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Decomposing the Boundary of a
Nonconvex Polyhedron

B. Chazelle1 and L. Palios2

Abstract. We show that the boundary of a three-dimensional polyhedron withr reflex angles and arbitrary
genus can be subdivided intoO(r ) connected pieces, each of which lies on the boundary of its convex hull. A
remarkable feature of this result is that the number of these convex-like pieces is independent of the number of
vertices. Furthermore, it is linear inr , which contrasts with a quadratic worst-case lower bound in the number
of convex pieces needed to decompose the polyhedron itself. The number of new vertices introduced in the
process isO(n). The decomposition can be computed inO(n+ r logr ) time.

1. Introduction. Because simple objects usually lead to simpler and faster algorithms,
it is often useful to preprocess an arbitrary object and express it in terms of simpler compo-
nents. In two dimensions, for example, polygon triangulation is a standard preprocessing
step in many algorithms [1], [5], [7], [10], [15], [16]. Similarly, in three dimensions, a
polyhedron can be expressed as a collection of convex pieces or tetrahedra in particular
(see [2], [4], [6], and [14] for discussions on such decompositions). Of course, the size
of the decomposition is critical for the application that uses it. Unfortunately, a convex
partition of a polyhedron may be of size quadratic in the description size of the polyhe-
dron in the worst case [4], which makes it unattractive from an efficiency point of view.
It would be, therefore, of interest to have partitions into a guaranteed small number of
simple components.

In this paper we consider the problem of subdividing the boundary of a nonconvex
polyhedron of arbitrary genus into a small number of connectedconvex-likepieces. By
convex-like piece, we mean a polyhedral surface which lies entirely on the boundary of
it convex hull. Our result is that the boundary of a nonconvex polyhedron that hasr reflex
angles can be subdivided into no more than 18r − 2 such pieces. It is interesting to note
that the number of pieces is independent of the number of vertices of the polyhedron, and
it is linear inr . The algorithm proceeds in two phases. In the first phase we disassemble
the boundary of the polyhedron along the polyhedron’s reflex edges and along its “ridges”
and “keels” (i.e., the edges that contribute local extrema with respect to a fixed direction).
This partitioning scheme yields at most 2r + 2 pieces. The second phase further splits
these pieces into smaller ones that are convex-like by clipping them with planes parallel
to a fixed plane that go through the endpoints of the polyhedron’s reflex edges. The
clipping is carried out in such a way that it introduces onlyO(n) new vertices. It is worth
noting that although a convex-like piece may in general be very complex. the convex-

1 Department of Computer Science, Princeton University, Princeton, NJ 08544, USA.
2 The Geometry Center, University of Minnesota, Minneapolis, MN 55454, USA. This work was mostly done
while the author was a graduate student at Princeton University.

Received December 3, 1994; revised July 25, 1995. Communicated by L. J. Guibas.



246 B. Chazelle and L. Palios

Fig. 1

like pieces that our algorithm produces are simple in shape and well behaved. The entire
algorithm runs in linear time, provided that the boundary of the given polyhedron has
been triangulated. Boundary triangulation takesO(n+ r logr ) time.

In two dimensions the problem is very simple, and admits a linear-time solution that
produces the minimum number of polygonal curves into which the boundary of a polygon
(possibly with holes) can be cut so that each such curve stays on the boundary of its
convex hull. The algorithm first disconnects the boundary of the polygon at itscusps
(the vertices whose incident edges form an interior angle larger thanπ ), and then breaks
each resulting piece in a greedy fashion to enforce the convexity condition. In other
words, we start at one end of such a piece and keep walking along it for as long as each
encountered edge lies on the convex hull of the subpiece traversed so far, disconnecting
it otherwise. The whole process takes linear time. A second algorithm can be obtained
by taking the two-dimensional equivalent of the first phase of our algorithm as outlined
above. The boundary of the polygon is disassembled at the cusps and at the local extrema
with respect to some fixed direction, say, the vertical directionz (Figure 1). It can be
proven by induction that a polygon ofr cusps has at mostr + 2 local extrema, which
implies that the total number of pieces produced cannot exceed 2r + 2. This is almost
optimal in the worst case, since for anyr there is a polygon ofr cusps whose boundary
cannot be disassembled into fewer than 2r + 1 pieces each lying on the boundary of its
convex hull (Figure 2).

The paper is structured as follows. In Section 2 we introduce our notation and prove
a lemma to facilitate the analysis of our algorithm. The algorithm and its complexity
analysis are presented in Section 3. Finally, in Section 4 we summarize our results and
discuss some open questions.

Fig. 2
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Fig. 3.Not a polyhedron.

2. A Geometric Framework. A polyhedron inR3 is a connected piecewise-linear
3-manifold with boundary; its boundary is connected and consists of a finite collection
of relatively open sets, thefacesof the polyhedron, which are calledvertices, edges, or
facets, if their affine closures have dimension 0, 1, or 2, respectively. By virtue of the
definition of a polyhedron, no faces can be self-intersecting, dangling, or abutting, and
no degeneracies like the one shown in Figure 3 are allowed. An edgeeof a polyhedron is
said to bereflexif the (interior) dihedral angle formed by its two incident facets exceeds
π . By extension, we say that a vertex isreflex if it is incident upon at least one reflex
edge.

