
IEEE TRANSACTIONS ON INFORhlATION THEORY, VOL. IT-31, NO. 4, JULY 1985 509

On the Convex Layers o f a Planar Set
BERNARD CHAZELLE

Abstract-Let S be a set of n points in the Euclidean plane. The convex
layers of S are the convex polygons obtained by iterating on the following
procedure: compute the convex hull of S and remove its vertices from S.
This process of peeling a planar point set is central in the study of robust
estimators in statistics. It also provides valuable information on the mor-
phology of a set of sites and has proven to be an efficient preconditioning
for range search problems. An optimal algorithm is described for comput-
ing the convex layers of S. The algorithm runs in O(n log n) time and
requires O(n) space. Also addressed is the problem of determining the
depth of a query point within the convex layers of S, i.e., the number of
layers that enclose the query point. This is essentially a planar point
location problem, for which optimal solutions are therefore known. Taking
advantage of structural properties of the problem, however, a much simpler
optimal solution is derived.

I. INTRODUCTION

L ET S = { pO; . ., p,-i} be a set of n points in the
Euclidean plane. The set of convex layers of S, de-

noted C(S) in the following, is the set of convex polygons
defined iteratively as follows: compute the convex hull of S
and remove its vertices from S (Fig. 1). The convex layers
of a point set can be seen as a natural extension of its
convex hull. In [17] Shamos mentions applications of this
concept to Ijattern recognition and statistics. A central
problem in robust estimation is that of evaluating an
unbiased estimator that is not too sensitive to outliers, i.e.,
observations lying abnormally far from the others. To
tackle the two-dimensional version of this problem, Tukey
has suggested removing the outliers of a point set by
peeling or shelling the set in the manner described above,
iterating on this process until only a prescribed fraction of
the original points remain [9].

Another illustration of the importance of convex layers
in computational geometry has come up recently in the
context of a well-known retrieval problem. The halfplane
range search problem involves preprocessing n points in
the Euclidean plane so that for any query line L, the subset
of points lying on a given side of L can be reported
effectively. The use of convex layers allowed Chazelle,
Guibas, and Lee [6] to derive an optimal solution to this
problem.

Manuscript received October 28, 1983; revised January 10, 1985. This
work was supported in part by the National Science Foundation under
Grant MCS 83-03925 and the Office of Naval Research and the Defense
Advanced Research Projects Agency under Contract N00014-83-K-0146
and DARPA Order 4786. The material in this paper was partially
presented at the 21st Annual Allerton Conference on Communication,
Control, and Computing, Monticello, IL, October 1983.

The author is with the Department of Computer Science, Brown
University, Providence, RI 02912, USA.

C(S)

Fig. 1. Convex layers of point set.

Besides its practical relevance, the problem of computing
the convex layers of a point set is also interesting in its own
right, for it intuitively represents a geometric “equivalent”
to sorting, Indeed, considering the various algorithms
known for computing the convex hull of a set of points,
one is tempted to draw a parallel with sorting algorithms.
The Jarvis march [lo] resembles selection sort, Bentley and
Shamos’s method [3] smacks of merge sort, and Eddy’s
algorithm [7] is strongly reminiscent of quicksort. There is,
however, a fundamental difference that often makes com-
puting convex hulls easier than sorting; this is the fact that
the output is a convex polygon that may contain only a
small fraction of the original points. This is what allows the
existence of linear-expected-time algorithms for computing
convex hulls under certain distributions of the points
[2], [3], [18]. Knowing that similar results are provably im-
possible to obtain in the case of sorting [l], one can
appreciate the intrinsic difference between the two prob-
lems. One way of bridging this complexity gap is precisely
to require the explicit computation of all the convex layers
of the set of points, for it then becomes impossible to take
advantage of the possible scarcity of the output in order to
bound the time complexity of the problem.

This paper describes an O(n) space, O(n log n) time
algorithm for comRuting the convex layers of S. Because
the convex hull of S is one of the convex layers, computing
C(S) requires Q(n log n) time [17], [20]. Our algorithm is
therefore optimal. A number of O(n2) time algorithms for
computing convex layers have been found [8], [17], but the
most efficient method previously known for this problem
requires O(n log2 n) time [13]. It is based on a general
technique for maintaining the convex hull of a point set in
a dynamic environment. Any point can be inserted or

0018-9448/85/0700-0509$01.00 01985 IEEE

510 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-31, NO. 4, JULY 1985

deleted in O(log2n) time, while efficient retrieval of the
convex hull is possible at any given time. The main contri-
bution of this paper is to show that the deletions involved
in the computation of C(S) can be “batched” together (as
well as simplified) to give an 0(n log n) overall running
time.

We also address the problem of determining the depth of
a query point within the convex layers of S, i.e., the
number of layers that enclose the query point. This can be
reduced to a planar point location problem and can there-
fore be solved optimally [ll], [12]. The specific structure of
the problem at hand, however, allows us to use a new point
location technique that is both optimal and practical, and
avoids many of the complications of previous algorithms.

