Reprinted from

Chandrajit L. Bajaj
Editor

Algebraic Geometry and Its Applications

©1994 Springer-Verlag New York, Inc.
Printed in the United States of America.

Springer-Verlag
New York Berlin Heidelberg London Paris
Tokyo Hong Kong Barcelona Budapest



27

Decomposition Algorithms in
Geometry

Bernard Chazelle
Leonidas Palios

27.1 Introduction

Decomposing complex shapes into simpler components has always been a
focus of attenlion in computational geometry. The reason is obvious: most
geometric algorithms perform more efficiently and are easier to implement
and debug if the objects have simple shapes. For example, mesh-generation
is a standard staple of the finite-element method; partiticning polygons or
polyhedra into convex pieces or simplices is a typical preprocessing step in
automated design, robotics, and pattern recognition. In ccmputer graphics,
decompositions of two-dimensional scenes are used in contour filling, hit
detection, clipping and windowing; polyhedra are decomposed into smaller
parts to perform hidden surface removal and ray-tracing.

Methods can be classified into two broad categories: In image space
techniques the underlying space is discretized, sometimes in a hierarchi-
cal manner (e.g., quad-trees, oct-trees) and the discretization guides the
decomposition algorithms. In this survey we will focus entirely on object
space methods, which assume that the underlying universe is continuous.
These methods focus entirely on the objects themselves and not so much
on the universe in which they are embedded. Image space methods tend
to be more hardware-oriented, as they can often be hardwired into special-
purpose processors; in practice, they are also more directly tied to the
needs of computer graphics and image processing. Object space methods
are more universal; they make fewer assumptions about tlie world and and
often enjoy a richer mathematical structure. On the other hand they might
be less efficierit on particular problems for which the hardware lends itself
to a particular discretization scheme.

This paper reviews a large number of state-of-the-art decomposition
methods. It does not pretend to be a comprehensive survey. Instead, it
focusses its attention on methods that perhaps may not always be the so-
lutions of choice in practice but reveal some of the most important current
ideas in the design of decomposition algorithms.



120 Bernard Chazelle , Leonidas Palios
27.2 The Two-Dimensional Case

The notion of decomposition related to a certain two-dimensional planar
scene can be understood either as the partition cf the plane (or a portion
of it) into simple pieces, or as the explicit description of the plane tessella-
tion induced by the elements of the scene. The former interpretation leads
to problems involving convex partitions (and in particular triangulations),
and related optimization questions; the latter leads to problems pertaining
to line arrangements, Voronoi diagrams, or line segment and curve inter-
sections.

27.2.1 Polygons

A polygon is a subset of the plane that is bounded by a finite set of noninter-
secting closed polygonal lines. The segments that constitute these polygonal
lines are the edges of the polygon, while their endpoints are its vertices. A
polygon is simple if no two edges share any point other than a common
endpoint. A simple polygon P is conver if it is a convex set, i.e., the line
segment connecting any two of its points lies entirely in P, and is star-
shaped if there exists a point p in P such that the line segment connecting
p to any other point of P lies in P. In our discussion below, we will re-
strict our attention to simple polygons, and so we will omit the modifier
“simple”.

Triangulation

By triangulation of a polygon we mean its partition into non-overlapping
triangles whose vertices belong to the vertex set of the given polygon. The
triangulation problem has long been one of the central problems in two-
dimensional computational geometry; not only does it have a number of
applications in computer graphics, computer aided design and manufac-
turing, and robotics, but it is a very common preprocessing step in a large
number of algorithms operating on polygons or planar subdivisions.

Convex polygons can be easily triangulated in liaear time by drawing the
diagonals that connect a given vertex of the polygon to all its nonadjacent
vertices. The same procedure does not apply, however, in the general case,
as such diagonals may cross the boundary of the polygon, or lie completely
outside it.

An O(nlogn) time algorithm:

The first subquadratic algorithm for the triangulation of an n vertex
polygon was given by Garey, Johnson, Preparata and Tarjan [23] in 1978.
Their algorithm works in two phases: during the first one, the polygon is
reqularized, meaning that it is partitioned into pieces that are monotone
with respect to a fixed direction; then, in the second phase, each monotone
piece is decomposed into triangles, thus complet:ng the triangulation. A



Decomposition Algorithms in Georetry 421

FIGURE 1. Decomposition into Regions Monotone with respect to D.

polygonal chain is said to be monotone with respect to a direction D if any
line normal to D intersects the chain in no more than one point. A polygon
is monotone with respect to D if its boundary can be decomposed into two
monotone chains (with respect to D). In other words, the source of evil in
a non-monotone polygon is the existence of vertices whose incident edges
form a chain that is not monotone with respect to D.

The regularization phase fixes a direction D, and employs an algorithm
of Lee and Preparata [33] to “resolve” these vertices by adding diagonals
incident upon them. It proceeds by sweeping the polygon twice along D,
moving in opposite directions. At the general step, the situation is as shown
in Figure 1; we assume that the sweepline is moving frorn top to bottom,
in which case only “bad” vertices like b and v, but not ¢, are resolved. (For
instance, vertex b has already been resolved through the diagonal ab.) As
a result, the interior of the polygon is split into a number of regions which
will eventually yield the monotone partition. Let v, belonging to such a
region p be the next “bad” vertex to be processed. The line normal to D
that passes through v intersects the boundary of p in at least two points,
two among which, say u and v/, define the shortest line segment containing
v. If o is the part of the boundary of p that is delimited by u and v’ and
does not contain v, then v can be resolved by adding a diagonal connecting
it to the lowermost vertex of o (vertex w in the case of Figure 1).

Except for the initial sorting of the vertices of the polygon along D, the



422 Bernard Chazelle , Leonidas Palios

Sweep
Direction

FIGURE 2. Triangulating a Monotone Polygon.

algorithm spends O(logn) time in each vertex, as it performs at most one
Insert, or Delete operation into a balanced tree structure, such as a 2-3
tree, that holds all the information about the monotone regions in which
the polygon has been partitioned. This accounts for a total of O (nlogn)
time spent in this phase. In fact, Lee and Preparata’s algorithm is slightly
more general than to our description suggests, and may introduce diagonals
that lie outside the polygon; these can be easily located and deleted in linear
time, however, or the regularization procedure may be made to ignore them.

The final partition is achieved by triangulating each monotone piece that
the regularization phase produces. This can be done in time linear in the
number of vertices of the piece for a total of O(n) t:me. We sweep the piece
with a line normal to the direction of monotonicity, maintaining in a stack
vertices that form a concave chain. If the next vertex to be processed forms
a concave angle with the chain, it is pushed on the stack, thus maintaining
the invariant. Otherwise, vertices are popped from the stack (and triangles
are reported) until either the vertex forms a concave chain with the rest of
the chain, or the latter is reduced to a single vertax. The cases that may




Decomposition Algorithms in Geometry 423

arise are shown in Figure 2.

The search for faster algorithms shifted the attention of researchers to-
ward either special classes of polygons, or the discovery and use of the
parameters that characterize the complexity of the polygon. In the context
of the former trend, Toussaint and Avis [43] presented a linear time tri-
angulation algorithm for edge-visible (a polygon P is edge-visible if there
is an edge e of P such that for each point p of P one can always find a
point ¢ in e with the line segment pg lying entirely in P) or monotone
separable polygons. See also the survey paper of Toussaint [42]. Advances
were also made by Hertel and Mehlhorn [27], Fournier and Montuno [21],
and Chazelle and Incerpi [11]. In particular, Hertel and Mehlhorn’s algo-
rithm has a running time of O(n + rlog ), where r is the number of cusps
of the polygon, i.e., the vertices of the polygon whose incident edges form
an interior angle exceeding . It is based on the sweep-line paradigm, and
combines the two phases of the previous algorithm into one. The idea is to
select and sort only a subset of the polygon’s vertex set of size proportional
to the number of cusps, and then process them in order; all other vertices
are reached as we move along the boundary of the polygon and require
constant processing time each.

