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Abstract. We revisit classical geometric search problems under the assumption
of rational coordinates. Our main result is a tight bound for point separation, ie,
to determine whethern given points lie on one side of a query line. We show that
with polynomial storage the query time isΘ(log b/ log log b), whereb is the bit
length of the rationals used in specifying the line and the points. The lower bound
holds in Yao’s cell probe model with storage innO(1) and word size inbO(1). By
duality, this provides a tight lower bound on the complexity on the polygon point
enclosure problem: given a polygon in the plane, is a query point in it?

1 Introduction

Preprocessn points in the plane, usingnO(1) storage, so that one can quickly tell whether
a query line passes entirely below or above the points. Thispoint separationproblem is
dual to deciding whether a query point lies inside a convex polygon. As is well known,
this can be done inO(log n) query time andO(n) storage, which is optimal in the
algebraic decision tree model [8,9]. This is suitable for infinite-precision computati-
ons [3,4,20], but it does not allow for bucketing or any form of hashing. Unfortunately,
these happen to be essential devices in practice. In fact, the computational geometry
literature is rife with examples of speed-ups derived from finite-precision encodings of
point coordinates, eg, range searching on a grid [17], nearest neighbor searching [11,12],
segment intersection [13], point location [16].

To prove lower bounds is usually difficult; even more so when hashing is allowed.
Algebraic models are inadequate and one must turn to more general frameworks such as
the cell probe model [18] or, in the case of range searching, the arithmetic model [7,19].
As a searching (rather than computing) problem, point separation lends itself naturally
to the cell probe model and this is where we confine our discussion. Our main interest
is in pinpointing what sort of query time can or cannot be achieved with polynomial
storage. Note that some restriction on storage is essential since constant query time is
trivially achieved with exponential space.

LetP be a set ofnpoints in the plane, whose coordinates are rationals of the formp/q,
wherep andq areb-bit integers. A cell probe algorithm for point separation consists of a
table of sizenc, with each cell holding up tobd bits, for some arbitrarily large constants
c, d. A query is answered by looking up a certain number of cells and outputting yes or
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no, depending on the information gathered. For lower bound purposes, the query time
counts only the number of cells that are looked up during the computation.

Theorem 1. Given any cell-probe algorithm for point separation, there exist an input
of n points and a query line that requireΩ(log b/ log log b) time. The lower bound is
tight.

The upper bound can be achieved on a standard unit-cost RAM. Take the convex
hull of the points and, given the query line, search for the edges whose slopes are nearest
that of the line. Following local examination of the relative heights of the line and
edge endpoints, conclude whether there is point separation or not. This is elementary
computational geometry and details can be skipped. The main point is that the problem
reduces to predecessor searching with respect to slopes (rational numbers overO(b)
bits), which can be done optimally using a recent algorithm of Beame and Fich [2]. Their
algorithm preprocessesn integers in[0, N ], so that the predecessor of any query integer
can be found inO(log log N/ log log log N) time, usingnO(1) storage. By appropriate
scaling and truncation, their scheme can be used for predecessor searching over the
rationals, with the query time becomingO(log b/ log log b), for rationals withO(b)-bit
numerators and denominators.

2 The Complexity of Point Separation

The input consists of a setP of n points inR2, which is encoded in a tableT of size
nc, wherec is an arbitrarily large constant. To simplify the notation we can replacec
by max{c, d}, and require that each cell should hold at mostw = bc bits. A cell probe
algorithm is characterized by a table assignment procedure (ie, a function mapping any
P to an assignment of the tableT to actual values) together with an infinite sequence of
functionsf1, f2, etc. Given a querỳ(ie, a certain line inR2), we evaluate the indexf1(`)
and look up the table entryT [f1(`)]. If T [f1(`)] encodes whether̀separates the point
set or not, we answer the query and terminate. Otherwise, we evaluatef2(`, T [f1(`)])
and look up the entryT [f2(`, T [f1(`)])], and we iterate in this fashion until a cell probe
finally reveals the desired answer. Note that such a framework is so general it easily
encompasses every known solution to the point separation problem.

