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Abstract:

This paper generalizes the multidimensional searching scheme of Dobkin and Lipton [SIAM J.
Comput. 5(2), pp. 181-186, 1976] for the case of arbitrary (as opposed to linear) real algebraic
varieties. Let d, r be two positive constants and let P, ... , Pr be n rational r-variate polynomials of
degree < d. Our main result is an O(nzrﬂ) data structure for computing the predicate [Fi(1<i<
n) | Pi(z) = 0] in Oflog n) time, for any z € 7. The method is intimately based on a decomposition
technique due to Collins [Proc. 2nd GI Conf. on Automata Theory and Formal Languages, pp.
134-183, 1975]. The algorithm can be used to solve problems in computational geometry via a locus
approach. We illustrate this point by deriving an o(n?) algorithm for computing the time at which

the convex hull of n (algebraically) moving points in E? reaches a steady state.
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1. Introduction

Let F be a family of n hyperplanes in E7, with r taken as a constant. Dobkin and Lipton [DL]
have shown how to represent F', using a polynomial amount of storage, so that whether a given
point lies in any of the hyperplanes of I' can be checked in O(log n) time. Our goal is to generalize
the technique used to achieve this result for the case where F is a family of algebraic varieties. Put
more formally, let d, r be two positive constants and let F = {Pi,...,P,} bé a set of n polynomials
of degree < d in r real variables with rational coefficients. We consider the problem of preprocessing
F so that, for any z € E", the predicate [3i (1 < i < n) | P(z) = 0] can be evaluated efficiently.
If the predicate is true, any one of the indices i for which P;(z) = 0 should be reported — note
that requiring the report of all such indices might by itself rule out a fast response. If the predicate
is false, the point x lies in an open, maximally connected region, over which the value of each P;
keeps a constant sign. Assuming that these regions have been labelled in preprocessing, retrieving
the label corresponding to the region containing z will also be required. In this form, the problem
is a direct generalization of the well-known planar point location problem. Previous work on point
location with non-linear boundaries has been limited to the case r = 2, culminating in the optimal

algorithm of Edelshrunner, Guibas and Stolfi [E].

Our main result is a data structure for answering any such query in Of(log n} time. The space
and time necessary to construct the data structure are in 0(712r+6), ie. polynomial in n. The
main consequence of our result is to open the door to locus-based methods for solving previously
untouchable problems of computational geometry: the locus approach for retrieval problems involves
considering each query as a higher-dimensional point and partitioning the underlying space into
regions providing the same answer — see [O| for a discussion of this approach. We illustrate this
notion on a specific example by considering a problem posed by Atallah in [A]. Given n points in E2,
each moving as a fixed degree polynomial function of time, is it possible to compute in o(n?) time
the first instant at which the convex hull of the points will enter its final (steady) configuration? We

use our generalized point location algorithm to solve this problem in the affirmative.

In the next section (Section 2), we review the necessary algebraic tools and describe the point
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location algorithm in Section 3. As in Dobkin and Lipton’s method, the search proceeds by iterated
projections on canonical hyperplanes. The preprocessing is inspired by Gollins' cylindrical algebraic
decomposition [C], adding some refinements due to Schwartz and Sharir [SS]. Ultimately, the spirit
of the method goes back to Tarski's fundamental work on the decidability of elementary algebra
[T]. In the remainder of the paper (Sections 4-5), we present our solution to Atallah’s problem and

conclude with directions for further research.

2. The Algebraic Machinery

Most of the algebraic notions involved in this work can be found exposed in great detail in
two milestone papers by Collins [C] and Schwartz and Sharir [SS]. We have tried to adhere to the
terminology used in these papers as much as possible. The fundamental algebraic concepts can
be found in van der Waerden's classic text [W]; for the specialized treatment of resultants and

subresultants used in the paper the reader should turn to Brown and Traub [BT].

1) Collins’ Decidability Theorem

In 1948, Tarski proved that every statement in elementary algebra (i.e. in the elementary theory
of real-closed fields) is decidable. The non-elementary procedure given by Tarski was subsequently
(computationally} improved in a number of different ways by several researchers {e.g. Seidenberg,
Colen, Collins, Monk /Solovay, Ben-Or/Kozen/Reif). For the purpose of the present work, we shall
use Collins’ decision procedure as a guiding framework. Let a stendard prenez formula be any
logical sentence of the form (Qk;ck)(Qk+_,zk+1)...(Q,x,)(b(zl,...,x,), where Q; 1s the universal
or existential quantifier and ¢(zx,,.. ., z,) is a quantifier-free formula made of boolean connectives,

standard comparators, and polynomials with rational coefficients in the real variables Ty, Zr0 A

logical sentence is called an atomic formulg if it is free of quantifiers and logical connectives.

