Computing Partial Sums in Multidimensional Arrays

(Detailed Abstract)

Bernard Chazelle

Burton Rosenberg

Department of Computer Science
Princeton University

1 Introduction

The central theme of this paper is the complexity of the
partial-sum problem: Given a d-dimensional array A with n
entries in a semigroup and a d-rectangle ¢ = [a1,b1] X -+ X
[aq,ba], compute the sum

o(A q) = Z Alkr, ... kd.

(k1,...,kq)Eq

This problem comes in two distinct flavors. In query
mode, preprocessing is allowed and ¢ is a query to be an-
swered on-line. In off-line mode, we are given the array
A and a set of d-rectangles qi,...,qmn, and we must com-
pute the m sums o(A,q;). Partial-sum is a special case
of the classical orthogonal range searching problem: Given
n weighted points in d-space and a query d-rectangle g,
compute the cumulative weight of the points in ¢ (see e.g.
[3, 4, 5,6, 7,9, 10, 12, 14, 17, 18, 19, 20, 21, 22]). The
dynamic version of partial-sum in query-mode was studied
by Fredman [10], who showed that a mixed sequence of n
insertions, deletions, and queries may require Q(n log? n)
time, which is optimal (Willard and Lueker [20]). This re-
sult was partially extended to groups by Willard in [19].
For the case where only insertions and queries are al-
lowed, a lower bound of ©(nlogn/loglogn) was proven in
the one-dimensional case (Yao [22]), and later extended to
Q(n(log n/loglog n)d)7 for any fixed dimension d (Chazelle
[8]). Regarding static one-dimensional partial-sum, Yao
proved that if m units of storage are used then any query
can be answered in time O(oz(m,n))7 which is optimal in
the arithmetic model [21]. The function a(m, n) is the func-
tional inverse of Ackermann’s function defined by Tarjan
[15]. See also Alon and Schieber [2] for related upper and
lower bounds.

Our main results are a nonlinear lower bound for one-
dimensional partial-sum in off-line mode and a space-time

tradeoff for partial-sum in query mode in any fixed di-
mension. More precisely, we prove that for any n and
m, there exist m partial sums whose evaluations require
Q(n + moz(m7 n)) time. This is a rare case where the func-
tion « arises in an off-line problem. Noticeable instances are
the complexity of union-find (Tarjan [15]) and the length of
Davenport-Schinzel sequences (Hart and Sharir [11], Agar-
wal et al. [1]). Interestingly, the proof technique we use does
not involve reductions from these problems. Our result im-
plies that, given a sequence of n numbers, computing partial
sums over a well-chosen set of n intervals requires a nonlin-
ear number of additions. This might come as a surprise in
light of the fact that there is a trivial linear-time algorithm
as soon as we allow subtraction. The lower bound can be
regarded as a generalization of a result of Tarjan [16] con-
cerning the off-line evaluation of functions defined over the
paths of a tree. As in [16] our result also leads to an im-
proved lower bound on the minimum depth of a monotone
circuit for computing conjunctions.

The other contribution of this paper is an algorithm which
can answer any partial-sum query in time O(ozd(m,n))7
where m is the amount of storage available. This generalizes
Yao’s one-dimensional upper bound [21] to fixed arbitrary
dimension d. Since our algorithm works on a RAM, we can
use it as the inner loop of standard multidimensional search-
ing structures. For example, consider the classical orthogo-
nal range searching problem on n weighted points in d-space.
Lueker and Willard [20] have described a data structure of
size O(n log¢~t n) which can answer any range query in time
O(logd n) (over a semigroup). We improve the time bound
to O(oz(n) log¢~t n)

The remainder of this abstract is devoted to the proofs
of the lower and upper bounds. Except for a few technical
lemmas whose proofs have been omitted, our exposition is
complete and self-contained.

2 A Lower Bound for Off-line
Partial-Sum

This section gives a lower bound for the one-dimensional
off-line partial-sum problem. Our goal is to exhibit a family
of hard instances of this problem, instances for which the
amortized time needed to sum m intervals over n variables
grows with n while keeping the ratio m/n fixed. The exis-

tence of this family implies the impossibility of a constant
amortized time algorithm for this problem. More precisely,
the time grows as inverse Ackermann. Since we desire a
lower bound, we can always assume the semigroup (S, +) to
be commutative and idempotent, that is a +b = b + a and
a+a=a for all a,b € §. With this specialization in mind
we now state precisely our model of computation.

