
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. COMPUT. c© 2009 Society for Industrial and Applied Mathematics
Vol. 39, No. 1, pp. 302–322

THE FAST JOHNSON–LINDENSTRAUSS TRANSFORM AND
APPROXIMATE NEAREST NEIGHBORS∗

NIR AILON† AND BERNARD CHAZELLE‡

Abstract. We introduce a new low-distortion embedding of �d
2 into �

O(log n)
p (p = 1, 2) called the

fast Johnson–Lindenstrauss transform (FJLT). The FJLT is faster than standard random projections
and just as easy to implement. It is based upon the preconditioning of a sparse projection matrix
with a randomized Fourier transform. Sparse random projections are unsuitable for low-distortion
embeddings. We overcome this handicap by exploiting the “Heisenberg principle” of the Fourier
transform, i.e., its local-global duality. The FJLT can be used to speed up search algorithms based
on low-distortion embeddings in �1 and �2. We consider the case of approximate nearest neighbors
in �d

2. We provide a faster algorithm using classical projections, which we then speed up further by
plugging in the FJLT. We also give a faster algorithm for searching over the hypercube.

Key words. dimension reduction, random matrices, approximate nearest neighbors

AMS subject classification. 68Q01

DOI. 10.1137/060673096

1. Introduction. Metric embeddings have been proven to be very useful algo-
rithmic tools. In the most general setting, one wishes to map a finite metric space
(U, dU ) to another metric space (V, dV ) belonging to some restricted family, without
distorting the pairwise distances too much. If we denote the mapping by Φ, we usually
care about minimizing the relative distortion, which we can define here as

(1) max
x1,x2∈U

|dU (x1, x2)− dV (Φ(x1), Φ(x2))|
dU (x1, x2)

.

The metric space V usually belongs to a restricted family of metric spaces, which
is easier to work with. Much of the computer science literature uses the expression
‖Φ‖Lip · ‖Φ−1‖Lip as a standard measure of distortion, where ‖ · ‖Lip is the Lipschitz
norm of a function between metric spaces. In our work, we will be interested in
mappings Φ for which (1) is bounded by a small ε, which is equivalent to ‖Φ‖Lip ·
‖Φ−1‖Lip ≤ 1+O(ε). Hence, our definition is essentially the standard one. Also, much
work related to this subject makes the technical assumption that Φ is 1-Lipschitz,
namely, it does not stretch pairwise distances, but we do not assume that here.

Linial, London, and Rabinovich in their seminal paper [34] first considered the
algorithmic applications of metric embeddings. Embedding into �1 metrics is espe-
cially important in optimization of hard cut problems in graphs. Embedding into tree
metrics is useful in optimization of hard network design and clustering problems.

In many cases, we are interested in embedding high-dimensional normed met-
rics spaces into low-dimensional normed spaces. Papadimitriou et al. [39] use low-
dimensional embeddings to speed up computation of low-rank approximation of ma-

∗Received by the editors October 24, 2006; accepted for publication (in revised form) January 9,
2009; published electronically May 28, 2009.

http://www.siam.org/journals/sicomp/39-1/67309.html
†Google Research, New York, NY 10011 (nailon@gmail.com). Most of this author’s work was

done while a student in the Department of Computer Science, Princeton University.
‡Department of Computer Science, Princeton University, Princeton, NJ 08544 (chazelle@cs.

princeton.edu). This author’s work was supported in part by NSF grant CCF-0634958 and NSF
CCF 0832797.

302



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FJLT AND APPROXIMATE NEAREST NEIGHBORS 303

trices. Schulman [41] used them for efficiently approximating certain metric cluster-
ing problems and Indyk [26] used them for data streaming applications. Indyk and
Motwani [29] and Kushilevitz, Ostrovsky, and Rabani [33] used low-dimensional em-
beddings to speed up approximate nearest neighbor searching. The latter example is
the main motivation for this work, though we hope to see other applications as well.

Our main result is a new low-distortion embedding of �d
2 into �

O(log n)
p (p = 1, 2),

where n is the number of points. The possibility of obtaining such an embedding
with distortion (1+ ε) for any ε > 0 using the Johnson–Lindenstrauss (JL) transform
has long been known. In this work we consider the complexity of implementing this
embedding, and show a nontrivial way to obtain a significant speedup. We call our new
embedding the fast Johnson–Lindenstrauss transform (FJLT), and present it in this
section. Naive implementations of JL incur only a polynomial cost, which is enough
for some applications. However, for other applications, such as approximate nearest
neighbor searching, sublinear algorithms are sought. Applying JL is the bottleneck
of some of the fastest algorithms. We apply the p = 1 case to improve them.

1.1. History of the Johnson–Lindenstrauss transform. By the JL lemma
[28, 30, 35], n points in Euclidean space can be projected down to k = cε−2 log n
dimensions while incurring a distortion of at most 1 + ε, where c > 0 is some global
constant. More precisely, for any set V of n points in d dimensions, taking k =
cε−2 log n (for some global constant c) suffices to ensure that with constant probability,
for all x, y ∈ V ,√

k

d
‖x− y‖2(1− ε) ≤ ‖Φx− Φy‖2 ≤

√
k

d
‖x− y‖2(1 + ε).

The original JL transform was defined in Johnson and Lindenstrauss’s seminal
paper [30]. It is, in fact, no more than a projection Φ from d dimensions onto a
randomly chosen k-dimensional subspace. This is useful provided k < d, which will
be implied by the assumption

(2) n = 2O(ε2d).

Following [30], researchers (Frankl and Maehara [20] and later Dasgupta and Gupta
[15]) suggested variants and simplifications of their design and/or proof together with
improvements on the constant c. The two papers, though simplifying and improving
the original JL result, do not depart from it in the sense that the random projection
they assumed is equivalent to the one assumed in [30]. If we represent this projection
by a k × d real matrix Φ, then the rows of the matrix can be computed as follows:
The first row is a random unit vector uniformly chosen1 from Sd−1 (the (d − 1)-
dimensional unit sphere in R

d). The second row is a random unit vector from the
space orthogonal to the first row, the third is a random unit vector from the space
orthogonal to the first two rows, and so on. (In order to choose a random unit vector
in R

m, one can choose m independently and identically distributed (i.i.d.) normally
distributed random variables, and normalize the resulting vector to achieve norm 1.)
The resulting matrix is a projection onto a random k-dimensional subspace of R

n

(together with a choice of an orthogonal basis, having no effect on the �2-norm).
This choice of Φ satisfies the following three properties (which, in fact, completely
characterize it):

1By this we mean the Haar measure on the sphere.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

304 NIR AILON AND BERNARD CHAZELLE

• Spherical symmetry: For any orthogonal matrix A ∈ O(d), ΦA and Φ have
the same distribution.
• Orthogonality: The rows of Φ are orthogonal to each other.
• Normality: The rows of Φ are unit-length vectors.

The first to depart from the above distribution on Φ were Indyk and Motwani
[29], who dropped the orthogonality and the normality conditions. They noticed that
in order to obtain the JL guarantee, one can independently choose every entry of
Φ using the distribution N(0, 1/d). The norm of each row of Φ becomes a random
variable. Furthermore, the rows are no longer necessarily orthogonal. Normality
and orthogonality are satisfied only on expectation. Indeed, the squared �2 norm of
every row of Φ is 1 on expectation, and the inner product of every two rows is 0
on expectation. The independence of the entries in Φ make the proof much simpler.
Note that the distribution on Φ remains spherically symmetric.