Theorem 1. (Collins [C]) Let ® be an arbitrary standard prenex formula with r variables. ¢ atomic

formulas, m polynomials of degree < d, and no integral coefficient of length > n. Whether & is true

r+6

. . 3r+8 .
or false can be decided in en®(2d)2""""m?2™™" operations.



11} The Cylindrical Algebraic Decomposition
A Collins decomposition of ET is a scheme for partitioning E” in order to discriminate among the
connected regions of E” induced by a real algebraic variety. Before reviewing the main components

of Collins’ technique, we need define the fundamental notion of cylindrical algebraic decomposition

(c.a.d., for short). A cad. of E" is a partitioning of E7 defined recursively as follows. For r = 1,

a c.a.d. is a finite set of disjoint open intervals, along with the algebraic numbers bounding them,
whose union form E'. For r > I, a cad. K is defined in terms of a c.a.d. K' of E'—! and
an r-variate polynomial P(z1,..., 2,1, y) with rational coefficients. Let K' = {er, .. e, ); for
each ¢; € K, there exists v; such that for each z = (zl,...,z,_l) € ¢;, P(z,y), regarded as a
polynomial in y, has v; real roots fialz) < ... < fivi(z), each of which is a continnous function
in z over ¢;. If v; = 0, put ciy = ¢; x B'. I v; > 0, set cizy = {(z. fi;(z)) | € ¢;} for
1<) Swviseteig, = {(z.y) | z € ¢; & fijle) <y < Jij+1(2)} for 1 < j < v Also, put
ca={ley)|z€c &y < fia(z)} and ¢;gp,4; = {(zy) |z €c; & fi),(2) < y}. Finally,
K is defined as the set of cells {ern,- i o041, 1Cu,ls- - Cpau,+1 ). Informally, the cells can
be formed by considering the cylinders based at each ¢ € K’ and chopping them off with the real
hypersurface P(z,, .. <1 Zr—1,y) = 0. P (resp. K'} is called the base polynomial (resp. cylindrical
algebraic decomposition) of K. Since a c.a.d. is defined in terms of a unique base c.a.d. of lesser
dimension, by induction, K defines an snduced c.a.d for each EF (1 <k« r). Incidentally, one
should note that each cell of K is “well-behaved,” in the sense that it is topologically equivalent to
an open cell of dimension < r.

To be of interest here, a cylindrical alzebraic decomposition must provide a framework for
discriminating among several algebraic varieties. So, let F be a family of n functions of r variables.
We say that a c.a.d. K is Feinvariant if for each ¢ € K and each f € F, we have: flz) = 0 for
each z € ¢. f(z) < 0 for each z € ¢, or f(z) > 0 for each z € ¢. To prevent topological anomalies
and thus facilitate the computation, we may enforce a cylindrical algebraic decomposition to be
well-based. K is said to be well-based if its base polynomial P(z,y}, regarded as a polynomial in y,
is not identically zero for any given value of z in E"~!. With these conditions, Schwartz and Sharir

[SS] have shown that each root function iy (defined over ¢; € K') can be extended continuously
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over the closure of ¢,. This implies that the closure of every cell ir K is a union of cells. Informally.
this fairly intuitive result prevents A from displaying any pathological configuration. In particular,
this means that every line (z,,...,2,_1) x E! intersects the algebraic variety P(z,y) = 0 a finite
number of times. These intersections will form the basis of the binary search underlying the point

location algorithm to be presented in the next section.