Let X = {x, |2 €[0,n—1] } be a set of indeterminates.
The power set of X is denoted P(X). A set of P(X) of the
form {xk |k € [z,]]} is called an interval and is denoted
[zi,z;]. Intervals which are either empty or of the form
[zi,x;] are called trivial. A collection of nontrivial intervals
is called a task. A problem instance consists of a data set
X and a task 7' C P(X). A solution is a scheme containing
T, a sequence of semigroup additions taking us from the
singletons {x;} to the sum Zie] x; for each I € T. Using
the rules of calculation, any particular sum generated by
the scheme is of the form Zie] z; where J € P(X), and the
sum of two such sums is,

Dwid wmi= Y a

t€Jy 1€ Jo (€T Uy

Thus our model of computation limits itself to considering
the construction of the intervals I € T' through the iterative
application of union to the elements of P(X) at the cost
of one per union. Our formal definition of a scheme is an
integer r and a map S : [—n,r] = P(X) such that,

S(—n) = 0,

S(—1) = A{z;}forie0,n—1],
vie[lr], 35,5 <i st

S@) = S(HUSY).

A scheme S solves a task 7' if its range contains 7, that
is, T C{S()]|:€[1,r]}. Each S(z) is called a production.
Those S(2) for i < 0 are to be thought of as cost-free pro-
ductions, and are also called the azioms of the scheme. This
being so, the integer r is intuitively the time the scheme re-
quires to sum up all intervals in the task. For this reason,
we write r = Cost(5).

To motivate the definition we have given for a scheme, we
can relate it to the notion of a faithful semigroup as given by
Yao [21]. Briefly, a faithful semigroup requires that any sum
can only be realized if all the required variables are named
in the sum and only those. For example, set-theoretic union
forms a faithful semigroup. Also taking the maximum of
integers gives a faithful semigroup. We also note that a
scheme must work for all data assignments of the variables.
That is, the data structure should not adapt to the details
of an assignment.

The goal of this section is to exhibit a family of hard tasks
parameterized by two integers ¢ and k, which are called time
and density, respectively. Such a task has size roughly kn
where n is the number of variables over which it is defined,
and the amortized time to answer a query in the task is
at least ¢t. In addition, each task in our family will have
a uniformity property which will insure the success of our
construction. This uniformity property will be expressed in
terms of a task’s right-degree. It is a measure of how persis-
tently a task uses any given variable as the left endpoint of a
query. In particular, we want all variables to be used fairly

equally as left endpoints of queries. As more resource, space
or time, is permitted, the size of the variable set over which
the hard task is defined increases according to the function
R(t, k) defined below. Having constructed a family of hard
tasks, we investigate the growth of the function R(t, k). It
is this function’s inverse which gives the lower bound on the
time needed to solve the off-line partial-sum problem as a
function of the problem size.
For technical reasons, the domains of ¢ and & are,
teA={i/3]1>3}, kel ={0,1,2,...}.

For (t,k) € A x T, define R: A x I' = Z by the recursion,

R(1,k) = 2k,
R(t,0) = 3,
R(t, k) R(t,k — 1)R(t —1/3, R(t,k — 1)),

fort >1,k>0.
We construct a family,
{ Tu(t, k)| (t,k) € A x T, n=R(tk) |,

where each Tn(t, k) is a task over n variables. The task
is dense, in that its size, |Tn(¢, k)|, is at least kn/2. The
task is hard, in that if it is solved by a scheme S, then
Cost(S) > t|Tn(t, k)|. Next, we limit the size of each task by
placing an additional constraint on the tasks in our family.
Consider the rightwards filter of z; in P(X),

Fil (z:)={J € P(X)|zi€ J, and (Vj <1, ;¢ J)}.
The right-degree of task T is,

Deg T = T A Fil (x:))].
eg T'= max |(il ()]

We constrain 7, (¢, k) so that Deg Tn(t, k) < k.