We use Miltersen’s reformulation [15] of a cell probe algorithm as a communication
complexity game between two players [14]. Alice chooses a setL1 of candidate queries
(ie, a set of lines in the plane), while Bob decides on a collectionP1 of n-point sets. Note
that each pair(`, P ) ∈ L1×P1 specifies a problem instance.Alice and Bob’s task is then
to exhibit a problem instance(`, P ) ∈ L1 × P1 that requiresΩ(log b/ log log b) probes
in T to answer. They do that by simulating each probe by a round in a communication
complexity game.

The nc possible values of the indexf1(`) partition L1 into equivalence classes.
Alice chooses one of them and sends to Bob the corresponding value off1(`). Of all the
possible2w assignments of the entryT [f1(`)] Bob chooses one of them and narrows
down his candidate setP1 to the setP2 of point sets leading to that chosen value of
T [f1(`)]. Bob sends back to Alice his choice ofT [f1(`)]. Knowing ` andT [f1(`)],
Alice chooses a value forf2(`, T [f1(`)]) and communicates it to Bob, etc. Each round
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k produces a new pair(Lk+1,Pk+1) with the property that, for all queries inLk+1 and
all point sets inPk+1, Bob and Alice exchange the same information during the first
k rounds, which are thus unable to distinguish among any of the problem instances in
Lk+1 × Pk+1.

We say a query line (resp. point set) isactiveat the beginning of roundk if it belongs
to Lk (resp.Pk). The setLk ×Pk is calledunresolvedif it contains at least two problem
instances(`, P ) and(`′, P ′) with different yes/no outcomes: in such a case, Bob and
Alice need to proceed with roundk, and the cost of the protocol (ie, the minimum number
of rounds necessary) is at leastk. We show that for some suitablen = n(b), given any
cell probe table assignment procedure, there exist a starting setL1 of query lines and a
starting collectionP1 of n-point sets in the plane that allow Bob and Alice to produce a
nested sequence of unresolved sets

L1 × P1 ⊇ · · · ⊇ Lt × Pt,

wheret = Θ(log b/ log log b).
The protocol between Bob and Alice builds on our earlier work on approximate

searching over the Hamming cube [5], which itself borrows ideas from the work of
Ajtai [1] on predecessor searching. A protocol for predecessor queries of a similar flavor
was recently devised independently by Beame and Fich [2].

2.1 Points and Lines

Let pi denote the point(i, i2), and giveni < j, let aij = 1
2 (i + j, i2 + j2) andbij =

((i + j)/2, ij). Any of Bob’sn-point setsP is of the form

P =
{

pi1 , Xi1i2 , pi2 , Xi2i3 , . . . , pis−1 , Xis−1is
, pis

}
,

for somei1 < · · · < is, wheren = 2s − 1 andX denotes the symbola or b (not
necessarily the same one throughout the sequence). Thus,P can be specified by an
index setI = I(P ) = {i1, . . . , is} consisting ofs distinctb-bit integers and a bit vector
σ = σ(P ) of lengths − 1 specifying theX ’s. For technical reasons, we require that all
the integers of the index setI be even.

The starting query setL1 consists of the lines of the form,y = 2kx − k2, for all
odd b-bit integersk. Note that this is the equation of the line throughpk tangent to
the parabolay = x2. The number of bits needed to encode any point coordinate or
line coefficient is2b (and notb, a minor technicality). Note that the problem does not
become suddenly easier with other representations such asαx + βy = 1, and that for
the purposes of our lower bound, all such representations are essentially equivalent. The
following is immediate.

Lemma 2. Let pij
andpij+1 be two points ofP and let` be the liney = 2kx − k2,

whereij < k < ij+1. The line` separates the point setP if and only if the symbolX
in Xijij+1 is of typeb.
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query lines

Fig. 1.A setP with n = 7 points and two queries with different answers.

2.2 A Hierarchy of Tree Contractions

Keeping control of Alice query lines is quite simple. The same cannot be said of Bob’s
point sets. Not only Bob’s collections of point sets must be kept large but they must
include point sets of all shape (but not size; remember that their sizen is fixed). This
variety is meant to make the algorithm’s task more difficult. Some point sets must
stretch widely with big gaps between consecutive points, while others must be confined
to narrow intervals. For this reason, we cannot define point sets by picking points at
random uniformly. Instead, we use a tree and a hierarchy of contractions of subtrees to
define intervals from which we can specify the point sets.