This paper is organized as follows. In Section II we
introduce the basic ingredients of our method and prove a
number of preliminary results. In Section III we give a
detailed description of the algorithm for computing convex
layers, and in Section IV we attack the problem of de-
termining the depth of a query point.

II. THE INGREDIENTS

We endow the Euclidean plane with a Cartesian system
of reference (Ox, 0~). Each convex boundary in C(S) can
be represented as the concatenation of two convex polygo-
nal lines, called upper and lower chains (Fig. 2). Let a
(resp. b) denote the point of the convex layer C with
minimum (resp. maximum) x-coordinate. The upper (resp.
lower) chain of C runs clockwise (resp. counterclockwise)
from a to b. Note that the lower and upper chains are the
same if C consists of one or two points only. From now on,
we will concentrate on the computation of, say, the upper
chains of C(S); the other case is strictly similar. Assume
without loss of generality, that pa, * . . , p,, _ i appear in this
order by nondecreasing x coordinates. Consider the com-
plete binary tree, denoted T, whose leaves are po,. . . , p, _ 1,
from left to right. Let S(u) be the set of points stored at
the leaves of the subtree of T rooted at node U, and let
U(v) be the upper chain of the convex hull of S(u), also
referred to as the upper hull of S(u). The union of all the
edges in U(u), for all nodes u in T, forms a planar graph G
that is easily shown to be connected and acyclic, i.e.,
forming a free tree. G is called the hull graph of S. Fig. 3
depicts a hull graph and its correspondence with the binary
tree T. Each edge of the hull graph is a so-called tangent to
two convex chains, and is in one-to-one correspondence
with a node of T.

~~~ 

-. --__ ,,* I 

-*._ 
---__ ,’ 

-____--e I’ 
c____________-  -----------4 

Fig. 2. Upper and lower chains. 

Fig. 3. Hull graph of S. 

Note that this data structure is essentially a simplified 
variant of the structure used by Overmars and van 
Leeuwen for computing convex hulls dynamically [13]. 
Similarly to G, we define G’ as the hull graph of S with 
respect to lower chains. Computing G is a straightforward 
operation, as long as we can efficiently compute the tan- 
gent to two upper chains. An algorithm for a very similar 
task has been described by Preparata and Hong [15], so we 
only sketch the procedure. 

Let U (resp. I’) be an upper chain with vertices ui; . . , U, 
(resp. ui; . ., u,), in clockwise order. Assume that all the 
vertices of U have smaller x coordinates than the vertices 
of I’. The tangent to U and V is defined as the unique edge 
joining U and v in the upper chain of the convex hull of 
U, U U,. It is easy to compute this segment s as follows. 
Set s to uluj, for i = 1,2; . ., until both ui-i and ui+t lie 
below s. The segment s is now tangent to V but, in 
general, not to U. Next, we take the other endpoint of s to 
u2, u3, . * . successively, until we reach a vertex uj for which 
both uj-i and uj+i lie below s. During the course of this 
operation, we must be careful to roll the line passing 
through s around V. Keeping track of the two angles 
formed by s and U, V allows us to determine the next point 
to go to in constant time. Since in this process both 
endpoints move around their respective upper chains in 
clockwise order, the total running time of the algorithm is 
O(m + P>. 

We are now in a position to compute the graph G. 
Before proceeding, however, let us specify the data struc- 
ture used for its representation. We use a traditional adja- 
cency-list structure, whereby each vertex p has associated 
with it a vertex-to-edge list V(p) with the names of its 
adjacent vertices. Each vertex-to-edge list V(p) consists of 
two sublists, V,(p) and V,(p), defined as follows. V,(p) 
(resp. V,(p)) is an angularly sorted doubly linked list 
containing the vertices adjacent to p with smaller (resp. 
greater) x coordinates than p (Fig. 4). We define the top 



CHAZELLE: CONVEX LAYERS OF PLANAR SET 511 

c, + uu L. 
Direct-delete each vertex of U from G. 
Direct-delete each vertex of L  from G’. 
Cross-delete each vertex of L. from G. 
Cross-delete each vertex of U from G’. 
Let W , H, H’ be the new settings of S, G, G’. 

Convex Layers ( W , H, H’) 

Fig. 4. Vertex-to-edge lists. End. 

edge of V,(p) (resp. V,(p)) to be the edge with minimum 
(resp. maximum) slope in V,(p) (resp. I$( p)). Each of 
these lists is assumed to be supplied with a pointer to its 
top edge. 

We  compute G by divide-and-conquer. Assume that we 
have already computed the hull graphs of both 
{ PO,. . . 7~~n,2~I and {PL~,IJ+~Y~ P,-~}. All we have 
to do is determine the tangent of the upper hulls of these 
two sets, using the algorithm described earlier. It is easy to 
determine the two upper chains on which the tangent 
computation is based, using the extra pointer supplied with 
each vertex-to-edge sublist. 

A. Direct Deletions 

Before describing the algorithm in detail, we will visual- 
ize the basic process on a running example. Fig. 5  il- 