Lemma 2.1 For all (¢,k) € AxT, n = R(t, k), there exists
a task Tn(t, k) on n variables such that:

1. |Tn(t, k)| > kn/2.
2. k > Deg Tn(t, k).

3. If scheme S solves Tn(t, k), and k > 0, then
Cost(S) > t|Ta(t, k)|

We devote the next few pages to the proof of this result.
For k = 0 we set T5(¢,0) = 0, for this choice trivially satisfies
all the conditions. For t =1 and k > 0 we put n = R(1,k) =
2k, X ={=zo,...,zn_1}, and,

n—k—1 k
Tk = | kool
1=0 j=1

This is a collection of nontrivial intervals defined on X,
hence a task. The right-degree is bounded by k and the
size is |Tn(1,k)| = k(n — k) = k* = kn/2. If a scheme S
solves T, (1, k) its range necessarily contains it and therefore
Cost(S) > |Ta(1,k)|.

We now assume that & > 0 and ¢ > 1. By induction
hypothesis, for « = R(t,k — 1), b = R(¢t — 1/3, a), we have
exhibited tasks A = Ta(t,k — 1) and B = Tu(t — 1/3,a).
Name the variables in A by Y = {yo,...,Ya—1}, and those

in Bby Z = {z,...,26—1}. Put n = R(¢,k) = ab and
X =A{zo,...,vn—1}. We construct task @ C P(X) from A
and B. Taking b copies of A, we place them side by side in
X. A copy of B is stretched over X and fringes are added to
increase the complexity of the resulting intervals. Consider
X divided into b blocks each containing a consecutive vari-
ables. Let the leftmost variable in each block be marked,
that is x; for 1 = 0,1,...,b — 1. Alter the marking by re-
moving the mark on z¢ and placing it on z,—1. Task B is
stretched by considering these b marked variables as being
the b variables over which B is defined, the correspondence
being the obvious order-preserving association. Each inter-
val [z, ;] in B lifts to the unique smallest interval [z, 2]
containing all the marked variables associated with [z;, z;].
Since B has density a, at most a intervals in B have their
leftmost ends on a given marked ;. Further stretch each
interval leftward, by a different amount, so that they end
over r;_1,xi—2, etc. The point of this transformation is
twofold. First, we are correcting the right-degree of the re-
sulting task. Second, we are adding extra difficulty to the
solution of the resulting task. We shall now formalize the
preceding discussion and show that the resulting task @ is of
the correct form, density and right-degree. Finally, we will
show why any scheme solving (2 is necessarily expensive.
Throughout this section we shall make use of mappings
f:P(X)—= P(Y) for which f(AUB) = f(A)U f(B). Such
maps are completely defined by specifying the values of f
on the singleton sets {z}, for all # € X. We also apply such
maps to collections of elements in P(X). If A C P(X) then,

fA)={fla)|acA}.
For 7 € [0,b — 1] define maps,
o PY) - PX)
{yl} = {CL']a-H'}, (S [0761 - 1]7
and apply these to A, forming collections of intervals,
Q; ={¢;(z)|z € A} j=0,...,b—1

Partition B into a subsets By, ...
obeys the following restrictions:
1. Deg B; <1 for all 3.
2. [Zb_27zb_1] Q Bo.

As mentioned above, intervals in B are stretched to form

, Ba—1 so that the partition

“large” intervals in @, large meaning that they span over
blocks. Also, these stretched intervals are further length-
ened some additional variables leftward, in fact, B; is length-
ened ¢ additional variables leftward. The purpose of the
first restriction is to control the right-degree of the resulting
task . The purpose of the second restriction is to insure
that all intervals coming from B in @} span over more than
one block. The interval [z5—2,25-1], if present in B and
allowed to fall in By, would be sent into () as the inter-
val [xa(b_l), Tab—1], which would lie fully inside the leftmost
block. Since Deg B < a and since there is only one nontriv-
ial interval ending over zp_2, it is possible to construct this
partition.
For i € [0,a — 1] define the map,

vi: PZ) — P(X)

{x(]+1)a—i7x(j+l)a} for] € [07b - 2]

[T if j=b—1.

