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Abstract

We examine a class of geometric problems which all share a feature of considerable rel-

evance: the underlying set is defined implicitly and is at least quadratically larger than the

input size. Is efficient computation possible without expanding the set explicitly? If not, are

non-trivial lower bounds provable? We give partial answers to these questions by proposing

various approaches for attacking these problems. In doing so, we improve a number of com-

plexity bounds for problems of range searching, frame-to-frame coherence, segment stabbing,

geometric predicate computation, etc.

1. Triangular Search

Let S = {p1, . . . , pn} be a set of n points in E2. The triangular search problem is to

preprocess S so that, for any query triangle T , the subset of points of S lying inside T can be

computed efficiently. An (f(n), g(n)) solution refers to an algorithm for this problem that re-

quires O(f(n)) space and O(g(n)+ output size) query time. The most efficient solutions to date

are an (n, n.695) algorithm by Edelsbrunner and Welzl [EW] and an (n2+ε, log n log 1
ε ) by Cole

and Yap [CY] (see also [EKM,W] for other methods). Our first observation is that quadratic

space complexity seems to be the price to pay for fast retrieval. This can be understood by

looking at the problem of determining whether a query line L passes through any point of S.

Obviously, this is a subproblem of the original problem: simply make the triangle T infinitely

long and skinny. Searching is (at least conceptually) facilitated by turning to a dual space,

whereby lines becomes points and points become lines. The dual of S is an arrangement of n
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lines, so the subproblem is reduced to locating the dual point of L in its O(n2) possible (topo-

logically distinct) locations. This suggests a straightforward O(n2, log n) solution via planar

point location, but also points to the difficulty of escaping this costly approach. Cole and Yap’s

solution to triangular search can be understood in this light: its high space complexity comes

from its enforced discrimination among critical positions. We propose to show that interestingly

the subproblem where T becomes a skinny elongated triangle (going towards a line) is not just

some hard subproblem: it is the only hard subproblem. We will prove that an efficient solution

always exists provided that T is not exceedingly lean. Specifically, we require that each angle

of T should be bounded below by a constant α.

Theorem 1. There exists an (n log n, log2 n) solution to the bounded-angle triangular search

problem.

Proof: We need two preliminary results: to begin, we recall a result shown in [CG]. Given a

set of S of n points, there exists an O(n) data structure, denoted TL(S), s.t. for any query

grounded right triangle q, the set S
⋂

q can be computed in time O(log n + |S
⋂

q|) (a right

triangle is grounded if one of its non-hypothenuse edges lies on a fixed line — the result in

[CG] actually also applies to trapezoids, but this is not needed here). Consider now the original

problem, with the added restriction that T be a right triangle with one of its non-hypothenuse

edges parallel to a fixed line L. Wlog assume that no two points in S form a segment parallel

to L. Let {p1, . . . , pn} be the points of S sorted according to the order of their projections

on a normal to L. Let L0, L1, . . . , Ln be a set of lines parallel to L with pi being the only

point to lie between Li−1 and Li. Let T be the complete binary tree with its left-to-right leaf

sequence in one-to-one correspondence with {p1, . . . , pn}. Note that each node v of T spans a

subset S(v) of S between some L′(v) = Li and L′′(v) = Lj . For each node v ∈ T , compute the

two structures TL′(v)(S(v)) and TL′′(v)(S(v)). This provides us with an (n log n, log2 n) solution

for the restricted problem via a trivial canonical decomposition of the query triangle T into

O(log n) (overlapping) triangles.

Next we turn to the general problem. Assume that each angle of T exceeds α. Let di

be the unit vector with 6 (~x, ~di) = iα, defined for each i; 0 ≤ i ≤ d2π
α

e − 1. We set up a

data structure of the previous type for each direction in ∆ = {d0, . . . , dd 2π

α
e−1}. The theorem

will trivially follow once we show how to partition T into a constant number (≤ 12) of right
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triangles with one (non-hypothenuse) side parallel to some d ∈ ∆. Let ABC be an arbitrary

triangle, each of whose angles exceeds α. We can always assume wlog that each angle is at

most π/2. If this is not the case, split T in two by drawing the angle bisector from the unique

obtuse-angled vertex. With these conditions satisfied, there must exist a segment AA′ with

direction Da and A′ ∈ BC (Fig.1). Let IB (resp. IC) be the intersection of AA′ with the

normal to AA′ passing through B (resp. C). Since 6 (AB,AC) ≤ π
2
, T lies entirely on one

side of the normal to AA′ passing through A, therefore we have IB ∈ AIC or IC ∈ AIB .