Fournier and Montuno discovered an O(nlogn) time sweep-line method
for computing the horizontal (or vertical) visibility map of a polygon, which
yields its triangulation in linear time postprocessing. The map is obtained
by drawing horizontal segments, chords, inside the polygon, starting from
each vertex and extending all the way across the polygon. The idea is to
sort the vertices and process each of them in order, updating the sorted
list of active trapezoids stored in a balanced tree.

The algorithm by Chazelle and Incerpi relies on the fact that the notion
of visibility map can be extended to polygonal chains, where the horizon-
tal lines that yield the decomposition may extend to infinity. It runs in
O(nlog s) time, where s is the sinuosity of the polygon, i.e., the number
of times its boundary alternates between spirals of opposite orientation.
Unlike its predecessors, this algorithm does not sort or sweep the plane.
Instead, it computes visibility maps bottom-up by following the mergesort
paradigm: the maps of smaller chains of the polygon’s boundary are merged
together two-by-two in a balanced manner. To achieve linear or even sub-
linear time, the merging relies on taking shortcuts along the added chords,
thus bypassing long portions of the polygon’s boundary. As before, a linear
time postprocessing step converts the visibility map into a triangulation.

It should be noted that both the sinuosity s and the number of cusps r of
a polygon can be as large as Q(n), so that none of the algorithms presented
so far beats the ©(nlogn) time barrier in the worst case. As a matter
of fact, this can be shown to be optimal in the case where the polygon
contains holes, by using a straightforward reduction from sorting. However,
the question of whether the triangulation of a simple polygon without holes
was indeed as hard as sorting still remained open for many years. This



424 Bernard Chazelle , Leonidas Palios

question was finally settled negatively in 1986 by Tarjan and Van Wyk
[41], who presented an O(nloglogn) time algorithm for the problem.

O(nloglogn) time algorithms:

The visibility map is computed by a clever combination of a linear time
Jordan sorting algorithm for simple curves (Hoffman, et al. [28]), divide-
and-conquer, and the fast processing of finger search trees. The basic idea
in the algorithm is to slice the polygon into smaller pieces by means of a
horizontal line L passing through one of its vertices v, and then to apply
the technique recursively in the subpolygons produced. The Jordan sorting
procedure helps to order along the horizontal line its intersection points
with the boundary of the polygon. It is not difficult to see, however, that
this approach is doomed if all intersection points are to be reported, as it
may be the case that a quadratic number of suck. points exists. The key
is to consider only the essential intersection points, i.e., those separating
teeth-like portions of the boundary. As a result, a total of O(n) visible pairs
are reported. Of course, the Jordan sorting routine has to be appropriately
updated to handle this partial information, yielding the Jordan sorting with
error correction. Apart from that, the balanced divide-and-conquer (that
is, making sure that each of the subpolygons that result from the slicing
has no more than a constant fraction of the features of the sliced polygon)
is used to guarantee that the total number of bcundary segments in all
regions is O(nlogn). The techniques above in conjunction with the fast
access, insertion and concatenation operations in finger search trees result
in an O(nloglogn) time algorithm. Despite the “act that the algorithm
has been implemented [32], its intricacy makes it impractical and is only
of theoretical interest.

Kirkpatrick, Klawe and Tarjan [31]recently discovered an other
O(nloglogn) algorithm that avoids the use of finger searching. Like Tarjan
and Van Wyk’s algorithm, it is also recursive in nature and uses a balanced
divide-snd-conquer approach. To add consistency to the visibility map, it
introduces the notion of a wrap-around partition of a polygon (or chain):
that is the decomposition of the plane induced by horizontal rays through
the vertices of the polygon that extend to the left and right until they hit
the polygon again. This last condition is always met, since it is assumed
that the plane is replaced by an infinite vertical cylinder so that rays ex-
tending to the far right emerge again from the far Jeft. Also, the boundary
of the polygon is “thickened” so as to make it into .\ thin snake-like region.

The algorithm works as follows: for k > (n/2)%3, the boundary of the
given polygon is partitioned into segments of length between k and k/2,
yielding its k-uniform partition. Then the entire polygon is partitioned into
chunks with the addition of one horizontal chord per segment. The chord
associated with a certain segment emanates from a special point that splits
the segment into two parts containing at least k/&6 of the vertices of the
segment each. Additionally, the endpoints of the chord should split the



Decomposition Algorithms in Geometry 425

boundary of the polygon into two chains of size at least k/36 each. The
special points are found easily, if £/36 edges are chopped off from either
end of each segment and points are selected from the remaining parts. For
a polygon of ¢ vertices, there are O(t/k) special points to be found; lo-
cating them and drawing the corresponding horizontal chords takes O(t)
time (remember that k > (#/2)2/3), using standard planar point location
techniques. Furthermore, the wrap-around partitions of those chunks that
are bounded by at most 2 horizontal chords require another O(t) time. The
wrap-around partitions of the remaining chunks are computed by recursive
application of the above procedure. Note that each of these chunks is of size
at most t2/3, while the total number of all their vertices is less than a con-
stant fraction of £. Finally, when all the partial partitions are available, the
wrap-around partition of the entire polygon can be constructed applying a
linear time merging algorithm similar to [11]. So, each recursive step takes
time linear in the size of the current polygon, which amounts to a total of
O(nloglogn) time for the entire algorithm. At least on a conceptual level,
this algorithm is much simpler than the Tarjan and Van “Wyk method.

O (nlog™ n) expected time probabilistic algorithms:

Clarkson, Tarjan and Van Wyk [16] gave an O (nlog* n, Las Vegas algo-
rithm, based on random sampling. (A randomized algorithm is Las Vegas
if it always returns the correct answer but its running t'me is a random
variable.) The algorithm starts by picking a random sample of the polygon
edges of the appropriate cardinality, and constructs their visibility map.
Then, each of the remaining edges is intersected with the plane parti-
tion, and the intersection points of each region are Jorcan sorted along
its boundary. The information collected during Jordan sorting (the family
trees) allows the refinement of each region into subregions induced by the
non-sampled edges of the polygon. As long as there is some vertex of the
polygon whose associated horizontal line has not been drawn, the algorithm
recurs on the region enclosing it. The time analysis of the algorithm relies
on the observation that, for a random sample of size r out of s noncrossing
line segments, with probability greater than some fixed co:istant, the num-
ber of features refining each region is O (r(logr)/s), whil2 the descriptive
size of the entire refined partition of the plane does not exceed O(s). As a
result, the Jordan sorting and the region refinement at each level of recur-
sion will take time linear to the size of the input polygon. IMinally, selecting
a random sample of size r = s/ log s each time the algoritum is applied on
a polygon of size s ensures that the vertical visibility decomposition can be
computed in O(rlogr) = O(s) time too. It further guarantees that for a
polygon of n vertices the recursion depth will be O (log™ n), achieving the
stated time complexity.

Recently, Clarkson and Cole [14] and independently Seidel [40] have an-
nounced considerable simplifications of the algorithm whic)1 circumvent the
use of Jordan sorting.