The next bold and ingenious step was taken by Achlioptas [1], who dropped the
spherical symmetry condition. He noticed that the only property of Φ needed for
the transformation to work is that (Φi · x)2 is tightly concentrated around mean 1/d
for all unit vectors x, where Φi is the ith row of Φ. The distribution he proposed
is very simple: Choose each entry of Φ uniformly from {+d−1/2,−d−1/2} (note that
the normality condition is restored). The motivation in [1] was to make random
projections easier to use in practice. Indeed, flipping coins is much easier than choosing
Gaussian-distributed numbers. More surprisingly, he shows that if the entries of Φ
are chosen independently according to the following distribution:

(3)

⎧⎪⎪⎨
⎪⎪⎩

+(d/3)−1/2 with probability 1/6,

0 2/3,

−(d/3)−1/2 1/6,

then the JL guarantee holds (note that normality is now dropped). The nice property
of this distribution is that it is relatively sparse: On expectation, a (2/3)-fraction of
Φ is 0. Assuming we want to apply Φ on many points in R

d in a real-time setting,
by keeping a linked list of all the nonzeros of Φ during preprocessing we get a 3-
fold speedup in the transformation computation, compared to a naive matrix-vector
multiplication.

In all the aforementioned methods, projecting a point requires multiplication by
a dense k-by-d matrix, and so mapping each point takes O(d log n) time (for fixed ε).
Is that optimal?

The attempt to sparsify Φ and obtain a superconstant speedup is the first point
of departure for this work. A lower bound of Alon [3] dashes any hope of reducing the
number of rows of Φ by more than a factor of O(log(1/ε)), so the obvious question is
whether the matrix can be made sparse. Bingham and Mannila [8] considered sparse
projection heuristics for dimension-reduction based algorithms, and noticed that in
practice they seem to give a considerable speedup with little compromise in quality.
Achlioptas’s method [1] can be used to reduce the density of Φ by only a constant
factor, but one simply cannot go much further because a sparse matrix will typically
distort a sparse vector. To prevent this, we use a central concept from harmonic
analysis known as the Heisenberg principle (so named because it is the key idea behind
the uncertainty principle): A signal and its spectrum cannot both be concentrated.
With this in mind, we precondition the random projection with a Fourier transform
(via an FFT) in order to isometrically enlarge the support of any sparse vector. To



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FJLT AND APPROXIMATE NEAREST NEIGHBORS 305

prevent the inverse effect, i.e., the sparsification of dense vectors, we randomize the
Fourier transform. The resulting FJLT shares the low-distortion characteristics of a
random projection but with lower complexity. As stated above, it embeds �2 into �p for
p = 1, 2. The running time of the FJLT is O(d log d+min{dε−2 log n, εp−4 logp+1 n}),
which outperforms the O(dε−2 log n) complexity of its predecessors. Note the simpler
form of O(d log d + ε−3 log2 n) for �1 and n = 2O(εd) (subsumed by 2).

1.2. Approximate nearest neighbor searching. For a fixed metric space
(U, dU ) and a finite subset (database) P ⊆ U , ε-approximate nearest neighbor (ε-
ANN) searching (Figure 1) is the problem of preprocessing P so that given a query
x ∈ U , a point p ∈ P satisfying

dU (x, p) ≤ (1 + ε)dU (x, p′) ∀p′ ∈ P

can be efficiently returned. In other words, we are interested in a point p further from
x by a factor of no more than (1 + ε) compared with the closest point to x in P . We
will be interested in the Euclidean (Rd, �2) and the Hamming cube ({0, 1}d, �1 ≡ (�2)2)
cases.

x

U

p

p′

Given a point x from a metric space X , return p ∈ P minimizing
d(x, p), or any point p′ satisfying d(x, p′) ≤ (1 + ε)d(x, p).

Fig. 1. ε-approximate nearest neighbor searching.

This problem has received considerable attention lately. There are two good
reasons for this: (i) ANN boasts more applications than virtually any other geometric
problem [27]; (ii) allowing a small error ε makes it possible to break the curse of
dimensionality.

There is abundant literature on (approximate) nearest neighbor searching [5, 6,
7, 9, 12, 13, 14, 18, 24, 29, 23, 27, 32, 33, 42, 43, 37]. The early solutions typically
suffered from the curse of dimensionality, but the last decade has witnessed a flurry of
new algorithms that “break the curse” (see [27] for a recent survey). A few milestones
deserve special mention in the context of this work. Kleinberg [32] gave two algorithms
for ANN in �d

2. The first runs in O((d log2 d)(d + log n)) time but requires storage
exponential in d. The second runs in O(n + d log3 n) time, improving on the trivial
O(nd) algorithm, and requires only O(dn polylog n) space. Both algorithms are based
on the key idea of projection onto random lines, used in subsequent results as well as
in this work.

The first algorithms with query times of poly(d, log n) and polynomial storage
(for fixed ε) were those of Indyk and Motwani [29] and Kushilevitz, Ostrovsky, and



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

306 NIR AILON AND BERNARD CHAZELLE

Rabani [33]. The first reference describes a reduction from ε-ANN to approximate
point location in equal balls (ε-PLEB) for �d

2 (as well as other metric spaces). The ε-
PLEB problem is that of outputting a point p ∈ P such that ‖x−p‖2 ≤ r(1+ε) if there
exists a point for which ‖x− p‖2 ≤ r, null if all points p satisfy ‖x− p‖2 > (1 + ε)r,
and either of the two answers otherwise. Based on a new space decomposition (of
independent interest), Indyk and Motwani showed how to reduce an ε-ANN query
to O(log2 n) queries to an ε-PLEB oracle, a reduction later improved to O(log(n/ε))
by Har-Peled [21]. The PLEB reduction can be thought of as a way of performing
a binary search on the (unknown) distance to the nearest neighbor while overcoming
the possible unboundedness of the search space (we overcome this problem by using a
different, simpler technique). One approach to PLEB is to use LSH (locality-sensitive
hashing [29]), which requires O(n1/(1+ε)) query time and near-quadratic (for small
ε) storage. Another approach is to use dimension-reduction techniques: using the
methods of [21, 29, 25], this provides a query time of O(ε−2d log n) with nO(ε−2)

storage. We mention here that the dimension reduction overwhelms the running time
of the algorithm: to remedy this was, in fact, another point of departure for our
work on FJLT. Kushilevitz, Ostrovsky, and Rabani [33] described an ingenious (but
intricate) reduction from �d

2 to the Hamming cube, which results in O(ε−2d2polylogn)
query time and polynomial storage (again, for fixed ε).

ANN searching over the Hamming cube does not suffer from the “unbounded
binary search” problem. Kushilevitz, Ostrovsky, and Rabani [33] gave a random-
projection-based algorithm with a query time of O((d log d)ε−2 log n)—an extra loglog d
factor can be shaved off [11]. We improve the running time of their algorithm to
O((d+ ε−2 log n) log d), which is the best to date (using polynomial storage2). Again,
we show how to optimize the dimension-reduction step in their algorithm, but this
time over GF (2).

We present two new, faster ANN algorithms. Note that both of them contain
additional improvements, independent of FJLT.

• One works for the d-dimensional Euclidean space. It stores n points in R
d

and answers any ε-ANN query in O(d log d + ε−3 log2 n) time while using
nO(ε−2) storage. The solution is faster than its predecessors (at least for
subexponential n) and considerably simpler. This algorithm uses the FJLT
and is presented in section 3.
• The other works for the d-dimensional Hamming cube. It stores n points in

the d-dimensional Hamming cube and answers any ε-ANN query in O((d +
ε−2 log n) log d) time, while using d2nO(ε−2) storage. This improves on the
best previous query time of O((d log d)ε−2 log n) [33]. This algorithm does
not use the FJLT and can be found in section 4. It can be read independently
of the preceding sections.

2. The fast Johnson–Lindenstrauss transform. The FJLT is a random dis-
tribution of linear mappings from R

d to R
k, where the embedding dimension k is set

to be cε−2 log n for some large enough constant c = c(p). Recall that p ∈ {1, 2} refers
to the type of embedding we seek: �d

2 �→ �k
p.