Wlog assume the former case. Let B′ be the intersection of AC with the line passing through

BIB. Similarly, there exists a segment CC ′ with direction Dc and C ′ ∈ BB′. Since AIBB′

forms a right triangle, 6 (B′B,B′C) is obtuse, therefore the normal to CC ′ passing through

B′ intersects CC ′ at some point, denoted JB′ . Let D be the intersection of BC with the line

passing through B′JB′ . Since CJB′D forms a right triangle, 6 (DB′,DB) is obtuse, so the

normal to BB′ passing through D intersects BB′ at some point D′ ∈ BB′. This completes the

partitioning of ABC into six right triangles {AIBB,AIBB′, BD′D,B′D′D,DJB′C,B′JB′C},

each with one (non-hypothenuse) side parallel to a direction in ∆.

This example illustrates the buffering effect of “filtering search” [C1], whereby reporting

many points seems relatively as easy as reporting only one. The notion of efficiency for re-

trieval problems is traditionally captured by complexities of the form (nPOLY LOG(n), POLY -

LOG(n)). Whether triangular search is in this class, i.e. whether the quadratic complexity of

the underlying criticality set can be overcome, remains open. What we have shown is that we

can restrict future investigation to the case where T is arbitrarily close in shape to a segment.

2. Frame-to-Frame Coherence

Hidden-line elimination problems are many, varied, and often quite difficult. One reason

for the latter is that once again the input is generally not amenable to searching, so one has

to expand the input into a larger set where critical objects appear explicitly. The problem of

maintaining frame-to-frame coherence in Flatland (i.e. in E2) has been studied extensively by

Edelsbrunner et al [EOW]. The difficulty of this restricted case of hidden-line elimination is

well encapsulated in the following set of problems. Let S = {s1, . . . , sn} be a set of n segments

in the plane and let C be a circle enclosing S. Let int(A) denote the interior of figure A. We

assume that [∀i, j; 1 ≤ i ≤ j ≤ n | int(si)
⋂

int(sj) = ∅]. This will allow S, for example, to be
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a set of simple polygons. Let (Ox,Oy) be an orthogonal system of coordinates with O at the

center of C. For each θ (0 ≤ θ < 2π), let v(θ) be the point of C s.t. 6 (Ox,Ov(θ)) = θ and let

T (θ) be the tangent to C at v(θ). Define V (θ) to be the parallel view of S from T (θ), i.e. the

function p ∈ T (θ) 7→ f(p) ∈ {0, 1, . . . , n}, where sf(p) contributes the nearest intersection to p

between S and the normal to T (θ) at p (Fig.2). For consistency, f(p) = 0 if the intersection is

empty. Also, let L be an oriented line and H(L) be the index of the first segment of S to be

intersected by L; once again, H(L) = 0 if no intersection.

P1. For any θ; 0 ≤ θ < 2π, compute V (θ).

P2. For any θ; 0 ≤ θ < 2π, and any segment q ⊆ T (θ), compute the restriction of V (θ) to the

domain q.

P3. For any oriented line L, compute H(L).

P4. Is it possible to see through S? More formally put, is there at least one value of θ s.t. 0

appears at least three times in the sequence V (θ)?

P5. Is there a line L that has exactly k segments of S on one side and n − k on the other side

(s.t. S
⋂

L = ∅).

Theorems 2,3 improve the best previous results by factors of n space (1,2), log n space (3), and

log n time (4,5).

Theorem 2. Problems 1,2,3 can be solved in (n2, log n).

Proof: Let Ω = C
⋂

T (θ) = v(θ). We consider the local reference system (Ωθ,Ωz) where (θ, z)

are the coordinates of the point p of T (θ) at a distance z from Ω. We resolve the ambiguity of

this definition by stipulating that z is positive iff O,Ω, p form a left turn. The functions V (θ)

are easily seen to subdivide the θz plane into O(n2) regions delimited by curves of the form

z = r sin(α−θ) — Fig.3 depicts the subdivision corresponding to Fig.2. Each region is assigned

an index i indicating that any ray of light emanating from a point in this region towards int(C)

in a direction normal to T (θ) will first hit si. To construct the subdivision, denoted T , can be

done using a standard sweep-line technique. One will first sort the slopes of all inter-endpoint

segments and compute V (0). The precomputed slopes are taken as event-points of a sweep-line

process updating V (θ) as θ grows from 0 to 2π — details omitted. The computation is easily

done in O(n2 log n) time and O(n2) space. The subdivision T is represented by a DCEL [MP]
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or quad-edge structure [GS], with each edge (vertex) pointing to the one (two) segment(s) of