426 Bernard Chazelle , Leonidas Palios

A Linear Time Algorithm:

An optimal algorithm was recently discovered by Chazelle [7]. The start-
ing observation is that the Chazelle-Incerpi bottom-up method computes
too much intermediate information. To speed up the merging process, there-
fore, only a sample of the chords must be kept around. This sample must
be carefully chosen so that the resulting submap represents a balanced
approximation of the full-fledged visibility map. Merging is now more diffi-
cult because of the missing information, so various oracles are introduced to
make it possible. One of these oracles is a primitive that allows us to shoot
a ray from within any one of the computed regions and discover which edge
(if any) of a given piece of the polygon is hit by the ray. Implementing this
oracle requires the implementation of Lipton and Tarjan’s planar separator
theorem. A major difficulty is that the quality (i.e., the evenness) of the
approximation scheme provided by submaps decays as we keep merging
submaps together. To repair the damage the algorithm takes advantage of
the fact that the duals of submaps have tree structures. It applies a nor-
malization procedure that is best described as a geometric analog of the
rotations needed to keep binary trees balanced urnder dynamic operations.
Once a submap of the whole polygon is available, a refinement procedure
is called upon to add all the missing chords. This is achieved in a top-down
phase that makes use of the auxiliary structures built during the previous
merges. Although the algorithm is not a good candidate for practical im-
plementation, it is believed that heuristics based on it will turn out to be
useful in practice.

Voronoi Diagrams—Skeletons.

Several geometric problems involve the computation and often the mini-
mization of distances between a given set S of objects. Working on these
problems is usually greatly facilitated if for a particular object in S one
knows the locus of the points that are closer to it than any other member
of S. Such a subset of the plane is called the Voronoi region of that object.
It is clear from the definition that no pair of Voronoi regions intersect. The
tessellation of the plane into Voronoi regions associated with the members
of a set S is called the Voronoi diagram of S.

Voronoi diagrams are commonly defined with respect to point sets; ex-
tensions to segments of straight lines or curves and polygons have also been
studied. In the case of polygons, the Voronoi diagram forms their so-called
internal or external skeletons. The internal skeletoa of a figure can be more
formally defined as the locus of the centers of all the maximal inscribed
circles, while the external skeleton of a set of figures coincides with the in-
ternal skeleton of their complement [30]. Examples of the Voronoi diagram
of a point set, and the internal and external skelet ons of two polygons are
shown in Figure 3. Finally, it should be noted that the Voronoi diagram of
a polygon coincides with the Voronoi diagram of its edges, so that an algo-



Decomposition Algorithms in Geometry 427

FIGURE 3. Voronoi Diagrams of (a) Eight Points, and (b) two quadrilaterals.

rithm operating on line segments can deal with the case of polygons too.
Several O(nlogn) algorithms for the computation of the Voronoi diagram
of a point set have been proposed, as for example those of Guibas and Stolfi
(26], and Fortune [20]. The latter is a sweep-line algorithm, while the for-
mer uses divide-and-conquer approach with a linear time merging step of
two Voronoi diagrams. Let us mention that another linear time algorithm
for merging two Voronoi diagrams follows directly from Chazelle’s linear
time algorithm for computing the intersection of two convex polytopes in
3-space [6].

The two algorithms that we describe below are applicable not only to
point sets, but to sets including line segments or pieces of curves as well.
They are both based on the divide-and-conquer paradigrr, and they build
upon the notion of the contour of two sets of the above mentioned objects
in the plane. The contour of two such sets P and Q is defined as the
locus of all the points in the plane whose minimum distances from both
P and @ are equal. If P and Q contain only points, their contour is a
set of simple (possibly closed) polygonal lines; if, however, line segments or
pieces of curves are allowed in P and @, the contour may include parabolic,
hyperbolic, or elliptic arcs. It should be obvious that in order to merge the
Voronoi diagrams of P and @, we need only to compute their contour,
since the Voronoi diagram of P U Q coincides with the Vo onoi diagram of
either P or Q within each region that the contour defines. So, a linear time
algorithm to find the contour of two sets guarantees linear time merging of



428 Bernard Chazelle , Leonidas Palios

their Voronoi diagrams, resulting in an O(nlogn) time algorithm for the
Voronoi diagram computation problem.

Kirkpatrick’s algorithm:

In 1979, Kirkpatrick {30] proposed a divide-and-conquer algorithm for
the construction of the Voronoi diagram of a point set. The algorithm
computes the contour of two point sets using their Fuclidean minimum
spanning trees. The Euclidean minimum spanning trees (EMST) possess
two very useful properties: (i) such a tree is a subgraph of the Delaunay
triangulation, i.e., the dual of the Voronoi diagram of the underlying point
set, and can be constructed from it in linear time, and (ii) considering
two point sets P and @Q on the plane, each edge of the EMST of P or @
intersects either zero or two edges of the contour of P and Q. The latter
property can be (and actually is) used to allow the location of points on
the contour, and to test whether the entire contour has been computed.
Let us briefly outline the merging procedure. We assume that the Voronoi
diagrams of two point sets P and @ need to be merged. First, their EMSTs
are computed, which are subsequently augmented by a special point far
away from the members in P and @, so that it does not interfere with the
edges already in the EMSTs. Clearly, one of the two edges upon which the
special point is incident in the trees crosses an edgz of the contour, and the
point of intersection can in fact be located by moving along the edge in
the Voronoi diagrams of P and @. As soon as this starting point has been
located, the corresponding contour component can be traced by following
the perpendicular bisector of the current closest pair formed by one point
from either point set. If the boundary of a Voronoi region is crossed in any
of the partial Voronoi diagrams, the closest pair information is updated.
The walk continues until either the starting point is met, meaning that
the particular contour component is a closed polygonal line, or the current
edge does not cross any other region boundary, and thus extends to infinity.
Finally, the contour has been computed in its entirety after each edge of
one of the EMST's has been checked for intersection with the contour and
either two or zero such points have been found. In order to estimate the
cost of the contour tracing, Kirkpatrick introduces the notion of spokes.
These are line segments that connect each point of a point set P with the
vertices of the Voronoi region enclosing it in the Voronoi diagram of P.
The introduction of spokes in a Voronoi diagram restricts the descriptive
size of each region to a constant. Then, the cost of tracing a path is equal
to the number of spokes and region boundaries crossed, which implies that
the total time for the contour construction is linear in the combined size of
the two point sets. The Voronoi computation can subsequently be finished
off by clipping the partial Voronoi diagrams with the contour components.
As the merging is carried out in linear time, the overall time required to
compute the Voronoi diagram of n points is O(nlogn).

Kirkpatrick then turned his attention to a generalized Voronoi diagram,



Decomposition Algorithms in Geometry 429

that extends the known definition to both points and open line segments
(line segments without their endpoints). In this case, the Voronoi regions
may be bounded by line segments, half-lines, and paraboliz segments. The
previous algorithm can be extended to allow the construction of generalized
Voronoi diagrams. As we are this time dealing both with »oints and open
line segments, EMSTs are not applicable. Instead, pseudo-minimum span-
ning trees, defined next, can be used. Let us assume that a constant number
of visibility directions have been specified, and the visible pairs within a set
P of points and open line segments have been computed. Tten, if the closest
points between the members of any such pair are not endpoints, artificial
endpoints are introduced at their locations. The minimum spanning tree of
the set of points and of the enlarged set of endpoints of the line segments in
P forms its pseudo-minimum spanning tree. The algorithm for the general-
ized Voronoi diagram computation can be then described as follows: for a
given set of points and open line segments, its pseudo-minimum spanning
tree is computed, and is separated into two connected comr ponents each of
which contains at least a constant fraction of the elements in the initial set.
After the generalized Voronoi diagrams of the two subsets that correspond
to these connected components have been constructed, they are merged in
the same way that was used in the standard Voronoi diagram construction,
with the exception that EMSTs are replaced by pseudo-minimum spanning
trees. The algorithm again runs in O(nlogn) time.