We may assume without loss of generality (w.l.o.g.) that d = 2m > k. We will
also assume that n ≥ d and d = Ω(ε−1/2) (otherwise the dimension of the reduced
space is linear in the original dimension).

A random embedding Φ ∼ FJLT(n, d, ε, p) can be obtained as a product of three

2Assuming constant ε.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FJLT AND APPROXIMATE NEAREST NEIGHBORS 307

⎛
⎝ Sparse

JL

⎞
⎠
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Walsh–

Hadamard

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

± 1

±1

. . .

±1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

k × d d× d d× d

Fig. 2. The FJLT transform.

real-valued matrices (Figure 2): Φ = PHD. The matrices P and D are random and
H is deterministic:

• P is a k-by-d matrix whose elements are independently distributed as follows.
With probability 1− q set Pij as 0, and otherwise (with the remaining prob-
ability q) draw Pij from a normal distribution of expectation 0 and variance
q−1. The sparsity constant q is given as

q = min
{

Θ
(

εp−2 logp n

d

)
, 1
}

.

• H is a d-by-d normalized Walsh–Hadamard matrix:

Hij = d−1/2(−1)〈i−1,j−1〉,

where 〈i, j〉 is the dot-product (modulo 2) of the m-bit vectors i, j expressed
in binary.
• D is a d-by-d diagonal matrix, where each Dii is drawn independently from
{−1, 1} with probability 1/2.

The Walsh–Hadamard matrix encodes the discrete Fourier transform over the additive
group GF (2)d: its FFT is particularly simple and requires O(d log d) time. It follows
that, with high probability (which we make precise in Lemma 1), the mapping Φx of
any vector x ∈ R

d can be computed in time O(d log d+qdε−2 log n) (all running times
are expected over the random bits of the algorithm). We now make our statement on
the FJLT precise.

Before stating the main lemma on the merits of Φ, we provide some intuition for
the construction. The matrix P is sparse in the sense that, on expectation, only a
q-fraction of its elements are nonzero. It cannot be used as a fast JL transform by
itself because the variance of the estimator ‖Px‖p is too high for certain bad inputs x.
It turns out that these bad inputs are sparse vectors: Intuitively, the extreme case is
when x is a vector consisting of exactly one nonzero coordinate. Only the nonzeros of
P which are aligned with this unique coordinate contribute to the estimator ‖Px‖p.
These nonzeros are too rare to ensure a sufficiently strong measure concentration.
However, if x is smooth (in a sense that will be made precise in the proof of Lemma 1),
then ‖Px‖p does have good concentration properties. The mapping HD ensures that
with overwhelming probability, the vector HDx is smooth. Since HD is orthogonal,
the Euclidean norm remains invariant. Hence, HD can be used to precondition the
input x before applying P .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

308 NIR AILON AND BERNARD CHAZELLE

Lemma 1 (the FJLT lemma). Fix a set X of n vectors in R
d, ε < 1, and

p ∈ {1, 2}. Let Φ ∼ FJLT. With probability at least 2/3, the following two events
occur:

1. For all x ∈ X,

(1 − ε)αp‖x‖2 ≤ ‖Φx‖p ≤ (1 + ε)αp‖x‖2,

where α1 = k
√

2π−1 and α2 = k (recall that k = cε−2 log n for some global
c).

2. The mapping Φ : R
d → R

k requires

O
(
d log d + min{dε−2 log n, εp−4 logp+1 n})

operations.
Remark. By repeating the construction O(log(1/δ)) times we can amplify the

success probability to 1 − δ for any δ > 0. If we know X , it is possible to test for
success. In the ANN example presented in the next section, however, we do not know
X . In that application, X is the set of differences between the query point x and the
database points p ∈ P :

X = {x− p : p ∈ P}.

Although P is known, the query point x is information we obtain online after the
preprocessing. However, one can amplify the probability of success of ANN by re-
peating the construction O(log(1/δ)) times, running the nearest neighbor algorithm
w.r.t. each construction and taking the nearest among the outputs.

Proof. W.l.o.g., we can assume that ε < ε0 for some suitably small ε0. Fix some
x ∈ X , and define the random variable u = HDx = (u1, . . . , ud)T . Assume w.l.o.g.
that ‖x‖2 = 1. Note that u1 is of the form

∑d
i=1 aixi, where each ai = ± d−1/2

is chosen independently and uniformly. A Chernoff-type argument shows that, with
probability at least 1− 1/20,

(4) max
x∈X
‖HDx‖∞ = O(d−1/2

√
log n).

Indeed,

(5) E [etdu1 ] =
∏

i

E [etdaixi ] =
∏

i

cosh(t
√

d xi) ≤ et2d‖x‖2
2/2.

Hence, for any s > 0, by Markov’s inequality (plugging t = sd into (5)),

Pr[|u1| ≥ s] = 2Pr[esdu1 ≥ es2d]

≤ 2E [esdu1 ]/es2d

≤ 2es2d‖x‖2
2/2−s2d

= 2e−s2d/2 ≤ 1/(20nd)

for s = Θ(d−1/2
√

log n), from which (4) follows by a union bound over all nd ≤ n2

coordinates of the vectors {HDx : x ∈ X}.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FJLT AND APPROXIMATE NEAREST NEIGHBORS 309

Assume from now on that (4) holds, i.e., ‖u‖∞ ≤ s (where u = HDx for any
x ∈ X , which we keep fixed). It is convenient (and harmless) to assume that m

def= s−2

is integral.
Note that ‖u‖2 = ‖x‖2 because both H and D are isometries. Define

y = (y1, . . . , yk)T = Pu = Φx.

By the definition of the FJLT, y1 is obtained as follows: Pick random i.i.d. indicator
variables b1, . . . , bd, where each bj equals 1 with probability q, and random i.i.d.
variables r1, . . . , rd distributed N(0, q−1). Then define y1 as

y1 =
d∑

j=1

rjbjuj .

We also define the r.v. Z =
∑d

j=1 bju
2
j . It is well known (by the 2-stability of the

normal distribution) that for any d real numbers α1, . . . , αd,
∑d

j=1 rjαj ∼ N(0,
∑

α2
j ).

Hence,

(y1|Z = z) ∼ N(0, q−1z).

Note that all of y1, . . . , yk are i.i.d. (given u), and we can similarly define correspond-
ing random i.i.d. variables Z1(= Z), Z2, . . . , Zk. The expectation of these random
variables is

E [Z] =
d∑

j=1

u2
jE [bj] = q.(6)

Let u2 formally denote (u2
1, . . . , u

2
d) ∈ (R+)d. By our assumption, u2 lives in the

following d-dimensional polytope:

P =

⎧⎨
⎩ (a1, . . . , ad) : 0 ≤ aj ≤ 1/m ∀j and

d∑
j=1

aj = 1

⎫⎬
⎭ .

Let u∗ ∈ R
d denote a vector such that u∗2 is a vertex of P . By symmetry, there

will be no loss of generality in what follows if we fix

u∗ = (m−1/2, . . . , m−1/2︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
d−m

).

The point u∗ will be convenient for identifying extremal cases in the analysis
of Z. We will use Z∗ to denote the random variable Z corresponding to the case
u = u∗. Immediately we identify that Z∗ ∼ B(m, q)/m (in other words, the binomial
distribution with parameters m, q divided by m). Consequently,

(7) var(Z∗) = q(1− q)/m.

The �1 case. We choose

q = min{1/(εm), 1} = min
{

Θ
(

ε−1 log n

d

)
, 1
}

.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

310 NIR AILON AND BERNARD CHAZELLE

We now bound certain moments of Z (over the random bi’s).
Lemma 2. For any t > 1, E [Zt] = O(qt)t and

(1− ε)
√

q ≤ E [
√

Z ] ≤ √q.