A patchof a polyhedronP is a collection of facets or subsets of facets ofP with their
adjoining edges and vertices. The edges of a patch that do not lie on its relative boundary
are calledinternal. We try to extend to patches some of the definitions pertaining to
polygons. A patch is said to beconnectedif its dual graph is connected; the dual graph
of a patchσ has one node for each facet ofσ and an edge between a pair of nodes if
the corresponding facets ofσ are incident on a common edge. Under this definition,
neither of the two patches of Figure 4 is considered connected. Unless it consists of a
single facet, a connected patch has at least one internal edge. A connected patch is said
to besimpleif it is bounded by a single nonintersecting closed curve; i.e., it does not
contain any holes. A patch is calledmonotonewith respect to a plane if no two distinct
points of the patch project normally to the same point of the plane. Finally, a patchσ is
convex-likeif it lies on the boundary of the convex hullHσ of its vertices and the interiors
of both P andHσ lie on the same side with respect to each of the facets ofσ . The latter

Fig. 4
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condition implies that none of the internal edges of a convex-like patch is a reflex edge
of the given polyhedron. The following lemma presents sufficient conditions for a patch
to be convex-like.

LEMMA 2.1. Letσ be a patch of a polyhedron P such that none of the internal edges
of σ are reflex edges of P. If σ is simple and monotone with respect to a plane5 onto
which it projects into a convex polygon, thenσ is convex-like.

PROOF. (The lemma trivially holds if all the facets ofσ are coplanar.) We consider the
unbounded cylinder whose axis is normal to5 and whose base is the projection ofσ onto
5; becauseσ ’s projection onto5 is a convex polygon, the cylinder is a convex object.
The monotonicity ofσ with respect to5 implies that the projection of the boundary ofσ
onto5 coincides with the boundary of the projection ofσ . Hence, the relative boundary
of σ lies on the boundary of the cylinder. Moreover, since the patchσ is simple, it
separates the cylinder into two unbounded polyhedra, with respect to one of which, say
T , the internal edges ofσ are nonreflex. Then the interiors ofP andT lie on the same
side with respect to each of the facets ofσ . We need, therefore, only show thatσ lies
entirely on the boundary of its convex hull, or equivalently thatT coincides with its
convex hull. The latter can be easily established as follows. Suppose, for contradiction,
thatT and its convex hull do not coincide. Then there exists an edge of the convex hull
of T that lies in the complement ofT ; let u andv be the vertices ofT incident on this
edge. Consider the plane that is normal to5 and goes throughu andv; we denote it by
E. Sinceσ is simple and none of its edges is a reflex edge ofP, the intersection ofE and
σ is a connected convex chain that goes throughu andv. Thus, the intersection ofE and
T is a convex polygon withu andv as vertices; it therefore contains the line segment
connectingu andv, which contradicts the assumption that the edge (of the convex hull
of T) connectingu andv lies in the complement ofT .

Finally, we introduce the notion of extrema. A pointp of a d-dimensional setS of
points is called anextremumof Swith respect to an oriented lineλ, or aλ-extremumfor
short, if S’s intersection with a small enoughd-ball centered atp lies entirely in one of
the two closed half-spaces defined by the hyperplane normal toλ that passes through
p. The extrema can be characterized asnegativeor positivedepending on whether the
above intersection lies in the nonnegative or nonpositive half-space, respectively. For
the polygon of Figure 5, for instance, the verticesa, b, c, andd are negativeλ-extrema,

Fig. 5
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while r ands are positive ones. The vertexw is not a λ-extremum (in fact, it is not a
λ′-extremum for anyλ′). Clearly, if no edge of a polygon or polyhedron is normal toλ,
only vertices can be extrema.

Very often in the following, we consider the intersection of the polyhedron with a
plane normal to thex-axis. The intersection consists of several polygons (possibly with
holes), and it is referred to as ayz-cross-sectionof the polyhedron.

3. The Decomposition Algorithm. Our goal is to subdivide the boundary of a non-
convex polyhedronP of n vertices andr reflex edges intoO(r ) connected convex-like
patches. The polyhedron is given in any one of the standard representations, e.g., winged-
edge [3], doubly-connected-edge-list [12], quad-edge [8], so that all the face incidences
either are explicitly stored or can be found in linear time. To simplify the description of
the algorithm, we assume that no facet ofP is perpendicular to thez-axis, and no edge is
normal to thex-axis. These assumptions are not restrictive; they can be checked in linear
time, and, if necessary, enforced by rotating the system of reference. We also assume
that the boundary of the polyhedronP is triangulated. Boundary triangulation can be
achieved inO(n + r logr ) time by employing the polygon triangulation algorithm of
Hertel and Mehlhorn [9] on each nontriangular facet ofP.

The algorithm consists of two phases; in either phase, patches are split into smaller
pieces, starting with the entire boundary ofP, which is the initial patch we work on. In
the first phase we disassemble the boundary ofP into a number of patches by cutting
along some of the edges ofP; as a result, we get patches whose internal edges are
not reflex edges ofP, and whose intersection with any plane normal to thex-axis is a
collection of chains monotone with respect to thez-axis. In the second phase we further
split these patches by clipping them with planes normal to thex-axis that go through
the reflex vertices ofP. This guarantees that the patches that are finally produced are
simple, monotone with respect to thexz-plane, and their projections onto this plane are
convex polygons; they are therefore convex-like, by virtue of Lemma 2.1.

Note that throughout the algorithm the patches are orientable; they are subsets of the
boundary of the polyhedron, a 2-manifold without boundary, which is orientable.