Following Collins’ terminology, an algebraic sample of K is a set of points with algebraic co-
ordinates, one in each cell of K (recall that a number is algebraic if it is a root of a polynomialj.
An algebraic sample is cyiindrical (c.a.s) if 1} r = 1, or 2) the set of r — 1 first coordinates of each
point form a c.a.s of i/, the base c.a.d. of . If {C,‘J,...,Ci_gu,._f_l} 1s the set of cells of K asso-
ciated with the cell ¢; of K’, the sample points in each ¢ij (1 £ < 2v, +1) all share the same
r — 1 first coordinates. We conclude this string of definitions with a word on the representation
of a c.a.d. The stendard definstion of a c.ad. K = {dl,...,d,,} is a sequence of quantifier-free
formulas {6,(x),....¢,(x)} (z = (21,...,2,)), where ¢:{z) has only z,,...,z, as free variables

and d, = {x € E" | ¢,(z) is true }. ¢;(x) is called the defining formula of d,.

IIT} The Collius Construction

Let d,r be two positive constants and let F = {Pl,...,Pn} be a set of n polynomials of
degree < d in r real variables with rational coefficients. A Collins decomposition, K, is an F-
invariant cylindrical algebraic decomposition. The construction of K proceeds recursively. Sharir
and Schwartz solve the problem by considering the product P = I, <i<n P; and using the well-known
fact that P {as a polynomial in z,) has exactly d; — d; distinct real roots, where dy is the degree
of P and d, is the degree of R, the gcd of P and its z,-derivative. It then suffices to find a c.a.d.
of E”~! such that on each cell the degrees of both P and R remain constant. We follow the same
strategy; however, because of its prohibitively high degree, we must avoid cousidering the product P
in the actual construction of the cylindrical algebraic decomposition. Instead, although we will keep
P as the base polynomial of the c.a.d., we will use the fact that P is a product of smaller-degree
polynomials when carrying out the construction. Intuitively, it appears that taking all pair-products

P, x P; should be sufficient, for the number of distinct roots change either when two roots of P,
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“merge” into one or when a root of P; “merges” with a root of P;. In the present case, degeneracies
among the coefficients (which are, we should recall, polynomials in r — 1 variables) necessitates a

more careful treatment.

To begin with, we recall basic facts from elimination theory. Let @ be an r-variate polynomial
with rational coefficients. We regard Q(zy,...,2,) = ZOSiSp Qilxy,...,2,_1)2 as a polynomial
in r, with coefficients in the ring of polynomials in r — 1 variables. Let deg{Q) = p be the degree of
Q and ldef(Q) = Q,(21,..., 2. ) be the leading coefficient of Q. Following Tarski and Collins, we
define the reductum of Q, red(Q) = ZOSiSp—-l Qi{z1,..., 2,_1)2;. We also introduce red’(Q) = Q
and for each k > 0, red**'(Q) = red(red*(Q)). Finally, let der(Q) denote the z,-derivative of Q.
Let 4(z) and B(r) be two polynomials in the real variable £ with deg(A) = a, deg(B) = b. Let
U;(z) and V() be two polynomials with degrees b —J —1and a —j~ 1, respectively. Following
[SS], consider the equation A(z)U,(z) — B(z)V;(x) = C,(z) where C;(z) is a polynomial of degree at
most j — 1. This system has a non-zero solution if and only if pse? (4, B) = 0, where psc/ (A, B) (the
Jj** principal subresultant coefficient of A and B) is the determinant of the (a+b—27) x (a+b-12j)
matrix of the homogeneous system of linear equations obtained by requiring that the polynomial
A(2)U(z) = B(2)V,{x) — red *** =) (4(2)U,(2) — B(2)V;(z)) should be identically zero (see BT
for details). The unique factorization theorem for polynomials implies that 4 and B have exactly
J common roots [i.e. j is the degree of gcd(A, B)) if and only if j is the least index for which

pscf(A, B) # 0. This result is at the basis of the recursive construction of an F-invariant c.a.d.

Next, we define what arguments should he passed to the decomposition algorithm at the second
recursive call. To do so, we define the projection of F, denoted G, as the union of Gz,é3,G4,
with Gy = {red*(P) | P € F & k > 0 & deg(red*(P)) > 1}, Gp = {ldcf(P) | P € G4}, Gy =
{psc*(P,der{P)) | P € G, & 0 < k < deg(der(P))}, G4 = {psc*(P,Q) |PQeG &0<k <
min(deg(P), deg(@))}. The notion of projection generalizes Dobkin and Lipton’s idea of pairing up
hyperplanes: the pairing takes place in G, while Gy and Gy account for the occasional losses of
rank in each variety. The following result is proven in [C|: let K be a G-invariant c.a.d. of E™=! and

let ¢; be any cell of K'; the total number of distinct roots of Pi(zy,oo,20), .0, Pofy, ..o, %), as
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polynomials in z,, remains constant as (z;,...,2,—,) varies in ¢;. These roots form a well-ordered
set of continuous functions over ¢;: fii{z1,..., Zr1)s-.., fivizi,...,z,-1). As a result, for each
¢i € K, the partition of ¢; x E' induced by the hypersurfaces f; (z) = 0,..., fi,,(z) =0 (z € ET~1)

defines an F-invariant c.a.d. of E7.