Proof. For the case q = 1 the claim is trivial because then Z is constant 1. So we
assume q = 1/(εm) < 1.

It is easy to verify that E [Zt] is a convex function of u2 and hence achieves its
maximum at a vertex of P , namely, when u = v. So it suffices to prove the moment
upper bounds for Z∗, which conveniently behave like a (scaled) binomial. By standard
bounds on the binomial moments,

E [Z∗t] = O(m−t(mqt)t) = O(qt)t,

proving the first part of the lemma.
By Jensen’s inequality and (6),

E [
√

Z ] ≤
√

E [Z] =
√

q.

This proves the upper-bound side of the second part of the lemma. To prove the lower-
bound side, we notice that E [

√
Z ] is a concave function of u2, and hence achieves its

minimum when u = v. So it suffices to prove the desired lower bound for E [
√

Z∗ ].
Since

√
x ≥ 1 + 1

2 (x− 1)− (x− 1)2 for all x ≥ 0,

E [
√

Z∗ ] =
√

q E [
√

Z∗/q ]

≥ √q

(
1 +

1
2
E [Z∗/q − 1 ]−E [(Z∗/q − 1)2 ]

)
.

(8)

By (6) E [Z∗/q − 1 ] = 0 and using (7),

E [(Z∗/q − 1)2 ] = var(Z∗/q) = (1− q)/(qm)

≤ 1/(qm) = ε.

Plugging this into (8) gives E [
√

Z∗ ] ≥ √q (1− ε), as required.
Since the expectation of the absolute value of N(0, 1) is

√
2π−1, by taking condi-

tional expectations

E [|y1|] =
√

2/qπ E [
√

Z ],

and by Lemma 2,

(9) (1− ε)
√

2π−1 ≤ E [|y1|] ≤
√

2π−1.

We now show that ‖y‖1 is sharply concentrated around its mean E [‖y‖1] = kE [|y1|].
To do this, first we bound the moments of |y1| = |

∑
j bjrjuj|. For any integer t ≥ 0,

by taking conditional expectation,

E [|y1|t] = E [(q−1Z)t/2]E [|U |t],
where U ∼ N(0, 1). It is well known that E [|U |t] = O(t)t/2; therefore, by Lemma 2,

E [|y1|t] = O(t)t.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FJLT AND APPROXIMATE NEAREST NEIGHBORS 311

It follows that the moment generating function

E [eλ|y1|] = 1 + λE [|y1|] +
∑
t>1

E [|y1|t]λt/t!

≤ 1 + λE [|y1|] +
∑
t>1

O(t)tλt/t!

converges for any 0 ≤ λ < λ0, where λ0 is an absolute constant, and

E [eλ|y1|] = 1 + λE [|y1|] + O(λ2) = eλE [|y1|]+O(λ2).

By independence,

E [eλ‖y‖1 ] = (E [eλ|y1|])k = eλE [‖y‖1]+O(λ2k).

By Markov’s inequality and (9),

Pr[‖y‖1 ≥ (1 + ε)E [‖y‖1] ≤ E [eλ‖y‖1 ]/eλ(1+ε)E [‖y‖1]]

≤ e−λεE [‖y‖1]+O(λ2k)

≤ e−Ω(ε2k)

for some λ = Θ(ε). The constraint λ < λ0 entails that ε be smaller than the same
absolute constant. A similar argument leads to a similar lower tail estimate. Our
choice of k ensures that, for any x ∈ X , ‖Φx‖1 = ‖y‖1 deviates from its mean by
at most ε with probability at least 1 − 1/20. By (9), this mean, kE [|y1|], is itself
concentrated (up to a relative error of ε) around α1 = k

√
2π−1; rescaling ε by a

constant factor and ensuring (4) proves the �1 claim of the first part of the FJLT
lemma.

The �2 case. We now choose

q = min
{

c1 log2 n

d
, 1
}

for a large enough constant c1.
Lemma 3. With probability at least 1− 1/20n,
1. q/2 ≤ Zi ≤ 2q for all i = 1, . . . , k, and
2. kq(1− ε) ≤∑k

i=1 Zi ≤ kq(1 + ε).
Proof. If q = 1, then Z is the constant q and the claim is trivial. Otherwise,

q = c1d
−1 log2 n < 1. For any real λ, the function

fλ(u2
1, . . . , u

2
d) = E [eλZ ]

is convex. Therefore, it achieves its maximum on the vertices of the polytope P (as
in the proof of Lemma 2). Hence, as argued before, E [eλZ ] ≤ E [eλZ∗

]. We conclude
the proof of the first part by using standard tail estimates on the scaled binomial Z∗,
derived from bounds on its moment generating function E [eλZ∗

] (e.g., [4]), and union
bounding.

For the second part, let S =
∑k

i=1 Zi. Again, the moment generating function of
S is bounded above by that of S∗ ∼ B(mk, q)/m (all Zi’s are distributed as Z∗), for
which it is immediate to check the required concentration bound.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

312 NIR AILON AND BERNARD CHAZELLE

Henceforth we will assume that the premise of Lemma 3 holds with respect to
all choices of x ∈ X . Using the union bound, this happens with probability at least
1 − 1/20. For each i = 1, . . . , k the random variable y2

i q/Zi is distributed χ2 with 1
degree of freedom. It follows that, conditioned on Zi, E [y2

i ] = Zi/q and the moment
generating function of y2

i is

E [eλy2
i ] = (1− 2λZi/q)−1/2.

Given any λ > 0 less than some fixed λ0, and for large enough ξ, the moment
generating function converges and equals

E [eλy2
i ] ≤ eλZi/q+ξλ2(Zi/q)2

(we used the fact that Zi/q = O(1) from the first part of Lemma 3). Therefore, by
independence,

E [eλ
∑k

i=1 y2
i ] ≤ eλ

∑k
i=1(Zi/q+ξλ2 ∑k

i=1(Zi/q)2),

and hence

Pr

[
k∑

i=1

y2
i > (1 + ε)

k∑
i=1

Zi/q

]

= Pr

[
eλ

k∑
i=1

y2
i > e(1+ε)λ

k∑
i=1

Zi/q

]

≤ E

[
eλ

k∑
i=1

y2
i

]
/e(1+ε)λ

k∑
i=1

Zi/q

≤ e−ελ
k∑

i=1

Zi/q + ξλ2
k∑

i=1

(Zi/q)2.

(10)

If we plug

λ =
ε
∑k

i=1(Zi/q)

2ξ
∑k

i=1(Zi/q)2

into (10) and assume that ε is smaller than some global ε0, we avoid convergence prob-
lems (we used the assumption

∑k
i=1(Zi/q)/

∑k
i=1(Zi/q)2 ≤ 5 following the premise

of Lemma 3). We now conclude that

Pr

[
k∑

i=1

y2
i > (1 + ε)k

]
≤ e−Ω(ε2k).

A similar technique can be used to bound the left tail estimate. By choosing
k = cε−2 log n for some large enough c, using the union bound, and possibly rescaling
ε, we conclude the �2 case of the first part of the FJLT lemma.

Running time. Computing Dx takes O(d) time, because D is a diagonal ma-
trix. Computing H(Dx) takes O(d log d) time using the Walsh–Hadamard transform.
Finally, computing P (HDx) takes O(|P |) time, where |P | is the number of nonzeros
in P . This number is distributed B(nk, q). It is now immediate to verify that

E [|P |] = O(εp−4 logp+1 n).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FJLT AND APPROXIMATE NEAREST NEIGHBORS 313

Using a Markov bound, we conclude the proof for the running time guarantee of the
FJLT lemma.