lustrates the various stages of the deletion of point pz9 of 
Fig. 3. The idea is to consider all tangents adjacent to pz9 
one by one and pull them down towards y = - 00. The 
order in which the tangents are considered is crucial: 
P29P28, P29P31, P29P24, P29P16, P29PlO. Let the depth of a  
node of T  be its number of ancestors. The tangents to be 
considered form a subsequence of a  leaf-to-root path of T. 
These nodes are to be considered by decreasing depths. 
Note that when pulling down p29p,6, the tangent folds 

III. THE CONVEX LAYER ALGORITHM 

The basic idea is to iterate on the following process: 
make a copy of the names of the vertices on the upper 
chain, beforehand; then proceed to delete each of them 
from G, in turn, reconfiguring the hull graph after each 
deletion; the order in which the deletions are carried out is 
unimportant. Consider now the graph G’ defined with 
respect to lower hulls. We  proceed similarly, i.e., delete the 
vertices of the lower hull of G’. Next, we must reflect the 
cross deletions in G and G’, that is, delete the lower (resp. 
upper) hull vertices from G (resp. G’). To distinguish them 
from cross deletions, we call the first type of deletions 
direct deletions. One difficulty in these operations is that 
the deletion of a  single vertex can cause a major upset in 
the hull graph, and its reconstruction can take on the order 
of n  operations. The key feature of the algorithm, however, 
is to ensure that these upsets always average out to yield an 
O(n logn) worst-case running time. Let us first describe 
direct deletions, and then examine the correctness and 
complexity of the algorithm. Next, we will show that cross 
deletions can be viewed as simple instances of direct dele- 
tions, so that no drastically different treatment is really 
needed. We  summarize the overall algorithm in high-level 
form; initially i = 0. 

Algorithm 

Convex Layers (S, G, G’) 

Begin 
If S = 0 then stop. 
U + upper hull of S. 
L + lower hull of S. 
i+i+l. 

a  

4  \. 
- _____  %,\ / , /?p 

Fig. 5. Deletion in action. 

b 



512 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-X, NO. 4, JULY 1985 

over another vertex, p22. In general, a pulling operation 
will be accomplished by conceptually replaying the previ- 
ous two pulling operations. This replay might be necessary 
in order to guide the current tangent on its way down, and 
in particular find at little cost the vertices over which it 
must fold. We are now ready to give the details of the 
algorithm. 

Suppose that we are at an arbitrary stage in the process, 
and that we wish to delete a vertex p of the upper hull 
being currently processed. Let vi,. 1 . , vI be the nodes 
encountered in T when traversing the path from p to the 
root. Every vi corresponds to a tangent edge ti joining‘two 
upper hulls (Fig. 6). Note that p lies on exactly one of 

Fig. 6. Computation tree 

these two hulls. It may be the case that because of previous 
deletions one of these hulls is empty. We can make this 
case consistent with the others, however, by assuming a 
dummy vertical tangent ti. Let wr; . ., wk be the subse- 
quence of ( ur,. . . , u,} that corresponds to tangent edges 
with p as an endpoint. This subsequence can be itself 
partitioned into the two subsequences formed respectively 
by the tangent edges “of the form qp” and “of the form 
pq,” from left to right (p: t,, t, - pq: t,, t, in Fig. 6; 
these two expressions “of the form qp” and “of the form 
pq” will often be referred to in the following). It is easy to 
see that the former (resp. latter) subsequence corresponds 
exactly to V,(p) (resp. V,(p)). In the running example of 
Fige 5y we have vl(P29) = { PlO? P16? P24, P28) and &(P29) 

= { pjl }. An important point to realize is that although G 
and G’ will keep on losing vertices and being reshaped 
during the computation, the tree T will always remain the 
same throughout the algorithm. This tree is only a concep- 
tual tool and need not even be implemented explicitly. 

The first step consists of retrieving from V(p) the se- 
quence of tangent edges ti,, . .., tik corresponding to the 
nodes wr,. . . , wk. This involves merging the lists V,(p) and 
V,(p) according to the following criterion: q1 precedes q2 
iff the node in T corresponding to the tangent pql is a 

descendant of the node corresponding to pq2. This merge 
is done very easily in O(Z) operations by traversing the 
path from u1 to vI in T. In practice, of course, we can 
emulate the tree T by observing that if p = p,, the path to 
the root corresponds to the left-to-right sequence of bits in 
the binary representation of the integer i. The bits of i are 
to be interpreted with 0 and 1 corresponding, respectively, 
to left and right turns down the tree. Therefore, the merge 
follows this prescription: q1 precedes q2 iff its index has a 
longer common prefix with i than the index of q2 has. For 
the sake of consistency, we define to as a dummy tangent 
extending vertically from p towards y = - cc. to will be 
considered indifferently of type pq or qp, depending on the 