This provides a recursive scheme for computing an F-invariant c.a.d. A of E”. The algorithm
takes I’ as input and recurses by calling itself with G, the projection of F. as argument. The output
of the algorithm will be a c.a.s. of F, {#;,...,8,}, where for each i = 1,...,r each coordinate of
B: € E7 is represented by a quantifier-free defining formula. It turns out that Collins’ sophisticated
method for computing a standard definition of K is not really necessary {although doable within
the same asymptotic running time). Instead, we need an additional piece of information: a cor-
respoudence between sample points and their defining polynomials in F. If r > 1, K has a base
cad. K' = {e....,c,} (which is G-invariant). Let {#},...,8,} be the cas. of K', computed
recursively. For each i = 1,...,p, let {#i1,..., Bi2v,41) be the points of the c.a.s. of A, ordered in
ascending z,-order, whose first r — 1 coordinates form the point !. Each point Bia; (1 <5< )
lies on at least one algebraic variety of the form P;(z) = 0. Let I, ; be any such value of | and let
Bi2; = (a1,...,a,); we define m; ; as the number of distinct roots of Q(y) that are strictly smaller
than a,, where Q(y) = P, {a),...,a,_y,y) is regarded as a polynomial in y. As part of the output,
we require the sequence {(l;1,m;1),...,(li.;»m;i,,)} for each i = 1,..., u. This sequence will be

necessary later on in order to carry out the binary searches underlying the point location algorithm.

The next step is to show how derive these sequences from {f;1,...,Bi 20,41} (1 < i < p).
Recall that the latter sequences are provided directly by the Collins construction. Let ¢(z) be
the quantifier-free defining formula for # 2; (1 < j < v;). Trivially, we can test the predicate
[3z € E" | ¢(z) & (P{z) = 0)] for each I = 1,...,n, and pick as [, ;, say, the first value of [ found to
satisfy the predicate. To obtain m, ;, it suffices to express with a prenex formula the fact, I}, that
zis aroot of Q and Q(y) = Py, (ay,...,a,-1,y) has exactly k distinct roots strictly smaller than
z. We can express Fj; with the formula }’i"“’"wa'_hk(z) = [(3yr.. o, w)Va) | ((Q2))? +(Q(m )2 +

Q)P =0) & (<. <y <) & (Qz)#FOorz < zor(y -2+ + (-2 =
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0)]. The value of m, ; is then given by the unique index & for which Ri"l'-"

y.__,ar_“k(:) is true, with

Bi2y = (8], z). In analyzing the complexity of the algorithm, we assume that only rational symbolic
calculations are nsed during the course of the computation. We omit the proofs of the following
complexity results, which can be found in [C]. Let d be the maximum degree of any polynomial in
F in any variable and let [ be an upper bound on the norm-length of any polynomial of . The
norm-length of a polynomial is the number of bits needed to represent the sum of the absolute
values of its coefficients. As usual, we assume that r, d, and ! are independent of n. The F-
invariant c.a.d. produced by the Collins construction consists of O((2d)* "' n®") = O(n?") cells.
The total number of polynomials defined in the various projections introduced in the decomposition

1

is bounded above by O((2d)3'n2'_1) = O(n? ") and the degree of each polynomial is at most
%(2(1)2'_1 = O(1). The norm-length of each polynomial is < (2d)?"I = O(1). Consider now the c.a.s.
of the decomposition. Each algebraic point is represented by its coordinates. We can represent an
algebraic number in two ways, depending on the interpretation we give to it. Either it is a real root
a of a polynomial 4(z) with algebraic cuefficients. We isolate the root by specifying an interval T
with rational endpoints, so « is represented by the pair (A, I). The coefficients of A (if non-rational)
are represented recnrsively. In some cases, an algebraic number g will appear as an clement of the
algebraic number field Q{a) (recall that Q(a) is the intersection of all the extension fields of Q
which contain «, or equivalently, the smallest subfield of ® which contains @ and «). In this case,
we represent J as a rational polynomial B(a). The degree of any polynomial used in the definition
of all the c.a.s.’s is dominated by (2d)22'_1 = O(1) and more interestingly, the norm-length of each
polynomial is < 1(2d)2"" " n?™"" = O(n2™"" ). Implementing the Collins construction proper requires
o (2d)? *n?"°) = O(n*""") operations. Using Theorem 1 and the previous upper bounds, it is
easy to see that this running time asymptotically dominates the overhead of computing the sequences
of the form {{l; \,m;,),...,(lin,,miy,)}. We refer the reader to [SS] to see how to ensure that the