3.1. The First Phase. As mentioned earlier, no internal edge of a convex-like patch
can be a reflex edges ofP. Therefore, we need to cut along each reflex edge, where
cutting along an edge has the effect that its incident facets are no longer considered
adjacent. (Note, however, that the internal edges of a patch can all be nonreflex edges
of P, and still the patch may not be convex-like. Think of a patch spiraling around
several times.) We may then be tempted to embark on the second phase of the algorithm
and clip the resulting patches as outlined in the previous paragraph. This, however, will
not necessarily produce the desired partition. Consider, for instance, the polyhedron of
Figure 6, which is constructed by gluing two tetrahedra along a common facetuvw, where
u andv are the vertices with the smallest and largestx-coordinates. Cutting along the
reflex edges introduces a cut along the single reflex edgeuv, while clipping with planes
normal to thex-axis that go through the reflex verticesu andv leads to no additional
cut; the boundary of the polyhedron will therefore still form a connected patch, which
clearly is not convex-like.
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Fig. 6

To rule out such cases, we disassemble the boundary of the polyhedronP along the
z-extrema of theyz-cross-sections ofP. Since no edge ofP is normal to thex-axis and
no facet ofP is normal to thez-axis, thez-extrema in anyyz-cross-section are vertices,
the intersections of edges ofP with the slicing plane that defines the cross-section.
(Figure 14 depicts a typicalyz-cross-section of the polyhedron after all the cuts have
been introduced.) For the polyhedron of Figure 6, this approach will produce cuts along
the edgesuw andwv, up andpv, anduq andqv, which in addition to the cut along the
reflex edgeuv will disassemble the polyhedron’s boundary into four patches.

Summarizing, in this phase we cut along the reflex edges of the polyhedronP, and
along the edges that contributez-extrema in ayz-cross-section ofP. It is important to
observe that determining whether an edge is a reflex edge ofP or whether it contributes
z-extrema in ayz-cross-section requires only information local to the edge, namely the
relative position of its two incident facets. We therefore process the edges in any order; if
we need to cut along an edgeewe simply markeas “cut,” and from then on we consider
that e’s incident facets are no longer adjacent. This procedure ensures that any patch
σ in the partition of the boundary ofP induced by the generated cuts is such that no
internal edge ofσ is a reflex edge ofP, whileσ ’s intersection with any plane normal to
the x-axis consists of a number ofz-monotone polygonal lines. The entire phase takes
time linear in the number of edges, while no more than linear space is needed.

Before estimating the total number of patches produced at the end of this phase, we
prove the following lemma.

LEMMA 3.1. Let σ be a patch at the end of the first phase, whose projection onto the
xz-plane is a polygon which we denote byσxz. Then, if v is a nonreflex vertex of the
polyhedron that projects into a point q on the boundary ofσxz, q is not a cusp ofσxz,
i.e., q is a vertex ofσxz such that the(interior) angle formed by the two edges incident
on q does not exceedπ .

PROOF. Sincev is a nonreflex vertex of the polyhedron, the intersectionNv of the
polyhedron with a small enough ball centered atv is a convex object. It is clear that
the projection of a convex object onto a plane is also convex; therefore, the projection
of Nv onto thexz-plane is a convex set containingq, which implies thatq cannot be
a cusp.
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Number of Patches Produced. We prove next that the number of patches that are pro-
duced at the end of this phase is no more than 2r + 2. The key observation is that each
patch has at least one vertex such that its adjacent vertices that belong to the patch all
have largerx-coordinates; the vertex of the patch with the smallestx-coordinate will do,
if we take into account the assumption that no edge of the polyhedron is parallel to the
yz-plane. In fact, all the negativex-extrema of the patch will do. Similarly, each patch
has at least one vertex whose adjacent vertices that belong to the patch all have smaller
x-coordinates; any positivex-extremum of the patch satisfies this condition. Therefore,
if we compute the number of patches to which a vertex of the polyhedron contributes
positive or negativex-extrema, add these numbers over all vertices, and divide by two,
we obtain an upper bound in the number of patches that are produced.

The way to compute the number of patches to which a vertexv contributes positive
or negativex-extrema can be more easily understood if we consideryz-cross-sections
of the polyhedron. First, we consider theyz-cross-sectionCyz(v) of the polyhedron atv;
recall thatCyz(v) is the intersection of the polyhedron with a slicing plane that is normal
to thex-axis and goes throughv. In Cyz(v), v is incident on a number of line segments,
each being the intersection of the slicing plane with a single polyhedron’s facet incident
on v (recall the assumption that no edge of the polyhedron is normal to thex-axis);
therefore, these line segments correspond to a collectionF of facets of the polyhedron
and ultimately to a collectionP of patches that contain these facets. Next, we consider
theyz-cross-sectionC+yz(v) infinitesimally away fromv toward increasingx-coordinates,
and we concentrate on the line segments in this cross-section that correspond to facets
incident uponv; if these facets form the setF+, thenF+ containsF due to the continuity
of the polyhedron’s boundary and the assumption that no edge is normal to thex-axis.
LetP+ denote the set of patches that contain the facets inF+. Then the patches inP+\P
are precisely the patches to whichv contributes negativex-extrema; clearly, the number
of such patches does not exceed the number of disconnected polygonal chains inC+yz(v)

(at the end of the first phase) to which the line segments corresponding to the facets in
F+\F belong. For example, in each of the four cases shown in Figure 7, the left-hand
side depicts a neighborhoodNv of a vertexv at the cross-sectionCyz(v), while the right-
hand side depicts whatNr evolves into inC+yz; the shaded area indicates the interior of the

Fig. 7. (a) at most two “new” patches; (b) zero “new” patches; (c), (d) at most one “new” patch.
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polyhedron, and the partition of the polyhedron’s boundary into patches is exhibited by
the openings of the boundary of the shaded area. In Figure 7(a) in particular, the three new
line segments that appear inC+yz(v) form two disconnected chains, which correspond to at
most two patches; therefore, in this casev contributes negativex-extrema to at most two
patches. A similar argument applies to theyz-cross-sectionC−yz(v) infinitesimally away
from v toward decreasingx-coordinates: the number of patches to whichv contributes
positive x-extrema does not exceed the number of disconnected polygonal chains in
C−yz(v) (at the end of the first phase) that correspond to facets incident onv excluding
those inF .