Note that this map does not yield intervals. Let x(z) be the
smallest interval containing the set z,

x(@) =({l:21 € P(X) |2 C [y, 2]}
An image of each B; is placed in X by,
Qi ={xi(2)|2€B} i=0,...,a—1.
The task @ is defined as,

b—1 a—1
e=Ue |UlU«
J=0 1=0

We investigate the properties of this task.

By construction, 2 is a collection of nontrivial intervals in
X. In fact, each map ¢; and y#; is one-to-one. The distinct
character of each of these maps assures that the @; and Q!
are pairwise disjoint. So, we easily check that

Qr = D0 e+ > e
J€[0,b—1] 1€[0,a—1]
= b|A|+|B| > bk —1)a/2 + ab/2 = kab/2,
and,
Deg @ = max |Q N Fil (z;)]

1€[0,ab—1]

max [(Qi/a) U Q imoda) N Fil (z:)

1€[0,ab—1]

(k—1)+1=kF.

IA

Therefore @ is a task of the correct density and right-degree
for a task in our family of hard tasks.

We will now derive a lower bound on the cost of any
scheme S which solves). Recall that a scheme S is a map
from [—n,r] to P(X). We try to partition [—n, r] according
to where S(¢) falls, for 5 € [0,b — 1],

{Z S [—n,r] | S(Z) g [l‘]a,l‘(]+1)a_1] }7
[—n\ (A

0<y<b

Aj =

Ay

This fails to be a partition since all A; for j # b share —n
as an element (the empty set is a subset of any block). The
set [-n + 1,r] is well partitioned, however. A relabeling
L; : [—a,r;] = A; for i € [0,b — 1] gives b distinct subse-
quences Si(j) = S(L,(])) of S(j). We will show that up to
isomorphism each of these subsequences is a scheme solving
A. Relabeling Ay by Ly : [2,75 + 1] — As, we have a se-
quence which is essentially isomorphic to a scheme solving
B. It will be shown that, in fact, it is essentially isomorphic
to a very inefficient scheme solving B. This inefficiency is
the direct consequence of the fringing step in the construc-
tion, and is the key element in making a task “harder than
the sum of its parts”. Because we have partitioned [1,r], we
have the important fact,

b

E ry=r.

j=0

The next two lemmas explicate the stated isomorphisms.
The proofs are simple but long and tedious.

Lemma 2.2 For ¢+ = 0,...,b — 1, the sequences S;
[—a,ri] = P(X) are isomorphic to schemes solving A.

Proof: Define a map, the inverse of ; for all ¢,

o : PX) — PY)
{z;} = {¥Yjmoda}-

We claim that for all ¢ in [0,b — 1], the sequence given by
the composite map ¢*S; : [—a,r;] = P(Y) is a scheme in
Y solving task A. Because ¢* takes the empty set to the
empty set ¢*Si(—a) = 0. For j € [0,a — 1] we calculate
©*Si(—j) = ¢*S(—j — ai) = " (Zj4ai) = y;. The set A;
includes —a+ 1 negative integers, those j for which S(j) =0
or S(j) = {z:} for I € [ia, (i + 1)a — 1]. Therefore, 5 > 0
implies L;(7) > 0. Put j, = L;(j). Since S is a scheme there
exist integers j, and j. strictly less than j, and Si(j) =
S(70) = S(55) U S(52). But this gives S(j,) € = and hence
g5 € A;. Likewise for 3. So there are integers j' and j”
satisfying j, = Li(j') and jJ = Li(j"). The nature of the
map L; is such that 5., o < j, implies j', " < j. But,

SUSi) = @ (S(Lli") US(L(")
= " Si(iHueSi(i"),

therefore *S; is a scheme. Since S solves @ it also solves
Q:, which means that there exists j such that S(j) = ¢
for any ¢ € Q;. But Q; = ¢;(A), hence ¢ = ¢;(a) for
some a € A. Furthermore, ¢ C [%4:, #(i41)a—1] implies that
Jj € Ai. So there exists j' for which Si(5') = ¢i(a), and
©*Si(5") = ¢*pi(a) = a. Any a € A gives rise to a ¢ = pi(a)
in @; for which ¢*(q) = a. Therefore ¢*S; solves A. O

Lemma 2.3 There exists a map ¢* such that Sy : [—b,rp +
1] = P(Z) is a scheme solving B and for i € [2,ry + 1] we
have Sy(1) = ¢*S(Ls(1)).