Yap’s algorithm:
Eight years later, C.K. Yap [44] proposed a different algorithm for the
“construction of the Voronoi diagram of n circular and straight line seg-
ments that intersect only at their endpoints. As mentioned earlier, in this
case the Voronoi diagram consists of straight line, parakolic, hyperbolic
and elliptic segments. The algorithm is based on the divide-and-conquer
paradigm, too: vertical lines are introduced through the segment endpoints
decomposing the plane into slabs; then the Voronoi diagram of the entire
arrangement is computed by constructing the Voronoi diagram of each slab,
and merging pairs of adjacent slabs in a tree-like fashion. | f, however, seg-
ments contribute pieces in many slabs, this approach may take as much as
Q (nz) time if the Voronoi diagram in each slab is computed in its entirety.
The way to avoid that is by computing only the essential part in each slab,
whose size is proportional to the number of segment endpoints lying in the
slab. In particular, segments that cross both the bounding vertical edges
of a slab subdivide it into regions called quads. The computation of the
Voronoi diagram in the slab is then restricted to only those quads that
contain at least one endpoint of some segment. This complicates the merg-
ing process, which can still, however, be carried out in linear time, resulting
in an overall O(nlogn) running time. It must be noted thar, as in the algo-
rithm of Kirkpatrick, the merging process introduces spokes splitting the
Voronoi regions into subregions of no more than four sides, and also relies



430 Bernard Chazelle , Leonidas Palios
on the contour computation.

Optimization Problems.

Several decomposition problems, such as polygon triangulation, admit more
than one valid solution. Quality criteria can then be used to select the best
one among them, thus giving rise to optimization questions. For the polygon
decomposition problem, such criteria usually involve the number of pieces
produced, the total length of the cuts introduced, or the minimum angle
between two edges. Interestingly, the existence of “holes” in the polygons
makes a big difference in the complexity of the problems. We analyze these
two cases separately.

Hole-free Polygons:

The most natural optimization question regarding a given polygon in-
volves the minimization of the number of simpler pieces in which it can be
decomposed. Such pieces may be convex, monotone, or star-shaped poly-
gons. triangles, or trapezoids. Nearly all algorithims suggested for the res-
olution of these questions invariably employ dynamic programming.

Partition into the minimum number of convex polygons:

Chazelle and Dobkin [8] in 1979 presented an algorithm for achieving a
partition of a polygon into the minimum number of convex picces, estab-
lishing that this problem can indeed be solved in polynomial time. They
introduce the notion of X-patterns that can be used to resolve several
notches (i.e., vertices with reflex angles) at the same time. In particular,
an Xy-pattern is an interconnection of k notches which removes all reflex
angles at the notches involved without creating any new ones (Figure 4). A
very important observation is that if the r notches of a polygon are resolved
by m X-patterns and some additional line segments, the number of convex
pieces produced is at most 7+ 1—m; so, the more X-patterns, the fewer con-
vex pieces. Unfortunately, X-patterns have many degrees of freedom, thus
making the minimization computation extremely time-consuming. Chazelle
and Dobkin introduce a more constrained version of the X-patterns, the
Y-patterns. A Yj-pattern is an Xy-pattern such that no edge joins two
Steiner points. For example, the X3-pattern of Figure 4 is a Y3-pattern,
whereas the Xs-pattern of the same figure is not a Ys-pattern. The cru-
cial property of Y-patterns is that all X,-patterns, except for k = 4, can
be transformed into Y-patterns. The desired set of X4- and Y-patterns is
constructed by applying dynamic programming. The running time of the
algorithm is O (n + 7‘3), where 7 is the number of notches of the polygon.

Partition into the minimum number of trapezoid's:

Asano and Asano [1] gave an O(n?) time algorithm, for the case where the
pieces of the partition are restricted to trapezoids with their parallel edges
parallel to a given direction D. The algorithm makes use of the minimally
effective diagonals. These are diagonals that eitlier are parallel to D and



Decomposition Algorithms in Geometry 431

FIGURE 4. A Decomposition using X-patterns.



432 Bernard Chazelle , Leonidas Palios

FIGURE 5. The Diagonals ab and cd are Minimally Effective.

connect two vertices of the polygon, or join two vertices that are incident
upon collinear edges (Figure 5).

Since each such diagonal saves exactly one trapezoid in the final decomposi-
tion, the largest subset of non-crossing such diagonals ensures a minimum-
size decomposition. The algorithm starts by identilying the set of minimally
effective diagonals, and reduces the problem of selecting the maximum-
cardinality non-intersecting subset among them tc finding the maximum
independent set of a circle graph. The nodes of this graph correspond to
the diagonals, while the intersection information is captured in the edge
set. The latter problem can be solved by using an algorithm of Gavril [24].
The key observation is that one can reduce the task of finding a maximum
independent set of a circle graph of m nodes to m iterations of a rou-
tine for finding a maximum independent set on an interval graph. Gavril
gave a quadratic time routine for the latter problem. After the appropri-
ate diagonals have been selected, they are added into the polygon. Each
subpolygon thus produced can be easily split further into trapezoids by
drawing line segments parallel to D emanating from its vertices. The most



Decomposition Algorithms ir Geometry 433

expensive component of the algorithm is the maximuni independent set
routine. Since there may be as many as O(n) minimally effective diagonals
it accounts for O (n®) time in the worst case, which is also the worst-case
time performance of the entire algorithm.

The time complexity was improved to O (n?) in a later paper of Asano,
Asano, and Imai [2], where a different routine for the selection of the max-
imum independent set of an interval graph is used. This routine involves a
sorting step and then proceeds in linear time. In this way, all n iterations
can be carried out in a total of O (nQ) time.

The algorithms above assume that Steiner points are allowed in the de-
composition, that is points other than the vertices of the given polygon
may be used as vertices of the pieces in the decomposition. For the case
in which Steiner points are disallowed, Greene [25] gave an O(r?n?) time
algorithm for the partition of a polygon into the minimum number of con-
vex pieces. Later, Keil [29], improving on an earlier algcrithm, achieved a
worst-case time performance of O (7'2n log n) The algorithm is based on
the observation that each of the diagonals in the partition must be incident
upon at least one notch of the polygon. So, the algoritha starts by locat-
ing all the notches and finding the vertices of the polygon that are visible
from them. Subsequently, a dynamic programming routline computes the
minimum decompositions of the subpolygons that the previously computed
visible pairs define. The subpolygons are processed in crder of increasing
size. Unfortunately, the number of valid minimum decompositions may be
extremely large; the key is to partition them into equivalence classes and
retain a single representative for each such class. This allows the computa-
tion of the minimum piece convex partition of a polygon of n vertices and r
notches in O (rzn log n) time. The technique can be extended to deal with
the partition of a polygon into the minimum number of star-shaped, spiral,
or monotone pieces ([29]).

Finally, one may ask for a partition of a polygon that minimizes the
total length of the cuts. In the case of a convex partition, and under the
additional restriction that Steiner points are disallowed, Keil’s dynamic
programming approach yields an algorithm requiring C (r2712 log n) time
in the worst case [29)].

Polygons with holes:

In contrast to the previous paragraph, all minimization questions dis-
cussed become N P-hard when applied to polygons containing holes. Re-
ductions were drawn from 3SAT or planar-3SAT both nown to be NP-
complete ([22], [34]).