It should be expected that the number of patches to which a vertexv contributes
positive or negativex-extrema depends on the numberrv of reflex edges incident upon
v. More specifically, if the number of reflex edges connectingv to vertices with smaller
(resp. larger)x-coordinates is denoted byr−v (resp.r+v ), the number of patches to which
v contributes negativex-extrema should depend onr−v , while the number of patches to
which v contributes positivex-extrema should depend onr+v . Figure 7 provides some
intuition, by depicting details ofCyz(v) andC+yz(v) for a vertexv with r+v = 1; the
single reflex vertex at the right-hand side figure in each of the four cases shown is the
intersection of the reflex edge with the slicing plane. It turns out that one reflex edge
may account for no more than two patches havingv as anx-extremum, so that a vertex
v incident uponrv reflex edges contributes (positive or negative)x-extrema to at most
2rv + c patches, for some appropriate integerc that depends on the geometry of the
neighborhood ofv in Cyz(v). We consider the following cases:

1. The vertexv is of degree0 in Cyz(v) and is a point-polygon ofCyz(v). In agreement
with the definition of a polyhedron,v is anx-extremum of the polyhedron. Ifv is
a negativex-extremum, then, as Figure 8 suggests, it may contribute negativex-
extrema to no more than 2r+v + 2 patches. Moreover, the definition of a negative
x-extremum of a polyhedron implies thatv cannot possibly contribute positivex-
extrema to any patch, as well as thatrv = r+v . Hence,v contributesx-extrema to at
most 2rv + 2 patches. In a similar fashion we find that, ifv is a positivex-extremum
of the polyhedron, it contributesx-extrema to at most 2rv + 2 patches as well (the
picture in this case is the same as Figure 8 where the pictures forC+yz(v) andC−yz(v)

have been interchanged).
2. The vertexv is of degree0 in Cyz(v) and is a point-hole in a polygon ofCyz(v).

Figure 9 depicts one of the two basic cases that may arise; the other one stems from
Figure 9 after the pictures forC+yz(v) andC−yz(v) have been interchanged. In either
case,rv ≥ 3, andv contributesx-extrema to no more than 2rv − 2 patches.

3. The vertexv is of degree2 in Cyz(v). We considerC+yz(v) first. If r+v = 0, the two-edge

Fig. 8



Decomposing the Boundary of a Nonconvex Polyhedron 253

Fig. 9

chain incident onv in Cyz(v) (this is the intersection of the polyhedron’s boundary
incident onv with the slicing plane) evolves into a convex chain inC+yz(v), which
implies that no new patches are intersected by the slicing plane inC+yz(v). Thus, no
patch hasv as a negativex-extremum. If, however,r+v is positive, the number of such
patches does not exceed 2r+v . (Figure 10 depicts the four basic cases forr+v = 2,
where the two cusps at the right-hand side figure of each case are the intersections
of the two reflex edges with the slicing plane; compare Figures 7 and 10 to see how
cases with largerr+v can be produced. In general, for the cases (a)–(d), the bounds
are 2r+v , 2r+v − 2, 2r+v − 1, and 2r+v − 1, respectively.) So, for allr+v , the number of
patches to whichv contributes negativex-extrema does not exceed 2r+v .

The above arguments apply without change when we considerC−yz(v) implying
that the number of patches to whichv contributes positivex-extrema is at most 2r−v .
The combination of these results yields an upper bound of 2r+v + 2r−v − 2rv in the
number of patches to whichv contributesx-extrema.

4. The vertexv is of degree larger than2 in Cyz(v). In this case the neighborhood ofv in
Cyz(v) consists of a number of wedges touching atv; let this number bewv (wv = 4
in Figure 11). (Note that since the degree ofv is larger than 2 inCyz(v),wv is always
larger than 1.) In general, the situation is a combination of the two cases shown in
Figure 12, as well as those obtained from Figure 12 with the pictures corresponding to
C−yz(v) andC+yz(v) interchanged (the dashed curves indicate that some of the wedges
may belong to the same polygon ofCyz(v)). These wedges may either merge with or
get detached from neighboring wedges inC+yz(v) andC−yz(v). In Figure 11 for instance,

Fig. 10.At most four, two, three and three “new” patches in the cases (a)–(d), respectively, wherer+v = 2.
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Fig. 11

asCyz(v) evolves intoC+yz(v), the three bottom wedges merge into a single wedge
cluster, while the top wedge forms a wedge cluster by itself. Letw+v andk+v (resp.
w−v andk−v ) denote the number of such wedge clusters and the number of polygons
containing these clusters inC+yz(v) (resp.C−yz(v)) respectively (in Figure 11, we have
w−v = 3,w+v = 2, andk−v = k+v = 2). Since several wedges may merge into a single
wedge cluster and several wedge clusters may belong to the same polygon, then

wv ≥ w+v ≥ k+v and wv ≥ w−v ≥ k−v .(1)