Consider the perfect binary tree whose leaves (nodes of depthb) correspond to the
integers0 through2b−1, and letT1 denote its subtree of depthdt sharing its root, where1

t =
⌊

log b

2 log log b

⌋
and d = bc2 log bc (1)

We assume throughout that the bit sizeb and the constantc are both suitably large.
Note thatb greatly exceedsdt and so the treeT1 is well defined. Given a nodev of the
treeT1, let T1(v) denote its subtree of depthdt−1 rooted atv. Contractall the edges of
T1 except those whose (lower) incident node happens to be a leaf ofT1(v), for some
nodev of depth at mostdt − dt−1 and divisible bydt−1. This transforms the treeT1
into a smaller one, denotedU1, of depthd. Note that the depth-one subtree formed by an
internal nodev of U1 and its2dt−1

children forms a contraction of the treeT1(v) (Fig.2).
Repeating this process leads to the construction ofUk for 1 < k ≤ t. Given an

internal nodev of Uk−1, the depth-one tree formed byv and its children is associated
with the subtreeTk−1(v), which now plays the role ofT1 earlier, and is renamedTk. For
any nodeu ∈ Tk of depth at mostdt−k+1 −dt−k and divisible bydt−k, letTk(u) denote

1 All logarithms are to the base two.
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Fig. 2. The treeT1 and its contraction intoU1.

the subtree ofTk of depthdt−k rooted atu: as before, turn the leaves ofTk(u) into the
children ofu by contracting the relevant edges. This transformsTk into the desired tree
Uk of depthd.

The contraction process is the same for allk < t, but not fork = t. We simply make
all the leaves ofTt into the children of the root and remove the other internal nodes, which
produces a depth-one treeTt with 2d leaves.AlthoughTk is defined nondeterministically,
it is always a perfectly balanced binary tree of depthdt−k+1.

Lemma 3. Any internal node of anyUk has exactly2dt−k

children if k < t, and2d

children ifk = t.
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Fig. 3.The hierarchy of trees.
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2.3 A Product Space Construction

We define anyPk by means of a distributionDk. We specify a lower bound on the
probability that a random point setPk drawn fromDk is active prior to roundk, ie,
belongs toPk.

•DistributionD1: A randomP1 is defined by picking a random index setI1 (more on this
below) and, independently, a random bit vectorσ1 uniformly distributed in{0, 1}s−1: I1
is defined recursively in terms ofI2, . . . , It. EachIk is defined with respect to a certain
treeUk.Any nodev in anyUk is naturally associated with an interval of integers between
0 and2b − 1 of size larger than any fixed constant (go back to the nodev of T1 to which
it corresponds to see why): call the smallest even integer in that interval themark point
of v. We define a random index setI1 by settingk = 1 in the procedure below:

– For k = t, a randomIk (within someTk) is formed by the mark points ofw5

nodes selected at random, uniformly without replacement, among the leaves of the
depth-one treeUk.

– Fork < t, a randomIk (within someTk) is defined in two stages:
[1] For eachj = 1, 2, . . . , d − 1, choosew5 nodes ofUk of depthj at random,

uniformly without replacement, among the nodes of depthj that are not des-
cendants of nodes chosen at lower depth (< j). The(d − 1)w5 nodes selected
are said to bepicked byIk.

[2] For each nodev picked byIk, recursively choose a randomIk+1 within Tk+1 =
Tk(v). The union of these(d − 1)w5 setsIk+1 forms a randomIk within Tk.

Note that a randomP1 (drawn) fromD1 is active with probability1 since no in-
formation has been exchanged yet between Bob and Alice. We see by induction that a
randomIk consists ofs = (d − 1)t−kw5(t−k+1) integers. Settingk = 1, and using the
fact thatn = 2s − 1, we have the identity

n = 2(d − 1)t−1w5t − 1. (2)

• DistributionDk: We enforce the following

• point set invariant: For any1 ≤ k ≤ t, a randomPk from Dk is active
with probability at least2−w2

.