Proof: Define the map,

rr P(X) — P(Z)
{z;} ifi=a(j+1), j€[0,b—2],
{z:} +— { {zp=1} fi=ab-1,
0 otherwise.
This map inverts the action of y1;. The effect of ¢* is the
same as setting all but the marked variables in X to zero.

We show that this results in a scheme for B. We define the
sequence Sy : [—b,ry + 1] = P(Z) by,

Sy(=b) = 0,
Sy(—1) = z, ie[0,b—1],
Su(1) = [zp—2, 26—1],
Su(i) = ¢* (S(Lu(2))), i€[2re+1].

We check that for all 7 > O there exist 3,5’ < @ such that
Sb(l) = Sb(]) (@] Sb(j/), and IIH(Sb) o B.

By definition Si(1) is a valid production, so let i, = L(2)
for ¢ > 1. Since S is a scheme, we have S(io) = S(30)US(J5)
for integers jo, 7, < io. If jo isin Ap let j satisfy jo = Lo(4).
From the nature of L we know that j, < i, implies 7 < 1.
Otherwise, let I be such that j, € A;. We consider two
cases. If I # b — 1 then S(j,) contains at most one marked
variable, and ¥*5(j,) = Sp(j), for some 5 < 0. If I =b—1, it

is possible that S(j.) contains both marked variables zqp—1
and z4(—1), and therefore *S(j,) = Sp(j) for some j < 1.
In either case 5 < i. Repeating the argument for S(j,)
we have ¢*S(j5.) = Su(j'), for some ;' < i. Therefore, as
required, we have,

(i) P*(S(io)) = ¢* (S(jo) U S(55))
= "S(Jo) UY"S(30) = Se(5) U Su(s").

Let ¢ € B be an interval. Since ¢ is in the partition B;
for some i, we have yii(q) € Q:. Because S solves Q, for
some j, we also have S(j) = x¥i(q). It is clear that j € A,
so V¥ xvi(q) € Im(Sy). Write ¢ = [zj1,2;0]. If j” #£b—1
then,

w*X¢i<[ZJ/7ZJ//]) = Z/J* I:x(]’+1)a—i7x(]”+1)a:| = [ZJ/7ZJ//].

If ' = b —1, a similar calculation is performed. In either
case, ¢ € Im(S:), therefore Sy solves B. O

We will show that the scheme Sy is not of minimum cost.
Call a production Sy(i) redundant if there exists j < ¢ for
which Sy(j) = Si(i). Clearly, omitting a redundant produc-
tion from a scheme does not invalidate it.

Lemma 2.4 There are at least |B| — |Bo| redundant pro-
ductions among the productions Sp(i), 2 <1 <ry + 1.

Proof: To find candidates for redundant productions, we
identify the first time in the scheme S that a particular
variable is the leftmost in a production which spans across
blocks. The index for this production is in Ap. If the variable
under scrutiny is not marked then this production, as seen
from Sy, looks like the addition of 0 to a precomputed sum.
Consider the witness function,

min { j € Ay | (min?’ s.t. 2 € S(j)) =

7
and (3¢, i'a > i, s.t.xq € S(5)) },
o0 if this set is empty.

W (i) =

We claim that if 7 is not divisible by a and W (i) < oo, then
Sb(io) is redundant, where 1, is the unique integer such that
W (i) = Lu(1o).

Let 5 = W(i). Since j is finite, 7 € Ay, and so j > 0.
Put S(5) = S(5") U S(5"”) with 5/, 5" < j. It is immediate
that for all &' < 4, z, ¢ S(3') and x; ¢ S(3"). Without
loss of generality, suppose that S(j') contains z;. By virtue
of that fact 5/ < j it follows S(3') does not contain z;, for
any i’ divisible by a and larger than . Furthermore, ¢ is not
divisible by a and ¢ < a(b — 1). Therefore S(j') contains no
marked variables, that is,

¥*S(5) (S5 U SG")
= P*S(HUBTS(") =" SG").