Moreover, the definition of a polyhedron (see Section 2) implies that the intersection of
a small enough neighborhood ofv and the interior of the polyhedronP is a connected
set; otherwise, we end up with degeneracies like the one exhibited at the object shown
in Figure 3. Therefore, the sum of the numbers of wedges that merge inC−yz(v) and
C+yz(v) must be at least equal towv − 1; in terms ofwv, w−v , andw+v , this can be
expressed as follows:

(wv − w−v )+ (wv − w+v ) ≥ wv − 1 ⇔ w−v + w+v ≤ wv + 1.(2)

(In fact, it is true thatw−v +w+v = wv + 1; this can be proved if we take into account
that the closure of the complement of a polyhedron is also a polyhedron.)

Finally, if v is incident uponwv wedges inCyz(v), then it is incident upon at least
wv − 1 reflex edges: recall that the neighborhood ofv in Cyz(v) is a combination of
the cases in Figure 12 (or their right-to-left counterparts); in either case shown no
new line segments appear inC−yz(v) or C+yz(v), implying thatv does not contribute
x-extrema to any of the patches, and yetv is incident upon one reflex edge. Of course,
it may be incident upon more such reflex edges, each of which leads to at most two
patches to whichv contributes anx-extremum, so that such a vertexv accounts for
no more than 2(rv − (wv − 1)) patches (see Figure 11).

Fig. 12
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If we sum all the contributions, we obtain the following bound in the numberm of
patches, whereV1, V2, V3, andV4 denote the sets of vertices falling in cases 1, 2, 3, and
4, respectively.

m ≤ 1
2

(∑
v∈V1

(2rv + 2)+
∑
v∈V2

(2rv − 2)+
∑
v∈V3

2rv +
∑
v∈V4

2(rv − (wv − 1))

)
(3)

≤
∑
v∈∪Vi

rv + |V1| −
∑
v∈V4

(wv − 1)

≤ 2r + |V1| −
∑
v∈V4

(wv − 1),

since
∑

v∈∪Vi
rv =

∑
v rv = 2r . In light of the following lemma, inequality (3) implies

that the numbermof patches produced at the end of the first phase satisfies the inequality
m≤ 2r + 2.

LEMMA 3.2. The total number|V1| of positive and negative x-extrema of a polyhedron
does not exceed

∑
v∈V4

(wv−1)+2,where V1,V4, andwv are as defined in the previous
paragraphs.

PROOF. We construct a graph that records the events that mark the history of theyz-
cross-section of the polyhedron. Namely, we sweep the polyhedron with a plane normal
to thex-axis, and whenever the number of polygons in the cross-section changes (as is
the case when positive or negativex-extrema of the polyhedron and vertices inV4 are
encountered), we record the change appropriately (for completeness, we make sure to
record all the verticesv in V4 even those for whichk−v = k+v ). Note that events where
the number of holes in a polygon of ayz-cross-section increases or decreases are not
recorded. In particular:

1. At a negativex-extremum (vertex inV1), we add to the graph two new nodes3 which
we connect by an edge; the first node corresponds to the negativex-extremum, while
the second one is apolygon-nodeand corresponds to the series of polygons in the
yz-cross-sections to which the negativex-extremum evolves.

2. At a positivex-extremum (vertex inV1), we add one new node that corresponds to
the positivex-extremum and we connect it to the polygon-node that represents the
series of polygons in theyz-cross-sections which reduced to this positivex-extremum
during the sweeping.

3. At a vertexv in V4, we add one new node that corresponds tov and edges connecting it
to the representatives of thek−v polygons inC−yz(v). Moreover,k+v polygon-nodes are
added, one for each of thek+v polygons inC+yz(v), and edges are introduced between
them and the node corresponding tov.

Since we are dealing with a single polyhedron, the resulting graph is connected.
Figure 13(b) shows the graph that corresponds to the polyhedron of Figure 13(a). The

3 We use the termnodesof a graph instead of vertices to avoid confusion with the vertices of the polyhedron.
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Fig. 13

numbers 1, 2, and 3 denote negative and positivex-extrema, and vertices inV4, respec-
tively (according to the cases above), while the letterP denotes polygon-nodes. Note
that all polygon-nodes are of degree 2, and no two of them are adjacent, while the nodes
corresponding to the negative and positivex-extrema of the polyhedron are of degree 1.

To simplify matters, we remove from the graph all polygon-nodes by coalescing their
incident edges into a single edge; the resulting graph is a connected multigraph (see
Figure 13(c)), whose node set is in one-to-one correspondence with the union ofV1 and
V4. If we denote byE the total number of edges of the multigraph, we have

2E =
∑

nodev

degree(v) =
∑
v∈V1

1+
∑
v∈V4

(k−v + k+v ) ≤ |V1| +
∑
v∈V4

(wv + 1),(4)

since, for any vertexv ∈ V4, inequalities (1) and (2) imply thatk−v + k+v ≤ w−v +w+v ≤
wv+1. Connectivity, on the other hand, implies that the number of edges is at least equal
to one less than the number of nodes of the graph, that is,E ≥ |V1| + |V4| − 1, which
combined with (4) yields

2(|V1| + |V4| − 1) ≤ |V1| +
∑
v∈V4

(wv + 1) ⇒ |V1| ≤ 2+
∑
v∈V4

(wv − 1).