By abuse of terminology, we say thatPk ∈ Dk if sampling fromDk producesPk with
nonzero probability. Once the probability of a point set is zero in someDk, it remains
so in all subsequent distributionsDj (j > k), or put differently,

D1 ⊇ · · · ⊇ Dt.

Let P1 = (I1, σ1) be an input point set{pi1 , Xi1i2 , . . . , Xis−1is , pis} in D1. In the
recursive construction ofI1, if v is a node ofUk picked byIk in step [1], let{ia, . . . , ib}
be theIk+1 defined recursively withinTk+1 = Tk(v). The set

P |v
def=

{
pia

, Xiaia+1 , . . . , Xib−1ib
, pib

}
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is called thev-projectionof P1. Similarly, one may also refer to thev-projection of any
Pj (j ≤ k), which might be empty. Obviously, it is possible to speak of a randomP |v
(with v fixed), independently of anyP1, as the point set formed by a randomIk and a
uniformly distributed random bit vectorσk of size |Ik| − 1. It is this distribution that
will be understood in any further reference to a randomP |v.

Assume that we have already definedDk, for k < t. A distributionDk is associated
with a specific treeTk. To defineDk+1, we must first choose a nodev in Uk and make
Tk+1 = Tk(v) our reference tree forDk+1. Any n-point set ofDk whose probability is
not explicitly set below is assigned probability zero underDk+1. Consider each possible
point setP |v in turn (forv fixed), and apply the following rule:

– If P |v is thev-projection of somePk in Pk, then take one2 suchPk, and set its
probability underDk+1 to be that of pickingP |v randomly.

– Otherwise, take onePk ∈ Dk whosev-projection isP |v, and again set its probability
underDk+1 to be that of pickingP |v randomly.

During that roundk, Bob reduces the collection of active point sets inDk+1 to form
Pk+1. To summarize, a randomPk is defined with reference to a specific treeTk. Note
that the distributionDk is isomorphic to that of a randomP |v, for fixed v ∈ Uk−1, or
equivalently, a random(Ik, σk), whereσk is a uniformly distributed random bit vector
of size|Ik| − 1.

2.4 Alice’s Query Lines

As the game progresses,L1 decreases in size to produce the nested sequenceL1 ⊇
· · · ⊇ Lt. Prior to roundk, the currently active query setLk is associated with the same
reference treeTk used to define a randomPk. As we observed in the last section, each
node ofUk corresponds to a unique interval of integers in[0, 2b). By abuse of notation,
we also letLk designate the set of integersj defining the linesy = 2jx − j2 in the set.
We maintain the following:

• query invariant: For any1 ≤ k ≤ t, the fraction of the leaves inUk whose
intervals intersectLk is at least1/b.

Lemma 4. If Lt andPt satisfy their respective invariant, thenLt × Pt is unresolved.

Proof. Suppose thatLt satisfies the query invariant and thatLt × Pt is not unresolved:
we show thatPt must then violate the point set invariant. For each leaf ofUt whose
interval intersectsLt, pick oneji ∈ Lt in that interval. By Lemma 3 and the query
invariant, this gives us a sequencej1 < · · · < jm of length

m ≥ 2d

b
. (3)

Given Pt ∈ Dt, we define thespreadof Pt, denoted spread(Pt), as the number of
intervals of the form[ji, ji+1] (0 ≤ i ≤ m) that intersect the index setI(Pt) (Fig.4); for
consistency we writej0 = 0 andjm+1 = 2b − 1. Suppose that the spread|S| is defined

2 It does not matter which one, but it has to be unique.
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by some fixed setS of size less thanw4. Of them + 1 candidate intervals[ji, ji+1], a
randomIt must then avoidm + 1 − |S| of them. Although such an interval may not
always enclose a whole leaf interval, it does contain at least one mark point, and so the
choice ofIt is confined to at most2d − m − 1 + |S| leaves ofUt. Thus, the probability
that the spread is defined byS is bounded by

(
2d + |S| − m − 1

w5

)/(
2d

w5

)
≤

(
1 − m − |S|

2d

)w5

.

Summing over allS’s of size less thanw4, it follows from (3) that

Prob
[

spread(Pt) < w4
]

≤
∑

k<w4

(
m + 1

k

)(
1 − 1

2b

)w5

≤ 2−w4
. (4)

i1

2

3

4

j

j j

ji

i

i
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3

4

p
p

p

p

Fig. 4.A spread of3 determined by[j0, j1], [j2, j3], [j4, j5].