situation at hand. This addition is meant to ensure that p 
always has at least one tangent of both types. 

For any node v of T define G(v) as the subgraph of G 
induced by the leaves of the subtree of T rooted at v. 
Deleting p from G involves updating the sequence of 
graphs G( wt), . . . , G(w& in this order. Suppose that we 
are about to update G(w,). Without loss of generality we 
can assume that the corresponding tangent t = pc is of the 
form pq. Let ap (resp. pb) be the last tangent of type qp 
(resp. pq) that we processed. Assume for the time being 
that both a and b are well-defined vertices. Since G(w,-,) 
has been already computed, its upper hull is now available 
and, as may be noticed, has its portion between a and b 
lying below the wedge (pa, pb). Let a’, b’, and c’ be the 
vertices of the hulls currently examined, following a in 
clockwise order, b in counterclockwise order, and c in 
counterclockwise order, respectively (Fig. 7). The special 
cases where a’ = b’ or a’ = b and b’ = a can be handled 
in a uniform manner, so we need not consider these 
situations separately. We next define the angles LY = 
L(aa’, ap), fi = L(bp, bb’), y = ~(cp, cc’), 6 = L( pc, ap), 
and E = L( pb, PC). Updating G(wj) involves “pulling 
down” the vertex p until it disappears from the upper hull 
of the points in G( w,). To do so we must compute which of 
the five angles CY, /3, y, 8, c is the first to become null. It is 
easy to visualize the current process by imaging that pa, 
pb, and pc are tight rubber bands and that p is being 
pulled down. The deletion of p from G( w,) is essentially a 
simulation of this physical process. To do so we must 
compute the various placements of p at which one of the 
rubber bands experiences some break of continuity, i.e., 
some of the angles above becomes null. 

Fig. 7. Close-up of direct deletions. 



CHAZELLE: CONVEX LAYERS OF PLANAR SET 513 

We can avoid angle calculations altogether if we simply 
compute the intersection of the vertical line passing through 
p with the lines passing through aa’, bb’, and cc’ (Fig. 8). 
The intersection with the largest y coordinate indicates the 
next placement of p  (c* in Fig. S), barring the terminal 
cases 6 = 0 or e = 0, which can be checked by testing 
segment collinearity. 

c 

Fig. 8. Avoiding angle calculations 

The vertex a’, b’, or c’ that determines the next location 
of p  is said to be wrapped. We  iterate on this process until 
6  or E becomes null, whichever happens first. Figs. 9(a) and 
(b) illustrate the two important cases, S = 0 and E = 0. 
Note that the addition of the dummy tangent to allows us 
to treat the case where any of a, b, or c is not properly 
defined, in similar (yet simpler) ways. We  may omit the 
details of the special cases, which are quite straightforward 
to handle. As p is being pulled down, the segments pa, pb, 
and pc must be updated at every step of the computation. 
Let a+ (resp. b+, c+) denote the running endpoint (# p) 
of pa (resp. pb, PC). In general, we can distinguish among 
three kinds of wrapping; a point wrapped by pa’, pb+, or 
PC+ is said to be lower wrapped, inner wrapped, or upper 
wrapped, respectively. A point that is wrapped by both 
pb+ and pci is understood as being wrapped solely by 
PC+, i.e., to be upper wrapped (Fig. 9(b)). 

(b) 
Fig. 9. Two basic cases. (a) 6 = 0. (b) E = 0. 

It is important to observe that since p is on the upper 
hull of G, all the edges of the form pa, pb, and pc are top 
edges in V,(a), V,(b), and V,(c), respectively. This allows 
us to gain access to the vertices a’, b’, c’ as well as update 
the lists T/,(a), VI(b), and V,(c) in constant time. This 
remark also applies to pa+, pb+, and PC+ at the generic 
step of the computation. We  conclude by presenting 
Lemma 1. 

Lemma 1: The number of operations involved in updat- 
ing G( w,) is proportional to the number of vertices wrapped 
during the updating. 

We  will successively prove the correctness of the al- 
gorithm and study its complexity. 

Lemma 2: The algorithm outlined above correctly com- 
putes the new shape of G after the direct deletions of all 
the vertices on its upper hull. 

Proof: Let C(v) be the upper hull of the vertices in 
G(v). The first observation to make is that removing p 
from G causes the disappearance of all the edges in V(p), 
but only these. Furthermore, it causes the introduction of a  
number of new edges that will all be in C( vl), . . ., C(v,) 
after the deletion of p. We  will show by induction that the 
algorithm properly updates each C( vi). Let v, _  r and u be 
the two sons of u,. We  must distinguish between two cases. 

1) p  is not an endpoint of the tangent associated with u, 
(Fig. 10). C( vi) is still formed by joining C(v) and C( vi- 1) 
with the same tangent associated with vi as before. By 
induction, C(u,-r) will have then be properly updated, so 
no additional work is required. 

C(q) 

Fig. 10. Point p is not on tangent 

2) The tangent associated with vi is of the form pq (Fig. 
7) (the case qp is strictly similar). The procedure given 