In the case where Steiner points are allowed in the decomposition, Lin-
gas [35] gave a reduction from planar-3SAT showing that the partition
of a polygon in the minimum number of convex pieces is N P-hard. The
problem remains N P-hard if the convex pieces are restricted to triangles.
Furthermore, O’Rourke and Supowit [38] showed that covering a polygon



434 Bernard Chazelle , Leonidas Palios

containing holes with the minimum number of convex pieces (that may be
overlapping) is NV P-hard by reducing 3SAT to it. I'inally, Lingas et al. [36]
showed that the problem of minimum edge-length partition of a polygon
with holes is N P-hard using a transformation from planar-3SAT.

Disallowing Steiner points does not help in obtaining polynomial time
algorithms for these questions. Instead, Lingas [35 showed that the convex
partition problem remains N P-complete. N P-completencss results have
also been established by O’Rourke and Supowit [38] for the minimum piece
covering of a polygon with holes, and by Keil [29] for the minimum edge
length convex partition.

27.2.2 Line Segments and Curves.

The problem of line segment intersection can be phrased as follows: Given
a set of n line scgments, report all their pairwise intersections. Let k denote
the number of these intersections. This counts inte-sections that are combi-
natorially but not necessarily geometrically distinct. For example, if three
segments intersect in one point, k is (g) = 3. For line segments, the quantity
k may range from a constant up to O (nz) As a result, the complexities of
the presented algorithms are expressed in terms of both n and k. Although
most recent work has been restricted to line segments, extensions to curves
have also been described.

An O ((n + k)logn) time algorithm:

The first non-naive algorithm for line segment intersection is due to Bent-
ley and Ottmann [4]. It runs in O ((n + k) log n) time and requires O(n+k)
space. The algorithm employs the sweep-line paradigm: the endpoints of
the segments are sorted according to their z-coordinates; then a vertical
line sweeps the plane, stopping at each endpoint or intersection point de-
tected during the sweep. Newly discovered intersection points are inserted
into a priority queue using their z-coordinates as rinks. At all times, a bal-
anced binary tree stores the ordered list of segments that are crossed by the
vertical sweep-line. Processing a left endpoint involves inserting the corre-
sponding line segment into the tree, and checking it for intersection with its
neighbors above and below; processing a right endpoint involves deleting
the corresponding line segment from the tree and checking its immediate
neighbors for intersection. If the tests for intersection discover intersection
points, the latter are inserted in order in the list of points. Processing an
intersection point involves switching the order of the intersecting line seg-
ments in the tree, and checking no more than two pairs of line segments for
intersections, again inserting them (if any) appro;riately. The processing
of an endpoint or intersection point takes O(logn) time, so that the total
running time is O ((n + k) logn). The same apprcach can be extended to
curves that are monotone in the z-direction provided that their intersec-
tions among themselves and with vertical line segments can be computed



Decomposition Algorithms in Geometry 435

effectively.

A modification suggested by Brown [5] reduces the space requirement of
the previous algorithm from O(n + k) to O(n). The idea is to reduce the
number of intersection points stored in the ordered list of points pending
processing down to O(n). The solution is to maintain at most one intersec-
tion point per line segment, which will of course be the one closest to the
sweep-line. The other intersections detected can be ignored at that time,
for they will be rediscovered and reported later.

An O(nlogn + k) time algorithm:

The first time-optimal algorithm for the line segment intersection prob-
lem was proposed by Chazelle and Edelsbrunner [9]. Although it, too, em-
ploys the sweep-line paradigm, a number of enhancements and additional
techniques are used to guarantee the O{nlogn + k) running time. The al-
gorithm processes the segments in increasing abscissae of their leftmost
endpoints, and maintains their (vertical) visibility map. Processing a scg-
ment involves locating its left endpoint in the map, in which it is inserted
by traversing the regions that it intersects. The problem that arises is that
a segment may cross many visibility chords, and the incurred cost may be
prohibitive. To overcome that difficulty, Chazelle and lIidelsbrunner split
the segments into O(logn) pieces each, using a segment tree. Although
visibility chords are attached to thesc artificial endpoints, as if the pieces
resulting from the same initial line segment were independent, each piece
is still marked with the index number of the segment i: came from. This
fragmentation of the line segments implies that many subsegments may
have endpoints with the same z-coordinate, so that the visibility chords at
these artificial endpoints consist of a large number of small edges, making
it costly to scan them all every time such a chord is travearsed. So, pointers
are associated with these edges enabling fast location ¢l the immediately
previous and next non-vertical edges of the neighboring regions.

The location of the region of the visibility map in whic': the left endpoint
of a segment falls, is carried out with the help of the swezp tree, a balanced
tree that stores the edges that the current sweep-line intersccts. It should
be noted at this point that unlike most sweep-line algorithms, the sweep-
line is not assumed to be straight or even monotone for that matter. In
order to describe how the sweep tree is used, the concept of z-walks needs
to be presented. Let us assume for simplicity that no three line segments
intersect at the same point, and for a point p in a segment s let us consider
the following path: starting from p, we proceed along s from left to right,
up to either the right endpoint of s, in which case the path ends, or the
intersection point of s with a segment s, in which case the path continues
along s’ from left to right. The path that is thus traced is an z-walk starting
at p. Figure 6 displays the different z-walks defined on an arrangement of
line segments. These walks partition the set of edges of the arrangement into
equivalence classes, where two edges belong to the same class, if they belong



436 Bernard Chazelle , Leonidas Palios

to the same z-walk. If we want to find the relative position of a point p with
respect to the edges that the vertical line through p intersects, we need not
have stored these edges explicitly. We only need ore representative of each
of the equivalence classes in which these edges belong. Putting it another
way, the sweep tree invariant is that no edge in the tree lies completely to
the right of the vertical line through the current point, and for each edge e
that this line intersects there exists an z-walk starting from some edge in
the tree and leading to e. This is due to the lazy way in which the tree is
updated. Namely, suppose that a segment s is to be inserted in the visibility
map. If s is not the leftmost piece of an initial segment ¢ (resulting from
the segment tree fragmentation) then its position can be found from the
previous piece of ¢, by means of an O(n) size appearance table. Otherwise,
the tree is traversed starting at its root. If the edge e stored in some node
t of the tree that is visited during the traversal intersects the vertical line
through the left endpoint of s, then the test above/below between s and
e can be readily carried out, and a decision is mace regarding which child
of ¢ must be visited next. If not, then starting from e an z-walk is traced
until an edge intersecting the current vertical line is found, which reduces
to the previous case; alternatively, the z-walk may zerminate, in which case
the tree node is deleted, and a new tree traversal according to the above
guidelines starts at the root of the tree. As a matter of fact, the contents
of the trce lag well behind the current vertical line, as only the absolutely
necessary part of the tree is updated during insertions. Note that if the
right endpoint of a line segment is reached no deletion operation is issued
in the tree; deletion may happen later as a side effect of some insertion.

Finally, moving from region to region of the visibility map requires the
ability to locate the intersection point of a segment and such a region. This
can be carried out by walking along the boundary of the region until the
point is found (if it exists). A better way, however, is to use dovetailing,
where two walks proceeding concurrently in opposite directions along the
boundary are initiated. The walks stop as soon as one of them locates
the point of intersection, or they cross in which case no such point exists.
Dovetailing serves also another purpose; it adds vertical shortcut edges in
some regions, which speeds up subsequent walks along their boundaries.