Suppose now that the spread is at leastw4. Then

Pt =
{

pi1 , Xi1i2 , pi2 , Xi2i3 , . . . , pis−1 , Xis−1is
, pis

}

includes a subsetP ∗ of at leastw4 − 1 pointspij
, every one of which can be paired

with a liney = 2kx − k2 of Lt, whereij < k < ij+1. Pick a randomPt from Dt, and
let Ξ denote the event: “all queries fromLt give the same answer yes/no with respect
to point setPt.” By Lemma 2, theXij ,ij+1 ’s are all of the formaij ,ij+1 or all of the
form bij ,ij+1 (no mix). As we observed earlier,Dt is isomorphic to the distribution of a
random(It, σt), whereσt is a string ofw5 − 1 bits (drawn uniformly, independently).
The constraint on theX ’s reduces the choice of a randomPt by a factor of at least2w4−2,
and hence,

Prob
[
Ξ | spread(Pt) ≥ w4

]
≤ 22−w4

. (5)
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Putting together (4,5), we find

Prob[Ξ ] = Prob[Ξ | spread(Pt) < w4 ] · Prob[ spread(Pt) < w4 ]
+ Prob[Ξ | spread(Pt) ≥ w4 ] · Prob[ spread(Pt) ≥ w4 ]
≤ 2−w4

+ 22−w4
< 2−w2

,

which violates the point set invariant.2

During thek-th round, Alice chooses an index in Bob’s table. As we discussed
earlier, the set ofnc possible choices partitions her current query setLk into as many
equivalence classes. An internal nodev of Uk is calledheavyif one (or more) of these
classes intersects the intervals associated with a fraction at least1/b of the children of
v. The following is a variant of a result of Ajtai [1].

Lemma 5. The union of the intervals associated with the heavy nodes ofUk contains
at least a fraction1/2b of the leaves’ intervals.

Proof. Fix an equivalence class and color the nodes ofUk whose intervals intersect it.
Mark every non-root colored node that is heavy with respect to the equivalence class.
Then, mark every descendant inUk of a marked node. LetN be the number of leaves
in Uk and letNj be the number of leaves ofUk whose depth-j ancestor inUk is colored
and unmarked (we includev as one of its ancestors). Forj > 1, an unmarked, colored,
depth-j node is the child of an unmarked, colored, depth-(j − 1) node that is not heavy
for the chosen class, and soNj < Nj−1/b. We haveN1 ≤ N and, for anyj > 0,

Nj ≤ N

bj−1 .

Repeating this argument for all the other equivalence classes, we find that all the
unmarked, colored nodes (at a fixed depthj > 0) are ancestors of at mostncN/bj−1

leaves. This implies that the number of unmarked, colored leaves is at mostncN/bd−1 <
N/2b. (This follows from (1, 2).) The query invariant guarantees that at leastN/b leaves
of Uk are colored and so at leastN/2b are both colored and marked. It follows that the
marked nodes whose parents are unmarked are themselves are ancestors of at leastN/2b
leaves: all these nodes are heavy.2

Alice’s strategy is to keep her active query sets as “entangled” as possible with Bob’s
point sets. Put differently, ideally the two should form a low-discrepancy set system [6]
(at least in the one-way sense). The next result says that this is true on at least one level
of Uk, where many heavy nodes end up being picked by a randomIk.

Lemma 6. For any0 < k < t, there is a depthj (0 < j < d) such that, with probability
at least2−w2−1, a randomPk from Dk is active and its index setIk picks at leastw3

heavy depth-j nodes in its associatedUk.
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Proof. Recall thatDk is isomorphic to a random(Ik, σk). Fix σk once and for all. The
heavy nodes ofUk are ancestors of at least a fraction1/2b of the leaves (Lemma 5). It
follows that, for some0 < j < d, at least a fraction1/2bd of the nodes of depthj are
heavy. Among these,Ik may pick only those that are not picked further up in the tree:
this caveat rules out fewer thandw5 candidate nodes, which by Lemma 3, represents a
fraction at mostdw5/2d of all the nodes of depthj. So, it appears that among the set of
depth-j nodes that may be picked byIk, the fractionα of heavy ones satisfies

α ≥
( 1

2db
− dw52−d

)/(
1 − dw52−d

)
>

1
3db

.

