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Discrepancy Bounds for Geometric Set Systems with Square
Incidence Matrices

Bernard Chazelle

ABSTRACT. Alexander has proven the existence of a set of n points in the
plane such that, given any two-coloring of the points, there exists a halfplane
within which one color outnumbers the other by Q(n'/%). We strengthen this
result by showing that the halfplane can be chosen among n fixed ones. In
other words, we build a point/halfplane set system of discrepancy Q(n”“),
whose incidence matrix is n X n. By a result of Matousek, this lower bound is
tizht.

The second result is an n X n variant of a classical lower bound of Roth
on the discrepancy of arithmetic progressions. Statec in dual form, our result
asserts the existence of a set system of discrepancy 91711/4 ), whose n X n inci-
dence matrix (a;,;) is formed as follows: each row (resp. column) corresponds
to a line segment (resp. horizontal line) in the plane and a; ; = 1 if segment
i and line j intersect in an integer point. Matousek and Spencer have shown
the lower bound to be tight.

1. Introduction

Schmidt [S] has shown the existence of n points in the plane such that, given
any two-coloring of the points, there is always an axis-parallel box within which one
color outnumbers the other by Q(logn). It is natural to ask the question: can the
box be chosen among a small set of prespecified boxes? Given an incidence matrix
A of a set system, we define the discrepancy of A,

D(4) = {min||A:c||oo cze{-1,1) }

Is there an n x n incidence matrix for boxes, A = (¢;;), of discrepancy Q(logn),
such that a; ; = 1 if the box associated with row i contains the point associated
with column j? As it happens, the answer is trivially affirmative. Here is why: the
set of candidate boxes for Schmidt’s bound can obviously be restricted to O(n*).
So, by applying the bound for n’ = O(n!/*) points, we can make the number of
candidates equal to n. Next, we form an n x n incidence matrix A by filling in
n — n' columns of zeroes derived from the addition of n — n’ dummy points. The
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discrepancy of the resulting set system is Q(log n’) = Q(logn). Of course, this trick
does not work if the discrepancy is of the form n®, for some constant a. By using
a more subtle argument, we prove the following:

THEOREM 1.1. There exist n points and n halfplanes in R?, such that the nxn
incidence matriz A = (a; ;) has discrepancy D(A) = Q(n'/*), where a; ; = 1 if and
only if the i-th halfplane contains the j-th point.

THEOREM 1.2. There exist n horizontal lines and n segments in R?, such that
the n x n incidence matriz A = (a; ;) has discrepancy D(A) = Q(n'/*), where each
row (resp. column) corresponds to a segment (resp. horizontal line), and a; ; = 1
if and only if segment 1 and line j intersect in an integer point.

Both theorems are optimal. This follows from results by Matousek [M] and
Matousek and Spencer [MS], respectively. It remains an open question whether the
same bounds hold for m x n matrices, where m is asymptotically smaller than n.

2. The proof of Theorem 1.1

Let P be the set of n integer points in [1,1/1])? (assume that n is a large
square), and let & be a vector in R™ whose i-th coordinate z; is associated with
pi € P. Given a closed halfplane i bounded above by a nonvertical line, we define
f(h) = 3 ,.eni- Let w be the motion-invariant measure for lines, normalized
so as to provide a probability measure for the lines crossing the square [1,/n]%.
Alexander [A] has proven that if z; + .-+ £, = 0, then

[ £y dotn) = 21/ el

For completeness, we repeat (with only a few modifications) the argument we used
in [C] to discretize Alexander’s result and derive Lemma 2.1 below. We subdivide
the space of lines crossing [1, y/n]? into N+0(n?) regions within which f(h) remains
invariant. By choosing n and N large enough, say, N = 2" we can easily ensure
that the w-area o of N of these regions is exactly the same, i.e., about 1/N, while
the other O( ?) regions have smaller areas. Thus, the error produced in computing
[ 2k h) by integrating f2 only over the equal-area regions is O(n?/N) sup f2.
Because ]ff cannot exceed

le1] + -+

this error is bounded by O(n®||z||3/N). Let B be the N x n matrix whose rows are
indexed by the N equal-area regions ¢ and are the characteristic vectors of the set
of z;’s appearing in (the unique form) f(k), for h € 5. We have

2
1Bzl - - [ 74 dot)| = 0ty 212,

and because 6 = 1/N £ O(n?/N?),
1Bl = N [ 72() duth) | = O(n®lel)