above correctly computes the new upper hull of the vertices 
of G(v) U G(u,-t), provided that the angles CX, ,l3, y, 6, E 
in Fig. 7  are well defined. y, S, and E are already defined in 
the original setting of G; as for (Y and /?, they originate 
from the fact that the new setting of C( ui-t) differs from 
the previous one only between a and b, and that the part 
of C( vi-r) between these two vertices lies strictly below the 
wedge (pa, pb). 

This completes the proof. 

B. Cross Deletions 

We  can now look at the cross-deletion process, where the 
vertices to be deleted are on the lower chain of the convex 
hull of S. We  remove them one at a  time, say, in clockwise 
order, applying the method described previously. A few 



514 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-31, NO. 4, JULY 1985 

We are now ready to examine the complexity of the overall 
algorithm. 

Theorem 1: It is possible to compute the convex layers 
of a set of n points in O(n log n) time, using O(n) space. 

Proof: Let us first look at the cost of direct deletions. 
In the course of updating G(v), for i = 1, * * a, I, any vertex 
either lower- or upper-wrapped is said to be promoted, 
while any vertex inner-wrapped is said to be confirmed. 
The crucial observation is that in the course of computing 
C(S), 1) the number of operations is O(n logn + total 
number of promotions and confirmations), and 2) vertices 
are never confirmed twice in a row, i.e., if they are con- 
firmed more than once, they must be promoted at least 
once in between each confirmation. 

: 1, 
” 

Fig. 11. One of the lists VI(p) or V,(p) is empty 

remarks are in order, however. Let p be the vertex to be 
removed. By construction, it is obvious that the two top 
edges in V(p), i.e., pa in V,(p) and pb in V,(p) always 
form a convex angle, i.e., (pa, pb) I 7~. Since on the other 
hand, p is on the convex hull of S, it follows that one of 
the lists V,(p) or V,(p) has to be empty (i.e., reduced to 
the dummy edge to) (Fig. 11). Note that this remains true 
for all the lower hull vertices yet to be removed, even after 
any number of them have been already cross-deleted. This 
shows that cross deletions correspond to one of the special 
(easy) cases mentioned earlier. 

The first point follows directly from previous remarks. 
To understand the second feature of promotion, let’s take a 
closer look at the wrapping of a point q. In the following 
we refer to the height of a node of T as the number of 
edges of its longest path to a leaf of T. Let w be the highest 
node of T (immediately before the wrapping) such that q 
is a vertex of C(w). If q is lower-wrapped or upper- 
wrapped, it immediately becomes a vertex of an upper hull 
C(v) such that u is an ancestor of w. Node v thus replaces 
node w as the highest node z of T such that q is a vertex 
of C(z). Since T has height [log, n 1, each point cannot be 
promoted more than [log, nl times. 

The second observation has to do with the access to the 
adjacent vertices of p. Suppose without loss of generality 
that V(p) = V,(p) = {pa,; . *, pau}, with pa, being the 
top edge. It is important to be able to gain constant-time 
access to the location where p is stored in each of the lists 
&“,(a,),. f -, V,( a .). As we have seen it earlier, this is indeed 
a requirement if we wish to preserve the result of Lemma 1, 
i.e., if we want to ensure that the time to cross-delete p is 
proportional to the number of wrappings. Unfortunately, it 
is no longer true that every edge pai will be a top edge in 
V,(ai), for p is not on the upper hull any more. The next 
result suggests a way to circumvent this difficulty. 

Lemma 3: At most one edge pai (i = 1; . . , u) is not a 
top edge in V,(a,). 

Proof: We say that a segment t dominates a segment s 
if they share an endpoint and for every point (x,-y) of s 
there exists a point (x, z) of t such that z 2 y. We wish to 
show that for each i (1 < i I u), a,p is the top edge of 
V,(a,). Suppose that it is not; then there exists a segment 
aiq that dominates a,p. But by definition of G, the seg- 
ment a,p dominates ajp; it immediately follows that a,p 
and a,q intersect, which is impossible. 

Since pa, is the only edge that does not lend itself to 
direct access, we can afford to scan the list &(a,) linearly, 
for it obviously contains no more than [log,n] entries. 
This will add a term O(logn) in the time to cross-delete p. 

Let us turn next to the confirmation process. As we 
mentioned earlier, pulling down ap and bp is a replay of 
previous action that is only meant to guide the pulling of p 
(Fig. 7). More precisely, consider any vertex q that is 
inner-wrapped by pb. At the previous stage, q was lower- 
or upper-wrapped by pb, therefore that wrapping was a 
promotion. Consequently any confirmation must be im- 
mediately preceded by a promotion. This shows that a 
point cannot be wrapped more than 2[log, n] times, which 
implies that the overall time required by direct-deletions is 
O( n log n). 

We can treat cross deletions in an identical way, charg- 