The index setIk picks w5 depth-j nodes ofUk at random with no replacement. By
Hoeffding’s classical bounds [10], the probability that the number of heavy ones picked
exceeds the lemma’s target ofw3 is at least

1 − e−2w5(α−1/w2)2
> 1 − 2−w3

.

It follows from the point set invariant and the independence ofIk andσk that, with
probability at least2−w2 − 2−w3

, a randomPk is active and its index setIk picks at
leastw3 heavy depth-j nodes in its associatedUk. 2

2.5 Probability Amplification

During thek-th round, Bob sends toAlice the contents of the cellT [fk(`, T [f1(`)], . . . )].
The 2w possible values partition the current collectionPk of active point sets into as
many equivalence classes.We exploit the product nature of the distributionDk to amplify
the probability of being active by projecting the distribution on one of its factors.

Lemma 7. For any 0 < k < t, there exists a heavy nodev of Uk such that, with
probability at least1/2, a randomPk+1 drawn from the distributionDk+1 associated
with Tk+1 = Tk(v) belongs toPk.

Proof. We refer to the depthj in Lemma 6. Letp|S denote the conditional probability
that a randomPk from Dk belongs toPk, given thatS is exactly the set of heavy nodes
of depthj picked byIk. Summing over all subsetsS of heavy depth-j nodes of size at
leastb3, ∑

S

Prob[S = set of heavy depth-j nodes picked byIk ] · p|S

is the sum, over allS, of the probability thatPk ∈ Pk and thatS is precisely the set
of heavy nodes of depthj picked by its index setIk. By Lemma 6, this sum is at least
2−w2−1, and thereforep|S� ≥ 2−w2−1, for some setS∗ of at leastw3 heavy nodes of
depthj.

Because a randomPk whoseIk picksv consists of a random(Ik+1, σk+1) drawn at
nodev independently of the rest of(Ik, σk), itsv-projection has a distribution isomorphic
to that of(Ik+1, σk+1), which is alsoDk+1. The same is true even if the distribution on
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Pk is conditioned upon havingS as the set of heavy depth-j nodes picked byIk. If Pk

belongs toPk then itsv-projection maps to a unique setPk+1 ∈ Dk+1 also inPk.
Let p|v denote the probability that a randomPk+1 drawn from the distributionDk+1

associated withTk+1 = Tk(v) belongs toPk. It follows that

p|S� ≤
∏

v∈S�
p|v.

Since|S∗| ≥ w3, it follows that

p|v ≥
(
2−w2−1

)1/|S�|
≥ 1

2
,

for somev ∈ S∗. 2

Both query and point set invariants are trivially satisfied before round1.Assume now
that they hold at the opening of roundk < t. Let v denote the node ofUk in Lemma 7.
Thenc possible ways of indexing into the tableT partition Alice’s query setLk into as
many equivalence classes. Becausev is heavy, the intervals associated with a fraction
at least1/b of its children intersect a particular equivalence class. Alice chooses such
a class and the query lines in it as her new query setLk+1. The treeUk+1 is naturally
derived fromTk+1 = Tk(v), and the query invariant is satisfied at the beginning of
roundk + 1.

Upon receiving the index fromAlice, Bob must choose the contents of the table entry
while staying consistent with past choices. By Lemma 7, a randomPk+1 from Dk+1
(distribution associated withTk+1) is active at the beginning of roundk with probability
at least a half. There are2w choices for the table entry, and so for at least one of them,
with probability at least(1/2)2−w > 2−w2

, a random point set fromDk+1 is active at
the beginning of roundk and produces a table with that specific entry value. These point
sets constitute the newly active collectionPk+1, and the point set invariant still holds at
the beginning of roundk + 1.

To show thatt rounds are needed, we must prove thatLk × Pk is unresolved, for
anyk ≤ t. In fact, because of the nesting structure of these products, it suffices to show
thatLt × Pt is unresolved, which follows from Lemma 4. This proves the lower bound
of Theorem 1.2
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