If 3/ € Ay then by 3" < 5 we find an i, < t, for which
7" = Le(i)) and Sp(il) = Se(ic). We conclude Si(io) is
redundant. If 57 ¢ Ay then ¥*S(;") = Su(il) for il <
1 < io. We have Sp(it) = Su(ic) and therefore Sp(io) is
redundant.

The map P(q) = min{i|x,' € q} projects elements in

U= Q! to integers which are not multiples of a (note the
omission of ¢ = 0 in the union). In addition, for any ¢ in this

union, since S solves @, there exists 1 such that S(i) = ¢. It

follows that W(P(q)) is always finite. Thereby, with every
such ¢ we have 1 = L(j) for some j and Sy(j) is redundant.
We derive the composite map,

a—1

o 5 mr) 5 A 2 [2n0+1],

=1

where any element in the rightmost target coming from the
leftmost source is the index of a redundant production. The
lower bound on the number of redundant productions follows
from the injection of the map. Indeed, the map P fails to
inject if and only if two intervals in U@, have the same
left endpoint. By construction of @ this is impossible. If
W(i) = W(i'") then #; = x4, or i = i, and therefore W
is injective. Finally, L, was constructed to be one-to-one,
hence its inverse is also injective. O

It is now a simple matter to derive a lower bound on
Cost(S). For each i € [0,b — 1] the scheme S; is isomorphic
to one solving A, by Lemma 2.2. Therefore the cost r; of
scheme S; is at least ¢|A|. Stripping Sy of its |B| — | Bo|
redundant productions, we obtain a scheme of size rp + 1 —
|B| + |Bo|, which is rich enough to solve B, by Lemmas
2.3 and 2.4. Therefore ry +1 — |B| + |Bo| > (¢ — 1/3) |B|.

Summing up, we derive,

b
r=Y 1 2 bt|Al+(t—1/3) B+ |B| - [Bo| - 1.

1=0
Recall that each interval in By ends over one of zo, ..., zp—3,
and conversely each zo, ..., zp—3 has at most one interval in

By ending over it. Hence |Bo| < b—2. Since |Q| = b|A|+]|B],

we have,

ro> btA| 4 (t4+2/3)|B| - (b—2) — 1
= 1|QI+(2/3)|B] —b+1.

Because B = T,(t—1/3,a) we have |B| > ab/2. Since a > 3,
ro> tQ|+ab/3-b+1=¢|Q|+1.

We conclude that Cost(S) =r > ¢|Q|. Setting @ = T (¢, k)

the proof of Lemma 2.1 is now complete.

Using this result we can derive a lower bound on T'(m, n),
the number of operations needed to complete a task of m
intervals over n variables. Define,

B(m,n) = min{t|R(t7 [m/n|)>n }

Lemma 2.5 T(m,n) = Q(mﬁ(m,n)) for m > n,
T(m,n) = Q(n + mﬁ(m,m)) form < n.

Proof: Given m and n, let k& = |m/n| and 8 = B(m,n).
Assume that m > n. There are no more than (7) intervals
in a task, therefore,

R(l, Lm/nJ) =2|\m/n| < ZLn(n — 1)/(2n)J <n-1,

from which it follows that 8 > 1, and hence 3 > 4/3. Let
no, = R(8 — 1/3,k), note n, < n by definition of 3. By
Lemma 2.1 there exist a task 7T,,(3 — 1/3,k) of size be-
tween kn,/2 and kn,, whose minimum derivation length

is bounded below by (8 — 1/3)|7n,(8 — 1/3,k)|. Placing

[n/n.| copies of Tn,(8 — 1/3,k) side by side and adding
enough new variables and intervals to adjust the number of
variables to n and the size of the task to m, we derive,

T(mn) > [n/no)(8 —1/3) T, (8 = 1/3,k)|
> n/nol(8 - 1/3)kn, /2
> [nfno)lm/n](8 — 1/3)n./2
> m(B - 1/3)/8 = mp).

Suppose that m < n. Temporarily ignoring n, proceed
as above to create task) over m variables of size m whose
solution time is (m B(m, m)) We can assume that all z; in
the set {zo,...,Tm—1} appear in the resulting task. Else, we
discard the unused variables, renumbering the others from 0
to m’ — 1. Next we add variables {x,,,...,s,_1} and find
an interval [i,m’ — 1] in @ which we replace by [i,n — 1].
Now @ involves all variables, so its cost is (n).