c.a.d. I and all its induced c.a.d.'s are well-based.



3. The Generalized Point Location Algorithm

Most of the ingredients entering the composition of the algorithm have already been introduced.
The data structure DS(F) is defined recursively as follows: it includes 1) DS(G), where G is
the projection of F: 2) a c.as. of K; 3) a set of v one-word memory cells C’{,..‘,C’,{ {which
we conveniently associate with the cells of K). Let Cf,...,Cﬁ be the memory cells associated

with DS(G) (in one-to-one correspondence with the cells of K' = {c1,....cu}). Each cell c?

(1 < < p) stores a pointer to the sequence {liy,.. .vliv,} previously defined. Fecall that the cell
C? is associated with 2v; +1 cells of K (each projecting exactly on ¢;}. Let W, = {CZl ey Cif,‘ZU;-Q-l

be the corresponding memory cells, in ascending z,-order. Consider the sequence Si={liae- v
as an ordered set of keys. The possible outromes of a binary search in this set is a sequence of 2v; +1
keys and open intervals, which we put in one-to-one correspondence with ',. The data structure is

pow complete, so we can describe the algorithm.

The input is a family of polynomials F, assumed to be preprocessed as previously described.
The generalized point location problem to be solved can be stated as follows: “given a query point
g = (¢q1,...,9-) € E", compute the index i such that C{' corresponds to the unigne cell of K that
contains ¢.” Note in passing the practical importance of having a c.a.s. of K. In most cases, indeed,
the point location problem arises when one wishes to compute a function f from E" to some range
(e.g. set of integers or reals). The c.a.d. JU partitions E” into regions on which f is invariant. The
availability of a c.a.s. allows us to precompute the unique value of f over each such region, thus
reducing the original problem of computingz f(g) for arbitrary ¢ € E” to a generalized point location
problem. If r = 1, the algorithm is trivial, so assume that r > 1. Recursively, we assume that we
have available the index of the cell Cf that contains (q,,...,¢,—1). Perform a binary search in §;
with respect to z,, and report the element of W; corresponding to the result of the search. Without

concern for efficiency, we implement the generic comparison against [; ; as the two-fold question:
1. Does P, .{q) =07

2. Is ¢, strictly larger or smaller than the {m; ; + 1)st real root of P, (g1, .-.,gr—1,4), regarded

here as a polynomial in y?




The latter question is answered by testing the predicate [(Vy) | (y > ¢,) or —‘(Rf,"l'{“_,qr_l‘mi_j(y))].
For A" to be well-based ensures consistency in the search process, i.e. the intersection of the line
{q1,---3qr—1) X E! and the variety Py, , always consists of a discrete set of points. To analyze the
complexity of the algorithm, we use the fact that each polynomial occurring in any projection has
degree O(1), so from Theorem 1 it easily follows that any comparison can be decided in constant
time. Since the total number of these polynomials is in O(nz"l), so is the length of any sequence
over which a binary search is performed. As a result, each binary search requires O(2" log n) time.
As mentioned earlier, the preprocessing costs are in O(nwﬂ), both in time and space. We conclude

with the main result of this section.

Theorem 2. Let F = {Py,..., P, } be a family of n fixed-degree r-variate polynomials with rational
coefficients and let S = {z € E” | Mj<icaPi(z) # 0}. In O(n2"") time and space, it is possible
to compute a set of algebraic points, one in each connected region of S, as well as set up a data
structure for computing the predicate [3i (1 < i < n)| P;(q) = 0], for any ¢ € E™. In O(2" logn)
time, the algorithm will return an index { such that Pi(g) = 0 if such an index is to be found,

otherwise it will return the algebraic point associated with the unique regicn of S that contains g.