S from which they originate. The interesting observation is that since each edge is monotone

along the θ-axis, 1) T can be preprocessed for efficient point location as described in [EGS], 2)

one can build up a hive-graph on the set of edges [C1]. Recall that the latter construction will

require here O(n2 log n) time, and will allow us to compute all the intersections between T and

a query segment parallel to the z-axis in (n2, log n). With this preprocessing, solving Problems

1–3 is easy: 1,2) – compute {Θ − θ = 0}
⋂

T (1) or q
⋂

T (2), using the hive-graph; 3) –

compute T (θ), the first normal to L tangent to C traversed by L. Next locate (θ, z) = L
⋂

T (θ)

in T and report the corresponding index.

Observation 1. Let I = {I1, . . . , In} be a list of n closed intervals on a circle C, with all

the endpoints stored in sorted order in a circular list. Let J be the set of intervals formed by

C −
(
⋃

1≤i≤n Ii

)

. If J is not empty, let J1, . . . , Jp be its elements in sorted order around C,

and let K = C −
(
⋃

1≤i≤p Ji

)

. K consists of p intervals K1, . . . ,Kp, with the convention that

Ki immediately follows Ji in clockwise order. Note that
⋃

1≤i≤p(Ji ∪ Ki) = C. Let ki denote

the number of intervals of I that make up Ki. In O(n) time it is possible to determine whether

J is empty, and if not, compute the sorted list {(J1, k1), . . . , (Jp, kp)}.

Proof: Choose a point O on C and, in O(n) time, use this point to split in two every interval

of I overlapping O. This allows us to order each endpoint v according to the length of the

clockwise arc Ov. In O(n) time, we express the augmented set of intervals as a list of the form

{[a1, b1], . . . , [am, bm]} (n ≤ m ≤ 2n) with b1 ≤ . . . ≤ bm. We compute J by considering each

interval [ai, bi] in turn. During the computation, the list of intervals currently in J is stored in a

stack. For each i = 1, . . . ,m, process [ai, bi] by popping off the stack all the intervals covered by

[ai, bi]; update top of stack and iterate. To compute {k1, . . . , kp} is trivially done in O(n) time

by simulating a merge between the endpoints of J and those of I (taken here before splitting).

Theorem 3. Problems 4,5 can be solved in O(n2) time.

Proof: Let R(v, θ) be the ray emanating from v with slope θ; (0 ≤ θ < 2π). For any endpoint v

in S, define R(v) = {θ ∈ [0, 2π) | ∀s ∈ S, s
⋂

R(v, θ) = ∅}. R(v) consists of a (possibly empty)

set of open intervals. This set corresponds to all the maximal wedges centered at v from which

v can see to infinity. Suppose that R(v) is not empty; then let R(v) = {J1, . . . , Jp} in angular
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order around v, and let ki be the number of segments of S in the wedge between Ji and Ji+1

(mod p). Let L(v) be the list of endpoints in S (except v) sorted angularly around v. If L(v)

is given for each endpoint v in S, Observation 1 can be trivially adapted to compute the list

{(J1, k1), . . . , (Jp, kp)} in O(n) time. By sliding the interval [θ, θ +2π] through R(v) from θ = 0

to θ = π, it is then easy in O(n) time to compute 1) each line L passing through v not strictly

intersecting any segment in S; 2) how many segments lie on each side of L. This immediately

leads to O(n2) solutions to Problems 4,5, provided that the set of L(v)’s can be computed in

the same amount of time. To see this, transform the 2n endpoints in S into dual lines. A point

p : (a, b) is mapped to the line Dp : Y = aX + b, and similarly any line L : Y = kX + d is

mapped to the point DL : (−k, d). Observe that two points are mapped to two parallel lines

if and only if these points have the same x-coordinates. We can assume that no endpoints in

S share the same x-coordinates, which may possibly entail rotating the axes by a small angle,

at a cost of O(n log n) time. The dual set of the 2n endpoints forms a line arrangement, whose

underlying planar graph can be computed in O(n2) time [CGL,EOS]. The key observation now

is that for each endpoint v, the line Dv intersects exactly 2n−1 lines, which can be retrieved in

their intersecting order w.r.t. Dv in O(n) time. But the x-coordinate of Dv

⋂

Dw is precisely

−slope(vw), therefore L(v) can be computed in O(n) time, after O(n2) preprocessing. This

completes the proof.