This concludes the proof of the FJLT lemma, up to possible rescaling of ε.

3. ANN searching in Euclidean space. We give a new ANN algorithm for �d
2

that differs (and improves upon) its predecessors in its use of handles: a bootstrapping
device that allows for fast binary searching on the distance to the nearest neighbor.
Plugging in the FJLT automatically provides additional improvement. Let P be a set
of n points in R

d. Given x ∈ R
d, let pmin be its nearest neighbor in P . Recall that

the answer to an ε-ANN for x is any point p ∈ P such that

‖x− p‖2 ≤ (1 + ε)‖x− pmin‖2.

The algorithm has two stages. First (part I), we compute an answer q to an
O(n)-ANN query for x. This opens the way for a second stage, where we answer the
ε-ANN query for x within the (smaller) set Px = P ∩B2(q, 2‖x− q‖2), where B2(q, r)
denotes the �2-ball of radius r centered at q. The key property of Px is that it contains
pmin and the distance from x to its furthest neighbor in Px is only O(n‖x − pmin‖2).
This sets the stage for a binary search over a bounded domain (part II). Instead
of reducing the problem to an ANN query over the Hamming cube (as in [33]), we
embed P directly into a low-dimensional �1-space, which we then discretize. We get
a two-fold benefit from our use of handles and of the FJLT. The entire scheme is
outlined as pseudocode in Figure 3.

3.1. Part I: Linear-factor approximation. To find an O(n)-ANN for query
x, we choose a random direction v ∈ R

d and return the exact nearest neighbor with
respect to the pseudometric Dv, defined as

Dv(x, p) = |vT x− vT p|.

This can be done in O(d + log n) time by preprocessing all the (vT p)’s (Figure 4). As
we shall see in Lemma 4, this returns an O(n)-ANN of x (with respect to the full d-
dimensional Euclidean space) with constant probability. By repeating the procedure
O(log δ−1) times (with independently drawn vectors v) and keeping the output point
nearest to x, we increase the probability of success to the O(n)-ANN query to 1 − δ
for any arbitrarily small δ > 0.

Let pmin denote the exact nearest neighbor of x in the d-dimensional Euclidean
space, and let pv

min denote the (random) nearest neighbor of x with respect to Dv.
Lemma 4.

E [‖x− pv
min‖2] = O(n‖x− pmin‖2).

Proof. Let χ(p) be the indicator variable of the event Dv(x, p) ≤ Dv(x, pmin).
Elementary trigonometry (Figure 5) shows that

E [χ(p)] = O(‖x− pmin‖2/‖x− p‖2).

Clearly, ‖x− pv
min‖2 ≤

∑
p∈P χ(p)‖x− p‖2; therefore, by linearity of expectation,

E [‖x− pv
min‖2] ≤

∑
p∈P

‖x− p‖2 E [χ(p)] = O(n‖x − pmin‖2).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

314 NIR AILON AND BERNARD CHAZELLE

ε-ANN

preprocess(P )
preprocess for O(n)-ANN

set Φ← random (�2 → �1) FJLT matrix
precompute Φp for all p ∈ P
for all O(n2) possible Px

for all possible handles p ∈ Px

for all possible O(log(n/ε)) binary search radii l
precompute random discretization T : R

k → Z
k

precompute table S : Z
k → Px ∪ {exception}

query(x)
set q ← O(n)-ANN of x
set Px ← {p ∈ P : ‖p− q‖ ≤ 2‖x− q‖} (O(log n) time using preprocessing)
compute reduction Φx

set l ← R(Px) (radius)
set p← q (handle)
for t = 1, 2, . . . , tmax(= O(log(n/ε))) (binary search loop)
identify precomputed S, T corresponding to Px, p, l
set p′ ← S[T (Φx)]
if p′ = exception
break for-loop (with possible warning)

else if DT (x, p′) > (1 + 1
2 )k (failure)

set l ← l + 2−t

else (success)
set l ← l − 2−t

set p← p′

return p

At iteration t in the binary search loop. Variables p, l in the
program correspond to pt, lt in section 3.2.

Fig. 3. Pseudocode for ε-ANN in Euclidean space.

O(n)-ANN

preprocess(P )
set v ← random direction in R

d

precompute vT p for all p ∈ P
build binary search tree for exact 1-dimensional nearest neighbor
with respect to Dv(x, p) = |vT x− vT p|

query(x)
return exact nearest neighbor of x with respect to Dv

Fig. 4. Pseudocode for O(n)-ANN in Euclidean space.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FJLT AND APPROXIMATE NEAREST NEIGHBORS 315

x

pmin

p

v

E [χ(p)] is maximized when x−p is orthogonal to x−pmin. In this
case, if the random direction v is in the gray area, χ(p) = 1. This
event happens with probability 2

π arctan(‖x−pmin‖2/‖x−p‖2) =
O(‖x− pmin‖2/‖x− p‖2).

Fig. 5. Why the O(n)-ANN algorithm works.

3.2. Part II: Binary search with handles. Assume that the previous step
succeeds in returning an O(n)-ANN q for x. From now on, we can confine our search
within the working set Px. Note that there are only O(n2) distinct sets Px and, given
x, Px can be found by binary search in O(d + log n) time. If the diameter of Px is
small enough, say Δ(Px) ≤ 1

2ε‖x− q‖2, then q is a satisfactory answer to the ε-ANN

query for x. By precomputing all diameters, we can test this in constant time and
be done if the outcome is positive. So, assume now that Δ(Px) > 1

2ε‖x − q‖2. The
distance from x to any point of Px lies in the interval I(Px) = [L(Px), R(Px)], where

L(Px) = Ω(Δ(Px)/n),

R(Px) = O(ε−1Δ(Px)).
(11)

Each step t in the binary search is associated with two items, lt and pt:
1. A search radius lt ∈ I. With high probability, the tth step in the binary

search finds out whether there is a point in Px at distance at most (1 + ε)lt
to x (success) or whether all points are at distance at least lt to x (failure).
For initialization, we set l1 to the high endpoint R(Px) of the search interval.
For t > 1, we follow the standard binary search scheme by updating

lt =

{
lt−1 − 2−t+1l1 success ,

lt−1 + 2−t+1l1 failure .

2. A handle pt ∈ Px such that ‖x− pt‖2 ≤ 2lt. We set p1 = q. In case of success
in step t− 1, pt is updated as the witness point of distance at most (1 + ε)l1
to x. In case of failure there is no update: pt = pt−1.

The number tmax of binary search steps is designed to be the smallest integer
a such that the search interval size of Θ(R(Px)2−a) is sensitive enough to detect a
relative error of ε with respect to L(Px). More precisely, we need

R(Px)2−tmax = O(εL(Px)),



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

316 NIR AILON AND BERNARD CHAZELLE

which solves to tmax = O(log(n/ε)).
Determining whether the step is a success (together with a witness) or a failure

will be done in a transformed space. The transformation will be a composition of two
steps. The first step will be a random normalized (�2 → �1) FJLT matrix Φ applied
to the points in P and to x. By the FJLT lemma, with high probability, for any point
p ∈ P ,

(1− ε)‖x− p‖2 ≤ ‖Φx− Φp‖1 ≤ (1 + ε)‖x− p‖2.
As usual, k = O(ε−2 log n) denotes the embedding dimension.

The second step will be a random discretization of R
k that will allow table lookup.

The discretization could be done be selecting a randomly shifted regular grid in each
of the k dimensions (with carefully chosen cell size). We choose a slightly different
discretization that makes the analysis easier.