Although the algorithm is not very complicated (it was implemented
with no great difficulty), its time analysis requires an intricate amortiza-
tion argument. The time analysis of the algorithm is rather complicated.
Since the algorithm produces the complete description of the map of the
fragmented line segments, the space required is O(r. log n+ k), but Chazelle
and Edelsbrunner note that it can be easily reduced to O(n+k). To obtain
an O(n) bound remains an open problem.

Probabilistic Algorithms:
In 1989, Clarkson and Shor [15] described three randomized algorithms,
each running in O(rnlogn + k) expected time. We will describe the most



Decomposition Algorithms in Geometry 437

FIGURE 6. A Set of Seven Line Segments and its x-walks.

space efficient one, requiring only O(n) space in the worst case. Let us out-
line before, however, one of the other two algorithms that is used in the
space optimal algorithm. This algorithm processes the segments in random
order, and maintains their visibility map in one of the standard planar
subdivision representations. In addition, a “conflict” graph is maintained
storing pairs of trapezoids in the map and segments that liave not been
processed yet. In particular, each trapezoid t is associated with a list of
segments with an endpoint lying in ¢, whereas each segment is associated
with the trapezoids that contain its endpoints. The addition of a new seg-
ment s is carried out as follows: the trapezoid that contains an endpoint
of s is found using the conflict graph; then walking alor g s, we move from
trapezoid to trapezoid that s intersects. Trapezoids may be split into no
more than four pieces, some of which may merge with adjacent ones into
larger cells, as visibility chords may shorten due to th presence of s. In
either case, the planar reconfiguration is followed by appropriate updat-
ing of the conflict graph. Processing n line segments in this way requires
O(nlogn + k) expected time and O(n + k) space.

We are ready now to present the algorithm that requires linear space
in n. Clearly, being entitled to only that much space, one cannot store
the visibility map of the line segments in its entirety. Instead, divide-and-
conquer is applied, until the size of the subproblems becomes O (1/n), the
space sufficing for the entire map of each such subproblem. The algorithm
begins by picking a “good” random sample of segments of size roughly /n;



438 Bernard Chazelle , Leonidas Palios

a sample R of size r is considered good if any trapezoid in the visibility
map of R intersccts O (n(logr)/r) line segments, while the total number of
intersections over all trapezoids is O(n). For each such trapezoid T, the list
of line segments Sp that intersect it is constructed, and the algorithm re-
curs on St. A second recursive step on the trapezoids that a good random
sample of St defines brings the number of line segments conflicting with a
particular trapezoid down to O (n1/4(log n)3/2). Then, the algorithm that
we outlined earlier in this paragraph can be applied. The question that re-
mains is how to pick a good sample, and compute the lists of intersections.
To do that, two methods running in parallel are used. The first one works
in a brute-force fashion: picks a random sample, constructs its visibility
map, and computs the sizes of the intersection lists for each cell in the
visibility map. If this computation implies that the sample is not good, a
new sample is chosen, and the process is repeated. Otherwise, the chosen
sample is adequate, and the actual lists of intersections for the trapezoids
are constructed. The second method picks a random sample too, and ap-
plies the algorithm that we outlined earlier processing the segments in the
sample first. Again, if at any time during the processing of the non-sampled
segments, the number of conflicts disqualifies the chosen sample from being
good, a new sample is selected, and the method is restarted.

The time analysis of the algorithm relies on two important observations
pertaining to a random sample of size r out of a set of n line segments that
have a total of k intersections. The first provides a bound of O (kr2 / nz) on
the expected number of intersections among the members of the sample.
The second states that (i) with probability at least 3/4, the total number of
conflicts is O(n+kr/n), and (ii) with probability at least 1—1/n'0, each in-
dividual trapezoid conflicts with O (n(logn)/r) segraents. The conjunction
of these two observations guarantces that a good random sample is found
in O(nlogn + k) time; if k > n+/n the first method succeeds, otherwise it
is the second one that succeeds. Since the two methods run in parallel, the
total time for the computation of the conflict lists is O(nlogn + k), and
the stated time complexity follows by a two-level induction.

A similar randomized algorithm for the line segment intersection prob-
lem has been proposed by Mulmuley [37]. Its cxpected running time is
O(nlogn + k) and its space requirement is O(n + k). Mulmuley assumes
the existence of a rectangular box, the window, that encloses all the line seg-
ments. The algorithm computes the visibility map of the segments clipped
within the window. Note that visibility chords, called attachments, are
drawn through all the endpoints and points of intersection. A key point, is
that each face of the partition is associated with only those of the vertices
on its boundary that witness a tangent discontinuity. For example, in the
Figure 7, the face F is considered to have only u, v, w and 2 as vertices.
In this way, each face has no more than 4 vertices. Initially, the partition
is nothing but a collection of 2n + 2 strips induced by the attachments
through the endpoints of the line segments. Then, the line segments arc



Decomposition Algorithms in Geometry 439

FIGURE 7. The Visibility Map of a Set of Seven Line Segments.

picked, one at a time, and are added to the partition, causing faces to split
or merge, and attachments to contract. For a particular segment s, one of
its endpoints is used to determine the first face I’ that s crosses. Then,
the boundary OF of F' is visited until the point of intersection of s and
OF is found. Now F' needs to be split. Furthermore, u:iless the point of
intersection is the other endpoint of s, an attachment needs to be built at
that point, and the same process needs to be pursued in the next face that
s enters. If the crossing occurs on an attachment, this next face can be
located in constant time; otherwise, the segment bounding the two faces
is followed until a point of intersection or an endpoint is found. Note that
only these points contain the necessary adjacency information to allow the
crossing. The time bound of O(nlogn + k) follows fromr an upper bound
of O(nlogm + k) on the expected number of points of attachment visited
during the face transitions in the processing of all n line segments, and an
upper bound of 5k + 3n + 2nlnm on the expected number of face splits,
where m = O(n) is the average span length, i.e., the average number of
segments that a vertical line through some endpoint intersects.



449 Bernard Chazelle , Leonidas Palios
27.3 The Three-dimensional Case

While two-dimensional decomposition problems are reasonably well-under-
stood, the same cannot be said of their three-dimensional counterparts.
For on thing the complexity of the problems tends increases substantially
as we move from two to three dimensions. A classical example is the fact
that although any polygon can be partitioned into triangles without using
Steiner points, not all polytopes can be partitioned into tetrahedra if no
Steiner points are allowed. Actually, to decide whether a polytope admits
such a partition is N P-complete, as was shown recently by Ruppert and
Seidel [39].

Allowing Steiner points, however, reduces the complexity of the problem
to polynomial in the size of the polytope. Indeed, Chazelle and Palios [12]
have given an O ((n +7r%)log r) time algorithm for partitioning an n-vertex
polytope with r reflex edges into simplices. The algorithm proceeds in two
phases: in the first one, the pull-off phase, the size of the polytope is re-
duced to O(r); in the second, the fence-off phase, the resulting polytope is
partitioned into at most a quadratic number of cylindrical pieces. Central
to the pull-off phase is the notion of the cup of a vertex that is not incident
upon a reflex edge. Let H, be the convex hull of the vertices adjacent to
such a vertex v. The facets incident upon v touch the boundary of H, and
separate it into two patches, one of which, say =, lies between the other
patch and v. The cup of v is the polytope bounded by 7 and the facets
of the polytope incident upon v (Figure 8). The idea is that if the cup of
v is not hindered (i.e., no vertex of the polytope lies in the interior of the
cup(v) or on the cup’s boundary that is not adjacent to v), then vertex v
and its cup can be removed from the polytope. In fact, there exist at most
2r vertices whose cups are hindered. If one subtracts also the vertices that
are incident upon reflex edges, which are no more than 2r in number, one
is left with at least n — 4r vertices whose cups can be removed from the
polytope. If among these vertices we always select. and remove those that
have degree bounded above by some prespecified constant, and iterate on
what is left, the tetrahedralization of the removed cups produces a number
of tetrahedra linear in n. The entire
phase is carried out in O ((n +7%)log 7“) time. In tle fence-off phase, verti-
cal fences are erected through each edge of the triangulated boundary of the
polytope, partitioning it into cylindrical pieces. A triangulation of one of
the bases of such a piece is used to yield its decomposition into tetrahedra.
This phase runs in O (r?logr) time, and produces O (r*) tetrahedra. Sum-
marizing, the running time of the entire algorithm is O ((n + r?)logr), and
the total number of tetrahedra produced is O (n + r?), which is optimal in
the worst case.