3. Computing Algebraic Predicates

Given n lines and n points in the plane, does any line pass through any of the points

(problem posed by Hopcroft)? Given n points in E3, are any 5 co-spherical or do any 17 have

their interdistances adding up to 1? More generally, given n geometric objects in arbitrary

dimensions, do any k interact in a pre-specified manner? This general class of questions can be

easily formalized. Let S = {V1, . . . , Vk} be a collection of k sets of the form Vi = {v
(i)
1 , . . . , v

(i)
pi

}.

Each v
(i)
j is a vector ∈ <ci of the form v

(i)
j = (x

(i)
j,1 . . . , x

(i)
j,ci

). S is the input and the quantity

n =
∑

1≤i≤k pici is the input size. Let Qd(y1,1, . . . , y1,c1 , y2,1, . . . , y2,c2 , . . . , yk,1, . . . , yk,ck
) be a

rational λ−variate polynomial of degree d; λ =
∑

1≤i≤k ci. If wi = (yi,1, . . . , yi,ci
), we use the

abbreviation Qd(w1, . . . , wk). In the following, the quantities d, k, c1, . . . , ck are considered to

be constants.

6



Problem P: Does there exist a k-tuple (j1, . . . , jk) ∈ Π1≤i≤k{1, . . . , pi} s.t. Qd(v
(1)
j1

, . . . , v
(k)
jk

) =

0?

To begin with, using elementary elimination theory, one can easily rephrase the problems

previously mentioned as special cases of Problem P. There is a trivial O(nk) solution involving

the testing of all possible k-tuples. The following result asserts that it is always possible to do

(a little) better.

Theorem 4. Let c = min(c1, . . . , ck). Problem P can be solved in O(nk− 1

2c+7 ) time.

Proof: We generalize the batching strategy introduced by Yao in his work on higher dimen-

sional MST [Y]. Wlog assume that c = ck. Consider the m ck-variate polynomials of the

form Qd(v
(1)
j1

, . . . , v
(k−1)
jk−1

, z1, . . . , zck
), where z1, . . . , zck

are the variables and (j1, . . . , jk−1) ∈

Π1≤i≤k−1{1, . . . , pi}; note that m ≤ nk−1. Divide up this set of polynomials into subsets of size

α, denoted W1, . . . ,Wt (t < 1+ 1
αΠ1≤i≤k−1pi). In [C2] a method is described for preprocessing

a set of polynomials so that determining whether a query vector is a zero of one of them can

be done in logarithmic time. More precisely, let F = {P1, . . . , Pα} be a family of α fixed-degree

r-variate polynomials with rational coefficients and let S = {x ∈ Er | Π1≤i≤αPi(x) 6= 0}. In

O(α2r+6

) time and space, it is possible to compute a set of algebraic points, one in each con-

nected region of S, as well as set up a data structure for computing the predicate [∃i (1 ≤

i ≤ α) | Pi(q) = 0], for any q ∈ Er. In O(2r log α) time, the algorithm will return an index

i such that Pi(q) = 0 if such an index is to be found, otherwise it will return the algebraic

point associated with the unique region of S that contains q. Applying this method to each

set W1, . . . ,Wt requires O(tα2c+6

) = O(nk−1α2c+6−1) preprocessing time. On the other hand,

this will allow us to test the pk vectors of Vk in O(pkt log n) = O(nk log n
α ) overall query time.

Setting α = (n log n)1/2c+6

leads to a time complexity of O(nk− 1

2c+6 (log n)1− 1

2c+6 ), which for

the sake of simplicity we conservatively estimate as O(nk− 1

2c+7 ) time.

4. Conclusions

This work attempts to place the notion of criticality in implicit set representations at a

more central location. By doing so we are able to improve on a number of previous complexity

results. For the most part, our improvements are algorithmic in nature; we feel that more geo-

metric insights will be needed to decide whether the criticality of point sets and their duals, line
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arrangements, constitutes an unsurmountable obstacle to computational efficiency. For exam-

ple, is quadratic space required to answer the point-on-query-line question in polylogarithmic

time?
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