4. Applications to Computational Geometry

In [A], Atallah poses the following problem. Consider n points moving in the plane as a poly-
nomial function of the time. What is the first time their convex hull enters a steady-state, i.e. a
combinatorially invariant configuration? We will assume that the real roots of any univariate poly-
nomial of fixed degree with real coefficients independent of n can be computed in constant time
with any desired precision — note that this assumption does not in any way follow from Collins’
theorem. The naive algorithm consists of computing the steady convex hull in Ofnlogn) time [A],
and then retrieving the first time each point achieves its steady positioning with respect to each
edge on the hull. The maximum of all these times provides the desired value. Can this quadratic
algorithm be improved? We will show that it can — at least theoretically. More precisely, we will

use the generalized point location algorithm of the previous section to produce an O(n?~¢) time
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algorithm, for a very small positive constant e. Let V= {py,...,pn} be a set of n > 2 points
in the Euclidean plane, subject to algebraic motion. This assumes the existence of 2n univariate
polynomials p%,pY,...,p%, pY of degree d with real coefficients, such that for each ¢ (1 < i < n},
pr(t) and pY(t) are respectively the z aud y coordinates of p; at time { > 0. We assume that d as
well as all the polynomials’ coefficients are independent of n. Let p;,,...,p;, be the points on the
houndary of the convex hull of V' at time ¢, given in clockwise order with i; < min(ig,...,5x) (if
Pijs---1Di, coincide, their indices appear in the order i, < ... < ij»). Let H(t) be the {uniquely
defined) sequence {iy,...,ix}. It is trivial to show that H(t) converges as { grows to infinity. We
define the threshold of H(+oco) as the smallest value of ¢ > 0 such that [(V¢' > t) | H{t) = H(l')}.
Let p¥(t) = ZOSJ’Sd a; ;7 and pY(t) = ZOSJSJ b ;t/ for i = 1,...,n. Wlog, assume that
H(+co) = {L,...,m} (m < n) and that all n points {@;0,.-., 6.4, bi0,-- -, bi.a) of R?4+2 are pairwise
distinct. In O(nlogn) time, compute H(-+co) [A] and check all pairs (p;,piy1) (1 £ 7 < m)
in order to determine the largest t, > 0 such that, for some i, we have pi{ty) = pf_H(to) and
p!(to) = pl,,(to): note that we may have to = —oc. Here (as in the following), index arithmetic
is taken mod m. Similarly, we ensure the convexity of the polygon {p1,...,pPm} by considering
the function [i{g) = (p!(t) — plyy(t))az + (pEps(t) — PF (D) gy + PT(O)P4, (8) = P/ (O)PY4 (¢). The
point ¢ = (gz,q,) € L? lies to the right (resp. on, to the left) of the oriented line (piy DiDit1)
iff fi(g) < O (resp. fi{g) = 0, filg) > 0). For each p; {1 < i < m) compute the largest real
root of fiy1(p:) as a polynomial in t; discard every case where the polynomial is identically zero.
Let ¢, be the largest value thus obtained {or —co if there is none), and let t; = max(0,t;,¢;).
Trivially, t; can be computed in O{n) time, once H{+oo) is available. All that remains to be
done is to compute the first instants at which each p; (m < j < n) lies inside H{+o0) for good.
To do so, we allow ourselves some preprocessing. Let g(t) = (g:(?).gy(t)) be a point in E?, with
9z(t) = Zo<j<a g¥t’ and ¢y(t) = ZOfideq;”‘ The point x = (¢%,...,93.43,--.,4;) belongs to
E??+2 apd is independent of n. Let si;n(A) = —1 (resp. = 0,1) if A < 0 (resp. A =0, > 0). We
define t(x) = [mint € R |t > 1, & (Vi;1 < i < m)(V > &) sign(f:{q(t))) = sign(fi(q(t')})]. We
next describe a fast algorithm for computing ¢(x) based on the generalized point location algorithm