The application of decomposition algorithms brought up two important
issues: that of the robustness of the algorithm due to finite precision arith-



Decomposition Algorithms in Geometry 441

P ————

ﬁ---

FIGURE 8. A polytope and the cup of vertex v.



442 Bernard Chazelle , Leonidas Palios

metic, and of the “quality” of the produced decomposition. The question of
robustness has been receiving considerable attention, and researchers have
proposed several sets of primitives to deal with numerical innacuracies both
in a general setting and for particular problems. For the problem of par-
titioning a nonconvex polytope into convex pieces, a numerically robust
algorithm was presented by Bajaj and Dey [3]. Finally, in a recent paper,
Dey, Bajaj, and Sugihara [19] described an algorithm that triangulates the
convex hull of a point set in three dimensions avoiding the creation of flat
or long and thin tetrahedra. The algorithm is an extension of an earlier
algorithm of Chew [13] for the two-dimensional case, and is based on con-
strained Delaunay Triangulations.

The idea of a cylindrical decomposition is also exploited by Collins [17]
in order to eliminate quantifiers from a prenex formula in first-order logic
over the reals. Collins’ idea is to partition R¢, where d is the number of
variables, into a regular cell complex whose faces are sign-invariant with
respect to the polynomials of the formula. The faces of the decomposition
are built by lifting cylindrically faces of a base decomposition defined re-
cursively in dimension d — 1. Each face of the decomposition of R4™! is
made the base of a cylinder, say, in direction z1, which is then cut off by
the real zerosets of the polynomials: in this way, when regarded as polyno-
mials in x; (with coefficients in the ring of (d — 1)-variate polynomials with
rational coefficients) the real roots of the polynomials are delinated along
any linc parallel to x; that cuts a given face of the base decomposition.

The entire construction produces O (nzd‘l) cells, and requires O (n2d+6)

time, where n is the number of polynomials in the given formula, and d
is the number of variables involved. It is worth noting that the doubly-
exponential time bound of Collins’ construction is essentially the best one
can hope to achieve for quantifier elimination, as shown by Davenport and
Heintz [18]. Of course, this is not saying that any sign-invariant cell complex
must suffer from this asymptotic blow-up.

Indication to the contrary was given by Chazelle, Edelsbrunner, Guibas,
and Sharir [10], who described an algorithm for constructing a sign-invariant
stratification of size O (n?*~2) in O (n?*~!logn) time. This is a sign-
invariant partition of R? into smooth manifolds of constant complexity.
It is not a regular cell complex, however, as the cells do not “glue” to-
gether; in particular the intersection of the closures of two adjacent cells
need not be itself a cell of the stratification. Another drawback is that,
although the size is singly exponential in d (which takes us closer to the
obvious (2 (nd) lower bound and the Thom-Milnor upper bound of O (nd)
on the number of connected components in the complement of the varieties
defined by the polynomials), the degrees of the intermediate polynomials
needed to define the stratification are doubly-exponential in d.

Like Collins’, the method has a recursive structure. Let F be a collection
{f1,.... fu} of polynomials with rational coefficients. The sign-invariant



Decomposition Algorithms in Geometry 443

stratification of R? for F is constructed by lifting cells from a base decom-
position. The difference with Collins’ method is that we use several base
decompositions, so as to provide a pool of cells from which we can choose
the ones to be kept in the final stratification. Each cell has a roof and a
ceiling, so we consider all pairs of polynomials to identify these roof/ceiling
pairs. Let \/ f; denote the real zeroset of f;. For each pair ¢ < j, we project
onto R4~ the intersection of the variety \/ f; x f; with cach of the \/ fz.
We also project the silhouettes of all the varieties (i.e., the critical sets of
their projection maps). By expressing these projections as subresultants,
we can treat them by means of polynomials in d — 1 variables. This allows
us to proceed recursively and thus produce a sign-invariant cell decompo-
sition of R%™!. Next, we lift this decomposition cylindrically into a cell
decomposition of R®. Finally, we use the variety \/ f; x j; to chop off the
vertical cylinders into cylindrical cells. This provides us w:th all the cells of
the final stratification whose roof/ceiling pair is defined by f; and f; (and
many other useless ones, of course). We repeat the entire procedure for all
pairs f;, f;, which gives us a total of (";L) intermediate ce | decompositions
of R%. Next, we examine every cell of every cell decompos tion in turn, and
keep only those that are free of intersections with any variety \/ fi. These
candidate cells might still be intersecting, so we add one final selection
criterion based on the indices of their defining polynomials. This gives us
a collection of mutually disjoint cells which, together with their “upper”
boundaries, partition R¢ into the desired sign-invariant stratification.

What is the use of a sign-invariant stratification of the sort we just de-
scribed? 1t is shown in [10] how it can be used to perform efficient point
location among real-algebraic varieties. Given n polynomials fi, fa, etc.,
we wish to build a data structure such that given any point x in d-space
we can determine whether it is the root of any of these polynomials in log-
arithmic time. If the answer is no, in practice we often want a little more
information, such as the name of the cell of the stratification in which z
lies.

Such a fast point location algorithm gives us the ability to solve almost
any multidimensional searching problem in logarithmic time, using a poly-
nomial amount of storage. This also gives us a means to specd up the
solution of a whole class of optimization problems (e.g., finding the longest
segment in a polygon, finding whether there is any intersection between
two sets of blue and red curves). More generally, suppose that we are given
a set Z of n a d-variate polynomial f. In O(nd) time, it is easy to test
whether some subset of Z forms a d-tuple that is a zero of f. The point
location technique allows us to perform this test in O(nd’g) time, for some
small £ > 0. Lowering this upper bound substantially is an open problem
of major importance.



444 Bernard Chazelle , Leonidas Palios

27.4 Concluding Remarks

The last word on decomposition problems has hardly been said. Which
method to use in practice for a given application arca remains by and large
an open problem. Trade-offs between efficiency and simplicity must be re-
solved by programmers on an ad hoc basis and a taxonomy to guide us
through the maze of decomposition techniques rermains to be established.
A number of fundamental theoretical questions are still open, especially
ones regarding nonlinear higher-dimensional shapes. Also, the issue of ro-
bustness, such as how to deal with singularities, degeneracies, and round-off
errors, has only begun to be explored, and despite noteworthy efforts, much
unknown remains in that area, too.

27.5 References

[1] T. Asano, and T. Asano, Partitioning Polygonal Regions into Trape-
zoids, Proc. 24th Annual IEEE Symposium on Foundations of Com-
puter Science (1983), 233-241.