ing each vertex wrapped in the manner just described. 
Each deleted vertex may be also charged an extra O(log n) 
to account for the linear scan of one of the lists V,( *) or 
V,( * ). This completes the proof. 

IV. COMPUTING THE DEPTH OF A POINT 

The depth of a query point q within C(S) is defined as 
the number of convex layers that enclose q (see [13],[17] 
for practical applications of this notion). Let St,. . . , S, be 
the convex layers of S, labeled in increasing order inwards. 
Rather than computing only the depth of q, let us consider 
the more general problem of determining the pair of con- 
secutive layers (S,, S,,,) between which q lies. This pair 
may be reduced to a single layer if q lies either outside S, 
or inside S,. The index m will be denoted m(q) from now 
on, with the convention that m(q) = 0 (resp. m(q) = k) if 
q lies outside of S, (resp. inside of S,). 

This problem is essentially a planar point location prob- 
lem, i.e., a problem of determining which region of a 



CHAZELLE: CONVEX LAYERS OF PLANAR SE’I 515 

straight-line subdivision of the plane contains q. Two 
optimal algorithms are known for solving this problem. 
Chronologically, the first is due to Lipton and Tarjan [12]. 
It relies on a far-reaching theorem on planar graphs, and 
unfortunately does not lend itself to any kind of reason- 
ably simple implementation. Using a more straightforward 
approach, Kirkpatrick derived another optimal algorithm 
[ll], which although conceptually quite simple, is yet to be 
shown fully practical. In [4], [14], Preparata and Bilardi 
have devised, analyzed, and implemented a near-optimal 
planar point location algorithm that avoids most of the 
overhead incurred by the other algorithms. Whereas the 
first two methods use a linear space data structure to 
answer any query in O(logn) time, the algorithms last 
mentioned, however, require O(n log n) space for still an 
optimal O(log n) response time. 

We  wish to show here how planar point location in the 
graph C(S) can be done optimally, combining the simplic- 
ity of [4], [14] with the performance of [11],[12]. More 
precisely, we will present a practical method for computing 
m(q) in O(log n) time by using O(n) storage. The al- 
gorithm rests on two basic ideas: to begin with, we describe 
an O(n log n) space, O(log n) time method, to which we 
then apply the concept of filtering search [5] to reduce the 
space requirement to O(n). 

A. The Preliminary Algorithm 

Let us organize the set of layers in C(S) into a complete 
binary tree T, such that each node is associated with a 
layer of C(S), and an inorder traversal of T  corresponds to 
the order S,; * ., S,. Each node u in T  contains a pointer 
to a data structure, DS(u), built from the layer associated 
with u, which we denote S(u). In a first stage, we may 
suppose that DS( V) is simply an array giving a clockwise 
description of S(u). Let C be a point inside S,, and let 
R(q) be the ray emanating from C that passes through the 
point q. Since C also lies inside the convex polygon S(u), 
we can use the array DS(u) to compute by binary search 
the intersection of S(u) and R(q) [17]. This allows us to 
determine in O(log n) time whether q lies inside or outside 
of S(u). 

Setting the tree T  in this fashion leads directly to an 
O(n) space, O(log2 n) time algorithm, which we can some- 
what speed up, at the expense of a  factor of log n space. To 
do so we apply a standard technique [19], which involves 
adding extra pointers between adjacent nodes of the search 
tree. Let R(u) be the (angularly) sorted list of rays R(p), 
for all vertices p of S(u). We  next define L(u) as the 
sorted list of rays in R(u) U D(u), with D(u) = [U R(z)1 
all descendents z of u]. We  can compute all the lists L(u) 
recursively, in 0( n log k) = 0( n log n) time, simply merg- 
ing R(u), L(u,), and L(uZ), where ur and u2 are the 
children of u. 

The next step is to refine the boundary of S(u) with the 
added information of L(u). More precisely, we augment 
the set of vertices of S(u) by adding to it all the intersec- 
tions between S(u) and the rays of L(u). This creates a 
new boundary, S*(u), which is simply a “copy” of S(u) 

supplied with additional vertices. Note that any edge in 
S*(h) forms a wedge with respect to C that is covered by 
exactly one wedge from S*( ur) and one wedge from S*( u2) 
(Fig. 12). This allows us to define two pointers from each 
edge of S*(u), one to each of the edges in S*(ul) and 
S*(u2) that correspond to a covering wedge. The data 
structure DS( u) can now be defined as a clockwise descrip- 
tion of S*(u) along with this set of extra pointers. It is easy 
to see that the overall structure can be computed in 
0( n log n) time. 

Fig. 12. Simple planar point location. 

The point location algorithm will now proceed as fol- 
lows. Let r be the root of T. Use a binary search to 
determine, in O(log n) operations, the edge e of S*(r) 
intersected by the ray R(q). Testing the relative position of 
e  and q will indicate whether we should iterate the search 