of the preceding section.
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For each i (1 < < m), let F = {¢1(x,1),...,0m{x,t)}, where ¢;(x,t) denotes the (2d + 3)-
variate polynomial of degree 2d+ 1, fi [ <, <y qit, ZOS]’Sd g/t’). Let K be the F-invariant c.a.d.
of E?%+3 provided by the procedure described in Section 2, and let K' = {e1,...,¢,} be its base
c.a.d. (i.e. the induced c.a.d. of E??+2). Recall that for each ¢; € K’ the procedure provides us with
a sequence of indices (possibly empty) S; = {li 1,...,l;,,} with the following meaning: for any given
X € ¢; the line Y X E! provides an increasing sequence of real roots for the univariate polynomials
O (X, t)y-- '7¢li,v;(X7 t). The interpretation of this sequence is trivial: it gives the indices of the
lines passing through p;p;y, that are intersected by the trajectory of x in chronological order (from
t = ~00 to t = +oo). If the sequence is empty, ¥ never intersects such a line. Once K' has been
preprocessed for point location, computing {(x) is straightforward. Locate the cell ¢; that contains
x and check whether the sequence S; is empty. If yes, set {{X) = {,. If the sequence is not empty, the
trajectory of x intersects the line passing through pi;, Pl , 41 at some time ¢ and does not intersect
any other such line subsequently. We obtain ¢ by computing the largest real root of ¢>¢ivw(x,t)
as a polyromial in ¢ (which must exist). Finally we set ¢(x) = max(fy,!). From Theorem 2, we
immediately conclude.

d+9)

Lemma 1. In O{m?’ time and space, it is possible to construct a data structure so that the

function ¢(x) can be evaluated at any point x € E?¢+2 in O(4¢ logm) time.

We are now ready to attack Atallah’s problem. We use a batching strategy inspired by Yao’s
work on higher-dimensional MST [Y|. Partition the boundary of H(+o0) into p polygonal lines
Hy,...,H,, each consisting of a edges; we set m = a{p — 1) + r, so one of the polygonal lines will
have r < a edges. Each H; can be regarded as an unbounded convex poiygon by stretching its
end-edges to infinity. This allows us to apply Lemma 1 with respect to each point Pty ... Pa
and each polygon H,,..., H,. The maximum of the set formed by {, and the (n - m)p values thus
obtained is exactly the threshold of H(+c0). We easily see that the time complexity of the algorithm

isin O(p(n — m)4% loga +p02“+9). Setting o = (nlogn)/2**"° we conclude

Theorem 3. In O(712“‘/22”9(logn)l"'l/f“g) = O(n2=1/**"") time, it is possible to compute the

threshold of n points moving according to a polynomial function of time of degree d.
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5. Conclusions

The main contribution of this work has been to show that Dobkin and Lipton’s method [DL)
for searching among hyperplanes can be generalized to handle arbitrary algebraic varieties. Our
method is an adaptation of a quantifier-climination procedure due to Collins [C|. This feature gives
even more generality to our algorithm than mentioned earlier. Indeed, we do not have to limit
ourselves to real algebraic varieties but may consider the more general problem of discriminating
among semi-algebraic sets. Recall that a set S C E' is semi-algebraic if there exists a first-order
sentence ¢(zy,...,z,) in the theory of real numbers, with z,,... , Zy as the only free variables of ¢,
such that S = {z € E” | ¢(z) is true }. The preprocessing involves eliminating each quantifier by
means of Collins projections (one projection per quantifier), and the point location takes place in
the induced cylindrical algebraic decomposition of E™. A similar technique was implicitly used in

eliminating the time variable in the preprocessing of Section 4.

Further work includes the (difficult) problem of drastically reducing the high space-complexity
of the generalized point location algorithm. Even the case of hyperplanes is still open. Regarding the
problem of computing thresholds in steady-state computations, one will observe that our technique is
general enough to be applied to other problems (e.g. closest/farthest pairs). An interesting question
is to determine whether ad hoc treatment of these problems leads to more efficient solutions and
thus our technique is in a sense too general, or if Theorem 3 is essentially all we can hope for. For
example, a continuity argument easily shows that ensuring the local coherence of the steady-state
Voronoi diagram is sufficient to compurte its threshold (e.g. checking the non-zero length of its
edges). It is then fairly simple to devise an O{nlogn) algorithm for computing the steady-state
Voronoi diagram of n moving points as well as its threshold. Note that the same argument can be
made for convex hulls if all the points are guaranteed to lie on it. One essential feature of these easy

cases is that the output involves all the input. Is this in general a necessary condition of efficiency?

Acknowledgments: Thanks to Prof. Thomas Banchoff for a stimulating discussion on alge-
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