following

example. Think of n uncooked spaghetti lying flat in a pan, with a napkin on top of them hiding

everything. Now assume that somebody punches n tiny holes in the napkin. The visible scene will

be able to tell whether one of the spaghetti shows up through any one of the holes, which is just

another way of stating Hopcroft’s problem. The fastest (deterministic) algorithm for that problem is

due to Agarwal [2] and runs in time O
(

n4/3 log2 n
)

, or even O
(

n4/3 log n
)

, by using Matoušek’s latest

results on derandomization (see Capsule 8). The factor n4/3 happens to be the order of magnitude

of the maximum size of n faces chosen in an arrangement of n lines [23], and this is no accident.

Indeed, if the algorithm for Hopcroft’s problem is to perform only tests of the form: “Is this input



point below or above that input line?”, then by placing the n points inside the largest faces of the

worst-case arrangement we immediately obtain an Θ
(

n4/3
)

lower bound on the computation time.

Of course, no one says that the algorithm needs to be so restrictive. But nevertheless, we conjecture

that on, say, a RAM or a pointer machine, no algorithm can run in time n×polylog(n). An answer to

this question would shed a tremendous amount of light on the entire issue of hidden surface removal.

A related problem is to detect whether n points are in general position. This can be done in

O
(

n2
)

time [18,30], but there is little reason to believe that this is optimal. On the other hand, the

existence of, say, an O(n log n) algorithm appears unlikely. Again, the sparsity of lower bounds is a

serious impediment to our current understanding of these problems.

Capsule 6: Lower Bounds for Multidimensional Searching

This generalized form of searching deals with geometric objects that cannot be structured by a

total order. Hit detection in computer graphics, range searching in databases, point location in

geographical maps are typical instances of multidimensional searching. In simplex range searching,

for example, one is asked to preprocess n weighted points in d-space, so as to support queries of the

form: “What is the cumulative weight of the points inside a given query simplex?” While efficient

solutions have been obtained or at least seem in sight, the issue of lower bounds has proven rather

elusive. Strong lower bounds have been established for the semigroup case, where no subtraction

of weights are allowed [10,11,12,32,33]. This case is actually not nearly as restrictive as it sounds,

because adding weights in a semigroup might mean taking their maximum, or combining auxiliary

data structures associated with them, which are operations which do not admit of inverses. At any

rate, to generalize these lower bounds to the group model, where an inverse operation is allowed

seems very challenging. A partial result is given in [73] but it requires a restrictive assumption on

what is an allowable data structure. The difficulty of the problem is to assess the true power of

inclusion-exclusion relations. An apt analogy is how difficult it is to generalize lower bounds for

monotone circuits to circuits allowing negation.

Capsule 7: Higher-Dimensional Nonlinear Shapes

Triangulating an arrangement of n hyperplanes in Ed is to partition its faces into a regular cell

complex, whose cells are simplices of all dimensions between 0 and d. There are standard ways of

doing that [21], but sometimes it is useful to have what is called a vertical decomposition, that is, a

regular cell complex whose cells have a cylindrical structure oriented along the reference axes. This

is especially true if we deal with nonlinear surfaces, such as for example, real-algebraic varieties

(more specifically, real zero-sets of multivariate polynomials with rational coefficients.)

The need to analyze and understand the geometry of large collections of real-algebraic varieties

arises in motion-planning, where the obstacles are modeled as hypersurfaces and the robot is a point

in real higher-dimensional space. A milestone in that area is the paper by Schwartz and Sharir

[65]; see also [7]. An outstanding open question in that area, which might be called computational

real-algebraic geometry, is that of triangulating an arrangement of real-algebraic varieties [26,62,72].

Collins’ decomposition [26] offers a solution to that problem, but one exceedingly expensive, since



it uses storage doubly-exponential in the number of variables (which is the dimension of the am-

bient space). Jointly with Edelsbrunner, Guibas, and Sharir [15], we have given a sign-invariant

stratification scheme that is singly-exponential (note that no solution can be sub-exponential). A

sign-invariant stratification is simply a partition of <d into simple cells over which each polynomial

remains sign-invariant. A simple cell is defined here as a smooth manifold (i) topologically equivalent

to a k-ball (k ≤ d) and (ii) specified by constant-size quantifier-free formula in the theory of reals.

Our method produces O
(

n2d−2
)

cells, where n is the number of polynomials defining the varieties.

(Actually, it is a bit better, but the true bound is too technical to bother with here.) Although

the algorithm represents an attractive alternative to Collins’ decomposition, it raises three major

open questions: One is to reduce the bound to O
(

nd
)

, which is easily shown to be tight. Another

is to reduce the complexity of the algebraic numbers used to describe the cells. As things stand,

these numbers are represented by a recursive scheme which creates polynomials of degree doubly

exponential in the number of variables. Although these degrees are still bounded by a constant,

they could be huge in practice. Although it is now known that eliminating quantifiers is inherently

doubly-exponential [27], many restricted problems related to the theory of reals can be solved in

singly-exponential time [6,7,38,64]. Perhaps the degrees of the polynomials can also be reduced to

singly-exponential. Finally, the third open problem is turning a stratification into a regular cell

complex, that is, ensuring that neighboring cells are glued together nicely.

Capsule 8: Derandomization

There has been a flurry of activity in the area of probabilistic geometric algorithms lately, pionneered

by the works of Clarkson [21,22], Haussler and Welzl [40], Reif and Sen [63]. The idea of random

sampling, in particular, has proven very fruitful. A typical use of that tool is to prepare the grounds

for divide-and-conquer despite the apparent lack of order in the underlying universe. For example,

given a collection H of n hyperplanes in Ed we can pick r of them at random and triangulate

their arrangement. It then happens that with high probability no simplex is cut by more than

O
(

(n log r)/r
)

lines. Matoušek defines an ε-cutting for H to be any collection of (possibly unbounded)

d-dimensional simplices which together cover Ed and such that the interior of each simplex intersects

at most εn hyperplanes [47]. It is possible to show that with a bit of additional work a random

sample of r hyperplanes in H can be made to form a (1/r)-cutting of optimal O
(

rd
)

size [16].

Methods for derandomizing these algorithms were given in [1,16,45,46,47], and the whole question

is close to being solved.

But how hard is to derandomize the numerous geometric algorithms which do no rely on ran-

dom sampling, but on the incremental processing of the input according to a random permutation.

Building on the works of Clarkson and Shor [24], Seidel has given eloquent evidence of the power of

randomizing over the input order by exhibiting particularly simple algorithms for linear programming

in fixed dimension and convex hull computation [68]. See also [51,52,69]. A random permutation

requires Θ(n logn) truly random bits, but it is likely that much less randomness is required by those

incremental probabilistic algorithms. But how much exactly? Is it possible to derandomize some of

those algorithms without paying a huge overhead?



Conclusions:

It is time to bring this quick overview to a close. There are many interesting problems that I have

not touched upon here but which deserve intense scrutiny nevertheless. Some concern important

combinatorial issues in discrete geometry, such as zone theorems, and the maximum size of k-sets.

Others address the practical aspects of implementing and debugging geometric algorithms, and in

particular, robustness in the face of round-off errors.
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