3.3. Poisson discretization. At step t, for i = 1, . . . , k, consider a random
two-sided infinite Poisson process Ψi with rate k/lt. This implies that the number of
random points in every interval [a, a+τ) obeys a Poisson distribution with expectation
τk/lt. Given u ∈ R

k, define the quantization T (u) of u to be the k-dimensional integer
vector, whose ith coordinate is the signed count of Poisson events between 0 and ui,
i.e.,

T (u)i =

{
|Ψi ∩ [0, ui)| if ui ≥ 0,

−|Ψi ∩ [ui, 0)| otherwise.

We use T to define a pseudometric DT over R
d,

DT (x, y) = ‖T (Φx)− T (Φy)‖1.
By well-known properties of Poisson random variables, for fixed x, y ∈ R

d, DT (x, y)
is a Poisson variable with rate k‖Φ(x − y)‖1/lt.3 The point process might fail its
purpose, so we say that p ∈ Px is reliable at step t if either

1. ‖x− p‖2 ≤ lt and DT (x, p) ≤ (1 + 1
2ε)k, or

2. ‖x− p‖2 > lt and 1
(1+ 1

2 ε)
k‖x− p‖2/lt ≤ DT (x, p) ≤ (1 + 1

2ε)k‖x− p‖2/lt.
If all points in Px are reliable with respect to x and lt, we say that step t is reliable.
By our choice of k, concentration bounds [4] for the Poisson distribution show that
all steps in the binary search are reliable.

3.4. A pruned data structure. Step reliability ensures that all the required
information for the binary search is contained in the vector T (Φx) (up to possible
rescaling of ε), and so we can use that discrete vector to index a lookup table S :
Z

k → Px. The entry S[v] stores a point p ∈ Px such that T (Φ(p)) is the nearest
�1-neighbor of v among all the transformed points {T (Φp′) : p′ ∈ Px }. In particular,
S[T (Φx)] is the exact nearest neighbor of x in Px with respect to DT . For simplicity
we defined the lookup table to require infinite memory. We will show how to prune
the data structure shortly.

The idea is to navigate through the binary search process at the current step
based on S[T (Φ(x))] ∈ Px. Let p′ denote this point. If DT (x, p′) ≤ (1 + 1

2ε)k, then

3We could have replaced the Poisson process by using a randomly shifted regular grid on the real
line, but that would have made the analysis more difficult because the distribution of the number of
grid points in an interval is not closed under addition.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FJLT AND APPROXIMATE NEAREST NEIGHBORS 317

we conclude that ‖x − p′‖2 ≤ lt(1 + ε), and the step is a success with witness p′. If
DT (x, p′) > (1 + 1

2ε)k, then we conclude that all points p ∈ Px satisfy ‖x− p‖2 > lt,
and the step is a failure.

We now show how to prune S. We use the reliability of step t and the invariant
of the binary search handle pt to assert that

(12) DT (x, pt) ≤ 2k(1 + 2ε);

therefore, only the points x in the DT -metric ball specified by (12) need to be stored
(say, in a pruned k-way tree). For fixed pt and lt, the number of vectors T (Φx) that
satisfy (12) is exactly the number of integral points (n1, . . . , nk) ∈ Z

k such that

|n1|+ · · ·+ |nk| ≤ 2k(1 + 2ε).

This puts the storage requirement at
(

3k
k−1

)
2O(k) = 2O(k) = nO(ε−2). If we implement

the table as a weight-balanced radix tree, the lookup time is only O(k). The complete
binary search takes O(k log(n/ε)) = O(ε−2 log2(n/ε)) time. Obviously, we may as-
sume ε > n−O(1) (otherwise the naive algorithm is faster), so the binary search time
is O(ε−2 log2 n).

In preprocessing, we compute discretization maps T and tables S for all possible
working sets Px, search radii l, and handles p ∈ Px. In case (12) does not hold,
S[T (Φx)] will be defined to return the value exception (and the search fails).

Theorem 1. Given a set P of n points in �d
2, for any ε > 0, there is a randomized

data structure of size nO(ε−2) that can answer any ε-ANN query in time O(d log d +
ε−3 log2 n) with high probability (over the preprocessing).

4. ANN searching over the Hamming cube. Kushilevitz, Ostrovsky, and
Rabani [33] gave an algorithm for ANN queries over {0, 1}d. Its bottleneck is the
repeated multiplication of the query point by various random matrices. Our improve-
ment is based on the observation that, although most of these matrices are dense, by
using some algebra over GF (2), one can decompose them into a sparse part together
with a dense part that is of low complexity.

As usual, P ⊆ {0, 1}d will denote the fixed database of n points in the d-
dimensional Hamming cube. Given a query x ∈ {0, 1}d, pmin ∈ P is the exact nearest
neighbor. We let B1(z, r) denote the Hamming ball of radius r (inclusive) around z.

The ANN data structure of [33] supports binary search on the unknown distance
D(x, pmin) = ‖x−pmin‖1, using d separate preprocessed substructures, Sl (1 ≤ l ≤ d).
Each of these structures is meant to handle queries whose targeted nearest neighbors
are at the distance l. To supply enough randomness so that every query succeeds with
high probability (over preprocessing), each Sl itself is a collection of σ similarly built
data structures Sl,j . For any j = 1, . . . , σ, Sl,j consists of the following:

• a random k-by-d matrix Rl,j whose elements are chosen independently in
{0, 1}, with the probability of a 1 being 1/2l;
• a table Tl,j : {0, 1}k → P , initialized as follows:

– Set all entries to ∞; then,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

318 NIR AILON AND BERNARD CHAZELLE

– for each p ∈ P in turn, set Tl,j[B1(z, k(μ(l) + 1
3ε′))] to p, where

z
def= Rl,jp (mod 2),

μ(l) def=
1
2

(
1−

(
1− 1

2l

)l
)

,

ε′ def= Θ(1− e−ε/2).

Lemma 5 (see [33]). Assume that n ≥ log d, and set σ = cd log d and k =
cε−2 log n for a large enough constant c. With constant probability, the following state-
ment holds true simultaneously for all queries x ∈ {0, 1}d and all 1 ≤ l ≤ d: Given
a random j ∈ {1, . . . , σ}, with probability 1 − O(1/ log d): (i) The point Tl,j[Rl,jx],
if finite, is at distance at most (1 + ε)l from x, and (ii) if x’s nearest neighbor is at
distance at most l, then the point in question, indeed, is finite.

For a random j, we say that a query point x passes the l-test if the point Tl,j [Rl,jx]
is finite. (Note that passing is not an intrinsic property of x but a random variable.)
The test is called reliable if both (i) and (ii) in the lemma hold. Assuming reliability,
failure of the test means that x’s nearest neighbor lies at distance greater than l, while
success yields a neighbor of x at distance at most (1 + ε)l.

This immediately suggests [33] an ANN algorithm. Beginning with l = �d/2�,
run an l-test on x and repeat for l/2 if it passes and 3l/2 if it fails; then, proceed in
standard binary search fashion. Suppose for a moment that all the l-tests are reliable.
Then, the binary search terminates with the discovery of an index l and a point p ∈ P
that is at most (1+ε)l away from x, together with the certainty that the distance from
x to its nearest neighbor exceeds l. Obviously, the point p is an acceptable answer to
the ε-ANN query.

Using a union bound on the number of steps required in the binary search, we
can count on the reliability of every test used in the binary search. In [33] it is
claimed that the memory and preprocessing time requirements could be improved
by a Θ(log d) factor if the reliability probability is reduced from 1 − O(1/ log d) to
a constant bounded away from 1/2 and 1, using fault-tolerant techniques of [19]. A
sufficient requirement for these techniques to work is that, given finite v = Tl,j [Rl,jx],
it is possible to efficiently test whether one of the previous tests was unreliable. This
requirement remains true while using our improvements in section 4.1 below.