in the left or right subtree. Once this has been determined, 
we can follow one of the extra pointers associated with e so 
as to avoid any further binary search. This will, indeed, 
lead us directly to the new edge to be compared against q. 
This new algorithm will thus yield an O(log n) search time, 
but at the price of added storage, i.e., O(n log k) = 
O(n logn). 

B. The Optimal Algorithm 

The notion of filtering search was developed in [5] as a 
provision to balance out the various cost factors of enu- 
merating algorithms. These are algorithms that involve the 
explicit enumeration of the objects of a  database that are 
found to satisfy some property with respect to a query 
object. For example, one might ask to report which of n  
given points lie within a query rectangle. The time com- 
plexity of problems of this category is often made of two 
distinguishable cost factors. These are the search time, 
usually O(logn) or a polynomial thereof, and the report 
time, i.e., the number of objects to be reported. Filtering 
search involves balancing these two quantities, which in 
essence comes down to making the search technique all the 
more naive as the number of objects to be reported is large. 
Another prescription of filtering search is to use the leeway 
provided by the search time to simplify the supporting data 
structure. In particular, this encompasses the well-known 
idea of switching algorithms in midstream, depending on 
the current size of the input yet to be processed. A good 



516 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-31, NO. 4, JULY 1985 

illustration of this idea can be found in Sedgewick’s analy- 
sis and fine tuning of quicksort [16]. This general technique 
can be applied to the problem at hand. We begin with a 
technical result. 

Lemma 4: It is possible to find, in O(n log n) time, a 
sequence F/ of convex layers among { S,, . * . , S, }, such that 
the total number of vertices in V is 0( n/log n) and at most 
4 log n layers can be found between any pair of consecutive 
layers in V. 

Proof: If k I log n simply let V be the empty set and 
the lemma is satisfied. From now on assume that k > log n. 
Let H = { Si,; * a, Sik } be the convex layers of S, sorted by 
increasing cardinahties, i.e., the number of vertices in Si,, 
denoted aj, satisfies ej I ai,, for any j <j’. Here is a 
tentative method for assigning layers to I’. Go through 
each layer of H in turn and assign them to V, with the 
provision that for each layer assigned we remove from H 
roughly log n “neighboring” layers. More precisely, let W 
denote the complement of I’ in C(S). 

Initially, both sets V and W are empty. Apply the 
following procedure for j = 1,. . a, k. If Si, has already 
been assigned to either F/ or W, iterate; else, assign S, to 
V, and each layer in P to W, where the set P is defined as 
follows (S, = 0, if x 4 (1;. a, k}): 

‘= {si,-[logn~~Si,-(logn]+l.“.~ ‘,-I} 

U{Si,+l~si,+2~~**~si,+[lognj}~ 

The procedure has been actually simplified to the ex- 
treme so as to emphasize the main idea, and we must now 
proceed to fill in the details. First of all, the set P must be 
defined a little more carefully. As mentioned earlier, what 
we really want to do is “clear out” a certain number of 
convex layers right next to the current layer picked for 
membership in V. We set this number tentatively to the 
value 2 [log n 1, but as we want to avoid reassigning previ- 
ously assigned layers, we redefine P as P, U P2, with 
P, = {si,-cl, si,-cl+l,***, sf,-l} and P, = 
{q +I> si.+2>’ * ‘> si +c2 }; the quantities c1 and c2 are de- 
fined as ‘the largest integers not exceeding [log n ] , such 
that none of the layers in P, and P2 has been previously 
assigned. Assigning layers to V and W will result in mark- 
ing off disjoint intervals in (1,. . . , k }. Since, ideally (for 
reasons to become apparent later on), we would like to see 
all the values of c1 and c2 very near [log n 1, we want to 
avoid the situation where a new layer is assigned to V but 
only a very small interval can be marked off in { 1,. . . , k }. 
To circumvent this difficulty, we just have to extend P a 
little, whenever necessary. More precisely, before assigning 
the layers in P, we should check whether the longest 
sequence of yet unassigned layers of the form 
{si,-cl-17 si,--cl--29 ’ * * > (rew. tsi,+c2+1’ si,+c,+2, * . * 1) 

has a length exceeding [log n ] ; if not, we then append this 
sequence of layers to P, (resp. P2). 

This will ensure that every subsequent interval marked 
off is of length at least [log n 1. As a result, the m layers 
assigned to V partition the sequence S,, * * *, S, into a 
number of consecutive subsequences of layers in W, each 

of which has length between [log n ] and 4 [log n 1. (The 4 
comes from the fact that P might be originally of size 
2 [log n ] and then be extended with a sequence of ]log n ] 
elements on each side.) Assigning layers by increasing 
cardinalities ensures that for any h-vertex layer assigned to 
V at any stage, there are at least h llogn] vertices in the 