3.2. The Second Phase. The first phase produces patches that are not necessarily simple
and may form spirals around they-axis. Moreover, although the intersection of such a
patch with any plane normal to thex-axis consists of a number ofz-monotone polygonal
lines, this is not sufficient to ensure that the patch is monotone with respect to thexz-
plane; patch monotonicity is guaranteed only if the patch is decomposed into subpatches
so that each of thesez-monotone polygonal lines belongs to a different subpatch. This
will be our goal in this phase, i.e., to decompose each of the patches produced in the
previous phase into subpatches, the intersection of each of which with any plane normal
to thex-axis is a singlez-monotone polygonal line. Then, making sure that the projections
of the subpatches on thexz-plane are convex polygons implies that the final patches are
convex-like (Lemma 2.1).

The method that we use in order to achieve the desired decomposition parallels the
way a nonconvex polygon (that may contain holes) is partitioned into convex pieces by
using cuts parallel to a chosen direction to resolve the polygon’s cusps. In very general
terms, our basic strategy involves splitting each patch by clipping it with planes normal
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Fig. 14

to thex-axis that pass through the reflex vertices of the given polyhedron. Before giving
more details, we introduce the notions of the up-chains and down-chains of a reflex
vertex.

We consider theyz-cross-section of the polyhedron at a reflex vertexv after the end
of the first phase. Since during the first phase we cut along all the reflex edges andv

is incident upon a reflex edge, the boundary of the polyhedron has been cut atv. In
general, due to the first phase cuts, the boundaries of the polygons of the cross-section
are decomposed intoz-monotone polygonal chains. Unlessv is a point-hole in one of
these polygons or a polygon reduced to a point,v is an endpoint of at least two such
chains (Figure 14). Ifv is the endpoint of a chain with the smallestz-coordinate among
the chain’s vertices, we refer to the chain as anup-chainof v; if v is the endpoint of a
chain with the largestz-coordinate among the chain’s vertices, we refer to the chain as
adown-chainof v.

Note that ifw wedges touch atv in the correspondingyz-cross-section, thenv is
incident upon 2w up- or down-chains and at leastw − 1 reflex edges. In other words,
if v is incident uponrv reflex edges, it is incident upon at most 2(rv + 1) chains. Then,
if the number of reflex edges of the polyhedron isr , the total number of reflex vertices
does not exceed 2r and

∑
v rv = 2r ; therefore, the number of up- and down-chains of

all reflex vertices is at most 2× (2r + 2r ) = 8r . This leads to the following lemma:

LEMMA 3.3. If the number of reflex edges of a polyhedron is r, the total number of the
up- and down-chains of all the reflex vertices of the polyhedron does not exceed8r .

In terms of the up- and down-chains, our basic strategy can be expressed as follows:
cut along the up- and down-chains of all the reflex vertices of the polyhedron. To simplify
matters, we cut along the up- and down-chains in separate passes.

We concentrate on the first pass where we generate cuts along the up-chains of the
reflex vertices. Observe that a brute-force approach may cut on the order ofn facets every
time we process a reflex vertex, which would produce a decomposition of an unacceptably
largeÄ(nr) size. To avoid that, we advance the cuts along the up-chains from facet to
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Fig. 15

facet and discontinue some of the cuts that might slice too many facets. The key idea is
illustrated in Figure 15. (The facet shown is a triangle, because as previously mentioned
the boundary of the polyhedron has been triangulated at a preprocessing step before the
first phase of our algorithm.) Assume that we advance four cuts upward through facet
f . The plan is to extend only the leftmost and rightmost ones through adjacent facets
upward pastf ; we stop the remaining two cuts at the edge incident uponf with the
largestx-extent, and we generate a cut (along that very edge) extending between the
intersections of the edge with the rightmost and leftmost cuts. Thus, we maintain the
following invariant:

CUT-INVARIANT. An edge of the polyhedron is crossed by at most two cuts which
propagate through a facet to an adjacent one.

To enforce the invariant, we process a facet of a patch after its adjacent facet(s) below
it (in terms ofz-coordinates) in the patch have been processed. Note that, thanks to the
first phase cuts along thez-extrema, every patch contains at least one facet without any
adjacent facets below it (recall that if a cut has been generated along an edge during
the first phase, the two facets incident upon the edge are no longer considered adjacent,
although they may still belong to the same patch). Therefore, every patch contains at
least one facet that can be processed right away. Figure 16 depicts a patch with these
facets shown highlighted.

Fig. 16



Decomposing the Boundary of a Nonconvex Polyhedron 259

Fig. 17

Here is our method to cut along the up-chains of the reflex vertices in more detail.
We process each patch in turn. We start by collecting the facets that can be processed
immediately, and we insert them in a queueQ; the purpose of this queue is precisely
always to store the facets of the patches that are ready to be processed. Initially, our
cut-invariant holds trivially. Then, for each facett in Q, we iterate on the following
procedure: depending on whethert is as shown in Figure 17(1) or 17(2), we execute step
1 or step 2 respectively:

1. The triangular facett is as shown in Figure 17(1), i.e., the edgee1 incident upont
with the largestx-extent is “above” the other two edgese ande′ incident upont .
Cuts may be propagating int through the edgese ande′, while an additional cut
may emanate from the vertex incident to bothe ande′. If the total number of cuts
proceeding throught is no more than two, then the cuts are simply extended all the
way throught and are attached toe1 ready to advance upward to adjacent facets of the
patch. If, however, the number of cuts is larger than two, we apply the idea illustrated
in Figure 15. We extend only the leftmost and rightmost cuts all the way throught ,
and attach them toe1. All remaining cuts are extended up toe1 and are stopped there,
while a cut is generated alonge1 between the intersection points ofe1 and the leftmost
and rightmost cuts. So, our cut-invariant is maintained in this way. Finally, if no cut
was made alonge1 during the first phase, we check whether the facett1, which in
addition tot is incident upone1, is a candidate for the queueQ. Namely, ift1 is as in
Figure 18(a), then it is inserted inQ; otherwise,t1 as in Figure 18(b) and is inserted
in Q only if either a cut has been generated during the first phase along the edgeê,
or the facet, which in addition tot1 is incident upon̂e, has already been processed.