[2] T. Asano, T. Asano, and H. Imai, Partitioning a Polygonal Region
into Trapezoids, Journal of the ACM 33 (1986), 290-312.

[3] C.L. Bajaj, and T.K. Dey, Convex Decompositions of Polyhedra and
Robustness, SIAM Journal on Computing 21 (1992), 339-364.

[4] J.L. Bentley, and T. Ottmann, Algorithms for Reporting and Count-

ing Geometric Intersections, IEFE Transactions on Computing C-28
(1979), 643-647.

(5] K.Q. Brown, Comments on “Algorithms for Reporting and Count-
ing Geometric Intersections,” IEEE Transactions on Computing C-30
(1981), 147-148.

[6] B. Chazelle, An Optimal Algorithm for Intersecting Three-
Dimensional Convex Polyhedra, Proc. 30th Annual IEEE Symposium
on Foundations of Computer Science (1989), 586-591.

[7] B. Chazelle, Triangulating a Simple Polygon in Linear Time, Proc.
31st Annual Symposium on Foundations of Computer Science (1990),
to appear in Discrete and Computational Geometry.

(8] B. Chazelle, and D.P. Dobkin, Optimal Convex Decompositions, Com-
putational Geometry, North Holland, (1985), 63-133.

[9] B. Chazelle, and H. Edelsbrunner, An Optimal Algorithm for Inter-
secting Line Segments in the Plane, Proc. 29t/ Annual IEEE Sympo-
stum on Foundations of Computer Science (1988), 590-600.



[10]

(7]

(18]

[19]

[20]

[21]

[22]

(23]

Decomposition Algorithms in Geometry 445

B. Chazelle, H. Edelsbrunner, L.J. Guibas, and M. Sharir, A Singly
Exponential Stratification Scheme for real Semi-Aljebraic Varieties
and its Applications, Lecture Notes in Computer Science 372 (1989),
179-193.

B. Chazelle, and J. Incerpi, Triangulation and Shape-Complexity,
ACM Transactions on Graphics 3 (1984), 135-152.

B. Chazelle, and L. Palios, Triangulating a Nonconvex Polytope, Dis-
crete and Computational Geometry 5 (1990), 505-525.

L.P. Chew, Guaranteed-Quality Triangulation Meshes, Tech. Report,
Dept. of Computer Science, Cornell University.

K.L. Clarkson, and R. Cole, in preparation.

K.L. Clarkson, and P.W. Shor, Applications of Random Sampling in
Computational Geometry, II, Discrete and Computational Geometry
4 (1989), 387-421.

K.L. Clarkson, R.E. Tarjan, and C.J. Van Wyk, A Fast Las Vegas
Algorithm for Triangulating a Simple Polygon, Discrete and Compu-
tational Geometry 4 (1989), 423-432.

G.E. Collins, Quantifier Elimination for Real Closed Fields by Cylin-
dric Algebraic Decomposition, Lecture Notes in Computer Science 33
(1975), 134-183.

J. Davenport, and J. Heintz, Real Quantifier Elimination is Doubly
Exponential, Journal of Symbolic Computation 5 (1938), 29-35.

T.K. Dey, C.L. Bajaj, and K. Sugihara, On Good Triangulations in
Three Dimensions, International Journal of Computational Geometry
and Applications 2 (1992), 75-95.

S.J. Fortune, A Sweepline Algorithm for Voronoi Diagrams, Algorith-
mica 2 {1987), 153-174.

A. Fournier, and D.Y. Montuno, Triangulating Simple Polygons and
Equivalent Problems, ACM Transactions on Graphizs 3 (1984), 153-
174.

M.R. Garey, and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, Freeman, 1979.

M.R. Garey, D.S. Johnson, F.P. Preparata, and R.E. Tarjan, Trian-
gulating a Simple Polygon, Information Processing Letters 7 (1978),
175-179.




446

[24]

[25]

[26]

[27]

[28]

[35]

[36]

37]

Bernard Chazelle , Leonidas Palios

F. Gavril, Algorithms for a Maximum Clique and a Maximum Inde-
pendent Set of a Circle Graph, Networks 3 (1973), 261-273.

D.H. Greene, The Decomposition of Polygons into Conver Parts,
manuscript, Xerox PARC, 1982.

L.J. Guibas, and J. Stolfi, Primitives for the Manipulation of Gen-
eral Subdivisions and the Computation of Voronoi Diagrams, ACM
Transactions on Graphics 4 (1985), 74-123.

S. Hertel, and K. Mehlhorn, Fast Triangulation of a Simple Polygon,
Lecture Notes in Computer Science 158 (1985), 207-218.

K. Hoffman, K. Mehlhorn, P. Rosenstiehl, and R.E. Tarjan, Sorting
Jordan Sequences in Linear Time Using Level-Linked Scarch Trees,
Information and Control 68 (1986), 170-184.

J.M. Keil, Decomposing a Polygon into Simpler Components, SIAM
Journal on Computing 14 (1985), 799-811.

D.G. Kirkpatrick, Efficient Computation of Continuous Skeletons,
Proc. 20th Annual IEEE Symposium on Foundations of Computer Sci-
ence (1979), 18-27.

D.G. Kirkpatrick, M.M. Klawe, and R.E. Tarjan, Polygon Triangu-
lation in O(nloglogn) Time with Simple Data Structures, Proc. 6th
Annual ACM Symposium on Computational Geometry (1990), 34-43.

A. Knight, J. May, J. McAffer, T. Nguyen, and J.-R. Sack, A Com-
putational Geometry Workbench, Proc. 6th Annual ACM Symposium
on Computational Geometry (1990), 370.

D.T. Lee, and F.P. Preparata, Location of a I’oint in a Planar Sub-
division and its Applications, STAM Journal on Computing 6 (1977),
594-606.

D. Lichtenstein, Planar Formulae and their Uses, SIAM Journal on
Computing 11 (1982), 329-343.

A. Lingas, The Power of Non-Rectilinear Holes, Lecture Notes in Com-
puter Science 140 (1982), 369-383.

A. Lingas, R. Pinter, R. Rivest, and A. Shamir, Minimum Edge Length
Partitioning of Rectilinear Polygons, Proc. 20th Annual Allerton Con-
ference on Communication, Control, and Computing (1982), 53-63.

K. Mulmuley, A Fast Planar Partition Algorithm, II, Proc. 5th Annual
ACM Symposium on Computational Geometry (1989), 33-43.



(38

Decomposition Algorithms in Geometry 447

J. O'Rourke, and K.J. Supowit, Some NP-Hard Po ygon Decompo-
sition Problems, IEEE Transactions on Information Theory IT-29
(1983}, 181-190.

J. Ruppert, and R. Seidel, On the Difficulty of Tetrahedralizing 3-
Dimensional Non-Convex Polyhedra, Proc. 5th Annual ACM Sympo-
sium on Computational Geometry (1989), 380-392.

R. Seidel, in preparation.

R.E. Tarjan, and C.J. Van Wyk, An O(nloglogn)-time Algorithm
for Triangulating a Simple Polygon, SIAM Journal cn Computing 17
{(1988), 143-178.

G.T. Toussaint, Pattern Recodnition and Geometr cal Complexity,
Proc. 5th International Conference on Pattern Recognition (1980),
1324-1347.

G.T. Toussaint, and D. Avis, On a Convex Hull Algorit hm for Polygons
and its Application to Triangulation Problems, Pattern Recognition 15
(1982), 23-29.

C.K. Yap, An O(nlogn) Algorithm for the Voronoi Diagram of a Set
of Simple Curve Segments, Discrete and Computalional Geometry 2
(1987), 365-393.