Note also that we may assume from now on that n ≥ log d: Indeed, having fewer
than log d points gives us a naive (exact) algorithm with O(d log d) query time. The
storage is d2nO(ε−2) and the query time is O(d(log d)ε−2 log n). To improve this time
bound, we seek to exploit the sparsity of the random matrices. That alone cuts down
the query time to O(dε−2 log n) in a trivial manner, the worst case being a query x
that itself belongs to P .

4.1. Improvement using linear algebra. Linear algebra allows room for fur-
ther improvement. For expository purposes, it is convenient to start the binary search
with a d-test, so that the first test in the search is always successful. In general, con-
sider the case where an l-step is to be performed, and let l′ be the last previous
successful test in the search. Note that l ≥ l′/2. The algorithm is now in possession
of a handle, namely, a point p ∈ P at distance at most (1 + ε)l′ from x. The cost of
the current l-test is that of computing y = Rl,jx for a random j.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FJLT AND APPROXIMATE NEAREST NEIGHBORS 319

The main idea is to evaluate y as Rl,jx = Rl,j(x + 2p) = Rl,j(x + p) + Rl,jp over
GF (2). Here is the benefit of this decomposition: The point x+p has at most (1+ε)l′

ones, and obviously only the corresponding columns of Rl,j are relevant in computing
Rl,j(x + p). Assuming that the 1’s within each column of Rl,j are linked together in
a list, the time for computing Rl,j(x + p) is proportional to d + k plus the number
N of 1’s within the relevant columns of Rl,j . The d comes from identifying the 1’s
of x + p, the k comes from initializing the result vector in GF(2)k as zero, before
scanning through the linked lists of 1’s in the relevant columns. By construction,
the expected value of N is at most k(1 + ε)l′(1/2l) ≤ 2k (over the randomness of the
matrix). By precomputing all the points {Rl,jq | q ∈ P } in preprocessing (which adds
only a factor of n to the storage), we can retrieve Rl,jp in O(k) time. In short, we can
complete this binary search step in O(d + k) expected time instead of the previous
O(dk) bound.

4.2. No query left behind. There is only one problem: The expectation of
the query time is defined over the randomness of both the query algorithm and the
preprocessing. To remove this dependency on the preprocessing, we must ensure that,
for any query x, the expected running time of any binary search step is O(d+ k) over
the random choices of the index j during query answering: We call this the NQLB
policy (for “no query left behind”).

It suffices to show that, for any l and any subset V ⊆ {1, . . . , d} of column indices,
the total number of 1’s within all the columns (indexed by V ) of all the matrices Rl,j

(1 ≤ j ≤ σ) is O(σk|V |/l). This number is a random variable Y =
∑

1≤i≤σk|V | yi,
where each yi is chosen independently in {0, 1} with a probability 1/2l of being 1. A
Chernoff bound shows that Y = O(σk|V |/l) with probability at least 1−2−Ω(σk|V |/l).
Summing over all l, V , we find that the probability of violating the NQLB policy is
at most

d∑
l=1

d∑
v=1

(
d

v

)
2−Ω(σkv/l),

which is arbitrarily small.
Theorem 2. Given a set P of n points in the d-dimensional Hamming cube

and any 0 < ε < 1, there exists a random data structure of size d2nO(ε−2) that can
answer any ε-ANN query in time O((d + ε−2 log n) log d) in the sense that with high
probability over its construction, uniformly for all possible queries x,

1. with high probability over the choice of j ∈ {1, . . . , σ} a correct ε-ANN is
returned [33], and

2. the expected running time over the choice of j ∈ {1, . . . , σ} is

O((d + ε−2 log n) log d).

5. Concluding remarks.

Applications and improvements. Ailon and Liberty [2] have recently ob-
tained an improvement to FJLT using tools from error correcting codes and proba-
bility in Banach spaces.

The FJLT can potentially improve other proximity-related problems such as clos-
est pair, furthest neighbor, and clustering. Sarlós [40] recently discovered that the
FJLT can be used to improve a result by Drineas, Mahoney, and Muthukrishnan [17]
on fast approximate �2-regression.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

320 NIR AILON AND BERNARD CHAZELLE

A natural question is whether one can combine the FJLT with Achlioptas’s [1]
approach of using ±1 matrices. More precisely, we would like to select each element
of the sparse matrix Φ as 0 with probability 1 − q and uniformly ±1 (instead of a
normal distribution) with probability 1− q. Matousek [36] recently showed that this
is indeed possible without extra cost for the (�2 → �2) embedding case and with a
multiplicative cost of an additional ε−1 for the (�1 → �1) case (also affecting the
ε-ANN application).

The ANN application presented here suffers from the nO(1/ε2)-space requirement,
an almost insurmountable implementation bottleneck for small ε. It is natural to ask
whether the space and time could be traded off so that an algorithm with running
time O(ε−2d log n) (comparable to [21, 29] and [33]) uses significantly less space.

The Kac random walk. We propose an alternative FJLT transform which we
conjecture to be at least as good as the one described in this paper, yet much more
elegant. This transform is based on the following random walk on the orthogonal
group on R

d×d, defined by Kac [31]. At time t = 0, the random walk is at the identity
matrix: U0 = Id. At time t > 0, we choose two random coordinates 1 ≤ it < jt ≤ d
and a random angle θt ∈ [0, 2π), and set Ut+1 = Rit,jt,θtUt, where Ri,j,θ is a rotation
of the (i, j)-plane by angle θ. Clearly Ut is an orthogonal matrix for all t ≥ 0.
The walk has the Haar measure on the group of orthogonal matrices as its unique
stationary distribution. For any fixed x ∈ R

d, computation of UT x is extremely
efficient: for t = 1, . . . , T , replace xit (resp., xjt) with xit cos θt + xjt sin θt (resp.,
−xit sin θt +xjt cos θt). The Kac version of FJLT is defined as follows: Compute UT x
for all vectors x ∈ X ⊆ R

d, and return the projection onto the first O(ε−2 log |X |)
coordinates of the resulting vectors. How small can T be in order to ensure the same
guarantee as the original JL dimension-reduction technique?

Kac defined this walk in the context of statistical physics in an attempt to simplify
and understand Boltzmann’s equation. Since then, much attention has been given
to it from the viewpoints of pure and applied mathematics. For example, it can
be used to efficiently estimate high-dimensional spherical integrals [22]. Its spectral
properties are by now well understood [16, 10, 38]. We conjecture that O(d log d +
poly(logn, ε−1)) steps suffice, and propose this as an interesting problem.

Lower bounds for FJLT. It is natural to ask what is the fastest randomized
linear mapping with the Johnson–Lindenstrauss guarantee. More precisely, we have
the following question.

Question 3. What is the lower bound on the expected depth of a randomized
linear circuit Cn,d : R

d �→ R
O(ε−2 log n) such that given any set X ⊆ R

d of n vectors,
with probability at least 2/3, α‖x‖2(1− ε) ≤ ‖Cn,d(x)‖p ≤ α‖x‖2(1 + ε) for all x ∈ X
for some ε > 0, p ∈ {1, 2}, and α?

Any nontrivial lower bound would imply a nontrivial lower bound for computation
of Fourier transform, a well known open problem.

NQLB for ε-ANN in Euclidean space. Can we achieve a no query left behind
guarantee for ANN in Euclidean space as we did for the Hamming cube case in sec-
tion 4? A union bound over the finite number of queries was the main ingredient used
for making sure that, with high probability, the preprocessing construction worked for
all queries simultaneously. An adversary is powerless even if he knew the random bits
used in the preprocessing. In the Euclidean space, however, an adversary with access
to the preprocessing random bits may be able to choose difficult queries. Perhaps a
bounded VC-dimension argument could be used to argue that such an attack is not
possible by the adversary.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FJLT AND APPROXIMATE NEAREST NEIGHBORS 321

REFERENCES

[1] D. Achlioptas, Database-friendly random projections: Johnson-Lindenstrauss with binary
coins, J. Comput. System Sci., 66 (2003), pp. 671–687.