2. The triangular facett is as shown in Figure 17(2), i.e., the edgee incident upont
with the largestx-extent is “below” the other two edgese1 ande2 incident upont .
If cuts are propagating throughe, we extend them throught and we attach them to
e1 or e2 depending on which edge they intersect. By induction, our cut-invariant is
maintained. Next, we test the facetst1 and t2, which in addition tot are incident
upone1 ande2, respectively, as candidates for the queueQ. (Note that either one or
both t1 and t2 may not exist as cuts alonge1 or e2 during the first phase may have
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Fig. 18

disconnected the patch at these edges.) The procedure is the same as that involvingt1
in the previous case. Specifically, ift1 is as shown in Figure 18(a), i.e.,e1 is the edge
incident upont1 with the largestx-extent, we insertt1 in Q; if not, in which caset1 is
as in Figure 18(b), we insertt1 in Q only if either we have generated a cut along the
edgeê during the first phase, or the facet, which in addition tot1 is incident upon̂e,
has already been processed. The same test is also applied tot2, if the facett2 exists.

Thent is removed fromQ and we proceed with the next facet inQ.
Figure 19 shows a snapshot as the procedure is applied to the patch of Figure 16. It

is easy to see that eventually all the facets of the patch enter the queueQ, so that when
Q finally empties, cuts along all the up-chains of the patch’s reflex vertices have been
created. Furthermore, our cut-invariant ensures that at most two cuts are crossing an edge
cutting both its incident facets.

This completes the first pass that generates cuts along the up-chains. Next we apply the
same procedure with respect to the down-chains. Note that we take into consideration the
cuts generated during the previous pass involving the up-chains. Consider, for instance,
Figure 20. If a cutc1 along a down-chain reaches an edge along which we generated a cut
during the previous pass, then the cut is stopped there and its processing is considered
completed. Moreover, if two cutsc2 and c3 along two down-chains reach an edgee
that has been cut by an up-chain cutc′ andc2 is betweenc′ andc3 (with respect to the
x-axis), thenc2 is stopped there, and a cut between the intersections ofe with c′ andc3

is generated alonge. This establishes our cut-invariant for cuts along down-chains.

Fig. 19
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Fig. 20

At the end, pieces of a single facet of the polyhedron may belong to several different
patches. Interestingly, however, due to our cut-invariant, no more than four cuts through
any given facet proceed to adjacent facets both up and down. These would be the leftmost
and rightmost cuts through the facet along both up- and down-chains. Any other cuts
stop at the edge with the largestx-extent incident upon the facet. The total time spent in
this phase is linear in the number of facets of the polyhedron plus a constant overhead
per segment of each cut. As the total number of these segments is proven in Section 3.3
to be linear in the size of polyhedron, so is the total time required for this second phase.

3.3. Description of the Patches Produced. Each of the patches that the algorithm pro-
duces consists of a portion of the boundary of the polyhedron that is clipped from left
and right by two planes normal to thex-axis (cuts along up- or down-chains), and at the
top and bottom by either an edge of the polyhedron (a reflex edge, for instance), or a
polygonal line consisting of edges that contributez-extrema inyz-cross-sections of the
polyhedron. The following lemma helps us establish that these patches are simple and
monotone with respect to thexz-plane.

LEMMA 3.4. The intersection of any patch after the end of the second phase with a
plane normal to the x-axis is a single polygonal line monotone with respect to the z-axis.

PROOF. Since the intersection of any patch that results from the first phase with any
plane normal to thex-axis consists of one or morez-monotone polygonal lines, then
so does any patch after the end of the second phase; recall that in the second phase we
simply clip the first phase patches.

Suppose, for contradiction, that a plane normal to thex-axis intersects a patch after
the end of the second phase into more than one such polygonal line. Then, since the patch
is connected, there exists a connected subsetσ of the patch with the following property:
there exist pointsp andq of σ that have equalx-coordinates, and are such that a plane
normal to thex-axis passing through them intersectsσ in a single polygonal line, whereas
it intersectsσ into two disconnected polygonal lines if it is translated slightly either to
the left or to the right along thex-axis (to the right, in the case shown in Figure 21).
(Note that the pointsp andq may coincide.) There exist therefore line segmentse1 and
e2 incident uponp andq, respectively, along which cuts have been generated (e1 ande2

may coincide ifp andq coincide).
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Fig. 21

These cuts do not proceed along up- or down-chains of vertices, and thuse1 ande2 lie
on edges of the polyhedron. Moreover, as the projections of patches onto thexz-plane
exhibit internal angles at most equal toπ at the projections of new vertices introduced
in the second phase because of the clipping (see Figure 20),p andq must be vertices
of the polyhedron. In fact, neitherp norq may be reflex vertices, otherwise a cut along
the up-chain ofp or the down-chain ofq would have splitσ . Therefore, bothp and
q are nonreflex vertices, ande1 ande2 contributez-extrema at the correspondingyz-
cross-sections. This is impossible, however, because the continuity of the polyhedron’s
boundary implies that there would have been an edgee incident onp such thate ande1

would form anx-monotone polygonal line ande, like e1, would contributez-extrema at
the correspondingyz-cross-sections; but then a cut would have been generated alonge,
andσ would have been split.