layers assigned to W at that stage. It follows that the total 
number of vertices in the layers assigned to V is 
O(n/ log n). Ensuring an overall O(n log n) running time 
is trivial. 

We are now in a position to apply the previous 
algorithm for computing m(q) in order to report the 
pair of consecutive layers in V that enclose a query 
point. The reduced size of V will ensure that only O((n/ 
log n) log (n/log n)) = O(n) space is now needed, instead 
of O(n log n). After this preliminary point location, the 
problem is now to locate q among O(log n) convex layers. 
This can be done by computing the intersection of each of 
these layers with the ray R(q), using the hive graph struc- 
ture of [j]. This is a simple data structure that allows us to 
solve the following problem optimally. Given m noninter- 
secting segments in the plane, report all segments intersect- 
ing a query segment whose supporting line passes through 
the origin. The algorithm requires O(m) storage and gives 
a response time O(k + logm), where k is the number of 
segments to be reported. This allows us to perform the 
computation needed in our case in O(logn) time. We can 
conclude with the main result of this section. 

Theorem 2: It is possible to locate a point among the 
convex layers of n points, and hence compute its depth, in 
O(log n) time, using O(n) storage. 

We shall note once again that the novelty of this result 
resides in the fact that the algorithm is both optimal and 
practical. It is easy to see that a similar technique can be 
applied to handle planar subdivisions consisting of nonin- 
tersecting monotone polygonal lines running from y = 
+ cc to y = - cc. Whether this method can be adapted to 
arbitrary planar graphs is open. 

V. CONCLUSIONS 

The main contribution of this work is an optimal al- 
gorithm for computing the convex layers of a point set. 
The algorithm can be seen as a deletion mechanism with 
optimal amortized cost. The problem of allowing both 
insertions and deletions in logarithmic update time (amor- 
tized or not) remains open. We mention the extension of 
our techniques to higher dimensions as well as the dynami- 
zation of the two-dimensional case as two interesting open 
problems in the general area of convex hull maintenance. 

ACKNOWLEDGMENT 

I wish to thank the referees for their comments and 
suggestions, which helped to improve the readability of this 
paper. 



CHAZELLE: CONVEX LAYERS OF PLANAR SET 517 

PI 

PI 

[31 

[41 

[51 

[61 

[71 

VI 

191 

REFERENCES 

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and 
Analysis of Computer Algorithms. Reading, MA: Addison-Wesley, 
1974. 
S. G. Akl and G. T. Toussaint, “Efficient convex hull algorithms for 
pattern recognition applications,” in Proc. 4th Int. Joint Conf. 
Pattern Recognition, 1978, pp. 483-487. 
J. L. Bentley and M. I. Shamos, “Divide-and-conquer for linear 
expected time,” Inform. Proc. Lea., vol. 7, pp. 87-91, 1978. 
G. Bilardi, “Average case analysis of an adjacency map searching 
technique,” Tech. Rep. R-928, UILU-ENG-81-2259, Univ. of Ill. at 
Urbana-Champaign, Dec. 1981. 
B. Chazelle, “Filtering search: A new approach to query-answering,” 
in Proc. 24th IEEE Ann. Symp. Foundations of Computer Science, 
1983, pp. 122-132. 
B. Chazelle, L. Guibas, and D. T. Lee, “The power of geometric 
dualitv,” in Proc. 24th IEEE Ann. Symp. Foundations of Computer 
Science, 1983, pp. 217-225. - 

_ 

W . F. Eddv. “A new convex hull aleorithm for nlanar sets.” ACM 
Trans. Math. Software, vol. 3, no. 4:pp. 398-433, 1977. 
P. J. Green and B. W . Silverman, “ Constructing the convex hull of 
a set of points in the plane,” Comput. J., vol. 22, pp. 262-266,1979. 
P. J. Huber, “Robust statistics: a review,” Ann. Math. Statist., vol. 

WV 

W I 

W I 

u31 

[I41 

P51 

iI61 
P71 

W I 

D91 

PO1 

43, no. 3, pp. 1041-1067,1972. 
R. A. Jarvis, “On the identification of the convex hull of a finite set 
of points in the plane,” Inform. Proc. L&t., vol. 2, 1973, pp. 18-21. 
D. G. Kirkpatrick, “Optimal search in planar subdivisions,” SIAM 
J. Comput., vol. 12, no. 1, pp. 28-35, 1983. 
R. J. Lipton and R. E. Tarjan, “Applications of a planar separator 
theorem,” SIAM J. Comput., vol. 9, no. 3, pp. 615-627, 1980. 
M. H. Overmars and J. van Leeuwen, “Maintenance of configura- 
tions in the plane,” J. Comput. Syst. Sci., vol. 23, pp. 166-204, 
1981. 
F. P. Preparata, “A new approach to planar point location,” SIAM 
J. Comput., vol. 10, no. 3, pp. 473-482, 1981. 
F. P. Preparata and S. J. Hong, “Convex hulls of finite sets of 
points in two and three dimensions,” Commun. ACM, vol. 20, no. 
2, pp. 87-93, 1977. 
R. Sedgewick, Quicksort. New York: Garland, 1978. 
M. I. Shamos, “Computational Geometry,” Ph.D. dissertation, Yale 
Univ., New Haven, CT, 1978. 
G. T. Toussaint, “Pattern recognition and geometrical complexity,” 
in Proc. 5th. Int. Conf. Pattern Recognition, 1980, pp. 1324-1347. 
D. E. Willard, “New data structures for orthogonal queries,” SIAM 
J. Comput. to appear. 
A. C. Yao, “A lower bound to finding convex hulls,” J. ACM, vol. 
28, pp. 780-787, 1981. 