[2] N. Ailon and E. Liberty, Fast dimension reduction using rademacher series on dual bch
codes, Discrete Comput. Geom., to appear.

[3] N. Alon, Problems and results in extremal combinatorics—I, Discrete Math., 273 (2003),
pp. 31–53.

[4] N. Alon and J. Spencer, The Probabilistic Method, 2nd ed., John Wiley and Sons, New York,
2000.

[5] S. Arya and D. M. Mount, Approximate nearest neighbor queries in fixed dimensions, in Pro-
ceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
Austin, TX, ACM, New York, 1993, pp. 271–280.

[6] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, An optimal
algorithm for approximate nearest neighbor searching fixed dimensions, J. ACM, 45 (1998),
pp. 891–923.

[7] M. W. Bern, Approximate closest-point queries in high dimensions, Inform. Process. Lett., 45
(1993), pp. 95–99.

[8] E. Bingham and H. Mannila, Random projection in dimensionality reduction: Applications
to image and text data, in Knowledge Discovery and Data Mining, ACM, New York, 2001,
pp. 245–250.

[9] A. Borodin, R. Ostrovsky, and Y. Rabani, Lower bounds for high dimensional nearest
neighbor search and related problems, in Proceedings of the 31st Annual ACM Symposium
on the Theory of Computing (STOC), ACM, New York, 1999, pp. 312–321.

[10] E. A. Carlen, M. C. Carvalho, and M. Loss, Determination of the spectral gap for Kac’s
master equation and related stochastic evolution, Acta Math., 191 (2003), pp. 1–54.

[11] A. Chakrabarti and O. Regev, An optimal randomised cell probe lower bound for approxi-
mate nearest neighbour searching, in Proceedings of the 45th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), IEEE, Washington, D.C., 2004, pp. 473–482.

[12] T. M. Chan, Approximate nearest neighbor queries revisited, Discrete Comput. Geom., 20
(1998), pp. 359–373.

[13] K. L. Clarkson, An algorithm for approximate closest-point queries, in Proceedings of the
10th Annual ACM Symposium on Computational Geometry (SoCG), ACM, New York,
1994, pp. 160–164.

[14] K. L. Clarkson, Nearest neighbor queries in metric spaces, Discrete Comput. Geom., 22
(1999), pp. 63–93.

[15] S. Dasgupta and A. Gupta, An Elementary Proof of the Johnson-Lindenstrauss Lemma,
Technical report 99-006, UC Berkeley, Berkeley, CA, 1999.

[16] P. Diaconis and L. Saloff-Coste, Bounds for Kac’s master equation, Comm. Math. Phys.,
209 (2000), pp. 729–755.

[17] P. Drineas, M. W. Mahoney, and S. Muthukrishnan, Sampling algorithms for �2 regression
and applications, in Proceedings of the Seventeenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), ACM, New York, 2006, pp. 1127–1136.

[18] M. Farach-Colton and P. Indyk, Approximate nearest neighbor algorithms for Hausdorff
metrics via embeddings, in Proceedings of the 40th Annual Symposium on Foundations of
Computer Science (FOCS), IEEE Comput. Soc. Press, Los Alamitos, CA, 1999, pp. 171–
179.

[19] U. Feige, D. Peleg, P. Raghavan, and E. Upfal, Computing with unreliable information,
in Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC),
ACM, New York, 1990, pp. 128–137.

[20] P. Frankl and H. Maehara, The Johnson-Lindenstrauss lemma and the sphericity of some
graphs, J. Combin. Theory Ser. B, 44 (1988), pp. 355–362.

[21] S. Har-Peled, A replacement for Voronoi diagrams of near linear size, in Proceedings of the
42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), Las Vegas,
NV, IEEE Comput. Soc. Press, Los Alamitos, CA, 2001, pp. 94–103.

[22] W. Hastings, Monte Carlo sampling methods using Markov chains and their applications,
Biometrica, 57 (1970), pp. 95–109.

[23] P. Indyk, On approximate nearest neighbors in non-Euclidean spaces, in Proceedings of
the 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 1998,
pp. 148–155.

[24] P. Indyk, Dimensionality reduction techniques for proximity problems, in Proceedings of the
Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), ACM, New



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

322 NIR AILON AND BERNARD CHAZELLE

York, 2000, pp. 371–378.
[25] P. Indyk, High-Dimensional Computational Geometry, thesis, Stanford University, Palo Alto,

CA, 2000.
[26] P. Indyk, Stable distributions, pseudorandom generators, embeddings and data stream compu-

tation, in Proceedings of the 41st Annual Symposium on Foundations of Computer Science,
IEEE Comput. Soc. Press, Los Alamitos, CA, 2000, pp. 189–197.

[27] P. Indyk, Nearest Neighbors in High-Dimensional Spaces, in Handbook of Discrete and Com-
putational Geometry, CRC Press, Boca Raton, FL, 2004.

[28] P. Indyk and J. Matousek, Low-Distortion Embeddings of Finite Metric Spaces, in Handbook
of Discrete and Computational Geometry, CRC Press, Boca Raton, FL, 2004.

[29] P. Indyk and R. Motwani, Approximate nearest neighbors: Towards removing the curse
of dimensionality, in Proceedings of the 30th Annual ACM Symposium on Theory of
Computing (STOC), ACM, New York, 1998, pp. 604–613.

[30] W. B. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space,
Contemp. Math., 26 (1984), pp. 189–206.

[31] M. Kac, Probability and Related Topics in Physical Science, Wiley Interscience, New York,
1959.

[32] J. M. Kleinberg, Two algorithms for nearest-neighbor search in high dimensions, in Proceed-
ings of the 29th Annual ACM Symposium on Theory of Computing (STOC), ACM, New
York, 1997, pp. 599–608.

[33] E. Kushilevitz, R. Ostrovsky, and Y. Rabani, Efficient search for approximate nearest
neighbor in high dimensional spaces, SIAM J. Comput., 30 (2000), pp. 457–474.

[34] N. Linial, E. London, and Y. Rabinovich, The geometry of graphs and some of its algorith-
mic applications, Combinatorica, 15 (1995), pp. 215–245.

[35] J. Matousek, Lectures on Discrete Geometry. Springer-Verlag, New York, 2002.
[36] J. Matousek, On variants of the Johnson-Lindenstrauss lemma, Random Structures Algo-

rithms, 33 (2008), pp. 142–156.
[37] S. Muthukrishnan and S. C. Sahinalp, Simple and practical sequence nearest neighbors with

block operations, in Lecture Notes in Comput. Sci. 2373, Springer, Berlin, 2002, pp. 262–
278.

[38] I. Pak, Using stopping times to bound mixing times, in Proceedings of the 10th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), 1999, pp. 953–954.

[39] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala, Latent semantic index-
ing: A probabilistic analysis, in Proceedings of the Seventeenth ACM SIGACT-SIGMOD-
SIGART Symposium of Database Systems, 1998, J. Comput. System Sci., 61 (2000),
pp. 217–235.

[40] T. Sarlós, Improved approximation algorithms for large matrices via random projections, in
Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), Berkeley, CA, 2006, pp. 143–152.

[41] L. Schulman, Clustering for edge-cost minimization, in Proceedings of the Thirty-Second An-
nual ACM Symposium on Theory of Computing (STOC), ACM, New York, 2000, pp. 547–
555.

[42] P. N. Yianilos, Data structures and algorithms for nearest neighbor search in general metric
spaces, in Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), ACM, New York, 1993, pp. 311–321.

[43] P. N. Yianilos, Locally lifting the curse of dimensionality for nearest neighbor search (extended
abstract), in Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), ACM, New York, 2000, pp. 361–370.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