Lemma 3.4 directly implies that any patch at the end of the second phase is monotone
with respect to thexz-plane. Moreover, it implies that any such patch is also simple; if
the patch had a hole, the intersection of the patch with a plane normal to thex-axis that
intersects the hole would either be nonmonotone with respect to thez-axis or consist of
at least two disconnected pieces. Therefore,

COROLLARY 3.1. Any patch after the end of the second phase is simple and monotone
with respect to the xz-plane.

In light of Lemma 2.1, Corollary 3.1 and the following lemma establish that the
patches produced are convex-like.

LEMMA 3.5. The projection of any patch on the xz-plane is a convex polygon.

PROOF. Since the patch is simple, its projection on thexz-plane is a simple polygon too.
We now prove that the projection is indeed a convex polygon. Suppose, for contradiction,
that there exists a cusp, i.e., a vertex of the polygon such that the (interior) angle formed
by its two incident edges exceedsπ . The monotonicity of the patch with respect to the
xz-plane implies that the cusp is the projection of some vertexv on the boundary of the
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patch. Since the second phase cuts contribute vertices that are intersections of edges of
the polyhedron with the “clipping” planes, no such vertex can project into a cusp on the
xz-plane. This implies thatv lies on a first phase cut, and in fact it is a nonreflex vertex
of the polyhedron. However, then it cannot project into a cusp, according to Lemma 3.1,
which leads to contradiction.

Description Size and Total Number of Patches. Consider a polyhedronP of f facets
ande edges,r of which are reflex. We compute the total number of edges of all the
patches, where the edges along the cuts are counted twice. The analysis proceeds in an
incremental way by taking into account the new edges that each step of our algorithm
introduces. The triangulation of the boundary ofP does not affect the order of magnitude
of the number of edges, so that this number isO(e) before the beginning of the first
phase. As the cuts of the first phase proceed along edges ofP, the number of edges of
all the patches at the end of the phase is at most twice their number after the boundary
triangulation. During the second phase, several new edges are introduced in the following
three ways: (i) an edge is split into two when a cut crosses it, (ii) a new edge is introduced
by cutting through a facet, or (iii) a new edge is introduced along a portion of an edge
that is about to be crossed by more than two cuts. We claim that the total number of these
new edges does not exceed 16f + 40r ; the claim implies that the total number of edges
of all the patches after the end of the second phase isO(e)+ 16 f + 40r , which is linear
in the size of the input.

To prove our claim, we charge the new edges created in the second phase to the facets
of the polyhedron and the cuts generated in the second phase as follows: each facet is
charged with the number of new edges that result from cuts traversing it and advancing to
adjacent facets, while each cut is charged with the number of new edges that its traversal
through the very last facet causes; in this way, all the new edges are accounted for. We
observe that a cut that traverses a facet and advances to adjacent ones leads to the creation
of four new edges, some of them shared with other facets; see Figure 22(a). Since at
most two such cuts are allowed per facet for each of the two passes of the second phase
(cut-invariant), each facet is charged with 4× 2× 2 = 16 units. In a similar fashion,
each cut leads to the creation of four or five new edges in the facet that the cut traverses
last; the latter case corresponds to a cut that is stopped while enforcing the cut-invariant
at a facet that is traversed by more than two cuts (see edgepq in Figure 22(b)). Since the
cuts of the second phase are generated along up- or down-chains and the total number
of such chains does not exceed 8r (see Lemma 3.3), the total number of new edges in
the second phase does not exceed 16f + 5× 8r as claimed.

Fig. 22
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Next, we estimate the number of patches that are finally produced. As mentioned
already, the first phase produces no more than 2r + 2 patches. We partition the set of
cuts generated during the second phase into two classes:

(i) those that extend all the way to the boundary of the corresponding patch produced
during the first phase, and

(ii) the remaining ones, that is, those that were stopped at an edge that had been cut at
least twice (Figure 22(b)).

Each cut in class (i) increases the number of patches by at most one, whereas each cut
in class (ii) increases the number of patches by at most two (see Figure 22). As the total
number of cuts is no more than 8r , and the number of cuts in class (ii) is bounded above by
8r−4, the total number of patches produced cannot exceed 2r+2+8r+8r−4= 18r−2.

4. Conclusions. Our results are summarized in the following theorem.

THEOREM. The boundary of a nonconvex polyhedron of n vertices and r reflex edges
can be subdivided into18r −2 patches, each of which lies on the boundary of its convex
hull. The decomposition can be carried out in O(n+ r logr ) time and O(n) space.

Unfortunately, the cuts performed may pass through facets ofP; this has the disadvan-
tage of introducing new vertices into the resulting decomposition. It would be of interest,
instead, to achieve a boundary decomposition into a small number of convex-like pieces
by means of cuts along edges of the given polyhedron only.

A different question is to find an algorithm that produces the minimum number of
convex-like pieces. Is this problem NP-complete, as are many optimization questions in
partitions and coverings [11], [13]?
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