LEmMma 2.1. [C]

detBTB:Q<N/\/ﬁ)n_




DISCREPANCY BOUNDS FOR GEOMETRIC SET SYSTEMS 105

PROOF. Let gy > --+ > pn > 0 be the eigenvalues of BT B and let {v;} be
an orthonormal eigenbasis, with u; corresponding to v;. Let (&1,...,&n) be the
coordinates of z in the basis {v;}. The solution space of the system of equations,
z1+ -+ 2z, =0and § =0 (j <n—1), is of dimension at least 1. It lies in the
(€n_1,&n)-plane, so it intersects the cylinder £€2_, + €2 = 1. For any point z of the
intersection,

n
HB(E”% = Zﬂi&? = ,un—lf;zl_l + }lnﬁ,‘ < Pp-1.

i=1

This implies that for the unit vector z,

e 2 N [ £2(0) dlh) = O(2 sl > NIV - O(n),
and hence,
(1) Hn-1 ZQ(N/\/E)
We need a lower bound on the smallest eigenvalue. With N being large enough,
we can always assume that, for each point p;, there exist two lines (adding them
on, if necessary, and updating N accordingly), each represented by a distinct row
of B, that pass right above and below p;. The contrilution of these two rows to
||Bz||3 is of the form &2 + (® + z;)2, which is always at least #7/2. It follows that
|Bz||3 > i||z||3, and hence, p, > 1/2. The lemma fellows from (1) and the fact

that det BT B is the product of the eigenvalues.
By the Binet-Cauchy formula,?

Tp _ i J2 - Jn

det BTB = _Z‘ detB(l . n)
1< 1< <jn <N
Therefore, there exists an n x n submatrix A of B sucu that
.. . 2

2 _ Ji J2 ... n

(det A)* = |{detB ( L 9 )
N -1 T n n\ns N\r-1!
> (en)"?,

for some fixed ¢ > 0. Lovész et al. [LSV] define the hereditary discrepancy, D (A4),
of the incidence matrix A to be the maximum value o. D(A’) over all matrices A’
formed by subsets of the columns of A. They prove that

D (A) = Q(| det AJ/™).
In our case, this implies that
DH (4) = Q(n*/*).

Let A’ be the (or any) submatrix of A that achieves the hereditary discrepancy,
and let M be the matrix derived from A by zeroing out the columns not in the
submatrix A’. By introducing artificial points if necessary, we can make M the
incidence matrix of a point/halfplane set system, whose discrepancy is thus Q(n1/4).
This complates the proof of Theorem 1.1. O

IThe notation fallowing det B refers to the matrix obtained by picking the rows indexed
J1y-++ yJn in B.
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For reference it might be useful to make a general lemma out of the technique
we just used.

LEMMA 2.2. If B is an N X n incidence matiiz of a set system, then there
erists an n x n matriz A formed by n rows of B, such that

1/2n
DH(A) > ¢ /7’:,- (det BTB) ,

for some constant ¢ > 0.

3. The proof of Theorem 1.2

ProOF. Let B be the N x n incidence matrix of the following set system: each
set 1s an arithmetic progression modulo m, of length k and difference at most 6k,
where k£ = |\/n/6]; note that N = O(ny/n). By adapting an argument of Roth
[R], Beck and Sés [BS] have shown that the matrix BT B has all its eigenvalues in
Q(n). This implies that

det BT B = Q(n)".
By Lemma 2.2, we derive the existence of an n x n submatrix A, such that
DY (A) = Q(n'/*).

This result can be interpreted in terms of arithmetic progressions, but it is perhaps
better grasped in dual space. Since arithmetic progressions are considered modulo
n, a row of A might consist of two distinct progressions. By doubling the number
of rows if necessary we can make them into regular arithmetic progressions. Let n
denote the new number of rows. If ba+b,..., ka+bis the progression associated
with row 7, let us now associate with that row the segment on line Y = aX + b
running from X = 0 to X = k. Column j is associated with line Y = j. The lower
bound on the hereditary discrepancy implies that tlie restriction of the set system
to a certain subset of lines has discrepancy Q(n'/4). By zeroing out the leftover
columns and adding dummy column lines, we thus create an n x n incidence matrix
of discrepancy Q(n1/4), where element a; ; is 1 if and only if segment ¢ and line j
intersect in an integer point. This proves Theorem 1.2. O

Acknowledgments. [ wish to thank the referees for their constructive com-
ments.
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