T(m,n) > Q(n + mﬁ(m,m)) O

Hence

The functions R and 3 are akin to Ackermann’s function
and its functional inverse as defined in (Tarjan [16]),

Ally) = 2, §>1;
AG+1,1) = A(3,2), i>1;
Al g) = A(i-LA(Gj-1)), 1,5>2,

and,
a(m,n) = min{ i| A(z, [m/n]) > logn }

The remainder of this section proves that Lemma 2.5 is still
correct if we replace 8(m,n) by a(m,n). We need some
technical facts about A(i,), whose proofs are omitted.

Lemma 2.6 The function A satisfies A(1, 5) > 7 for alli, j.
Proof: By induction. For 1 =1, A(1,7) =2’ > j. Assume

that ¢ > 1. If j =1 then we have A(1,1) = A(i —1,2) > 2
by induction hypothesis. If 7 > 1,

A(G,j+1) = Al — 1, A(4, §)) > A4, 5) > J.

By the strictness of both inequalities, A(1,7+1) > j+1. O

Lemma 2.7 The function A(1,7) is increasing in j.
Proof: Obvious for i = 1. For 1 > 1, we have A(s,j+ 1) =
A(i =1, A(1,5)) > A(4, j) from Lemma 2.6. O
Lemma 2.8 For i > 1, A(i,5 4 1) > A(3,5)°.
Proof: It is sufficient to show that A(i,) > 32, since then
Al j+1) = A(i — 1, A4, 5)) > A(4, j)*. Fori=2,
2 2 2
A2,5) = 2% }”1 > 92° }J222 }J = A(2, -1 > /%,

with the first inequality being strict if 7 > 2. For j = 1 or
2 we check directly that the inequality is true. For ¢ > 2, if
j=1then A(:,1) = A(i — 1,2) > 4. Else,

A(i,j+1) = A(i = 1, A(4,5)) > A(1,5)° > (G+1)°.

Lemma 2.9 For all i and j we have 2240 < A(i+1,7). Proof: We establish that for all i and j, R'(i+1,5) > B(1,7)
and B(i+ 1,7) > R'(4,7), from which the Lemma follows.
Proof: For + = 1, we calculate directly that ALY — It is easy to verify by induction that,
A(2,1) =4. Fori > 1 and j =1, we have,
R'(2,5) = (1/2)2*" 3"

9A(L1) _ 9A(i—1,2) <A(,2) = A+ 1,1).
Then, for i = 1 we can check directly that R'(2,5) > B(1,).

For ¢ > 1 and 57 > 1, we have, If2>1and j =1, then,
2A0IHD) 2 QAC=LAGD) < A (5 A,) < A5, 2°09)) < A(3, A1, /5 G UERRGD.L3) > B(i—2,3) > B(i— 1, 1).
O If:>1and 5 > 1 then,
We introduce an intermediate function to help establish R/(iJ +1) = R/(iJ)R/ (l -1, R/(i7j))
the relationship between A(1, j) and R(¢, k). Define, > B(i- 17J)B<i —2,B(i— Lj)) —B(i—1,j+1),
B(1,5) = 2/, j>1 which proves that R'(i + 1,5) > B(i,j) for all i,5. Now
B(i+1,1) = B(,) 1> 1 consider our claim that B(: +1,7) > R'(¢,7). Fori=1 we
BG.j) = B(ij-UB(i—1BG.j—1), ij>2 haveBlj+1)=2%">2j=R(1j). Fori>1landj=1,

B(i,1) = B(¢ — 1,2) > R(: — 1, 1) by inductive hypothesis.

Lemma 2.10 For alli and j positive integers, A(i+1,7) > Fori>1and j>1,

B(i,7) > A(1, 7). Furthermore, B(1,j) is increasing in j. BGi,j+1) = BG,])B(z —1,BG,]))

Proof: We show by induction that B(i,5) > A(i,§). The > R(i,j— DR (i—1,R(i,j - 1)) > R'(i,5).
functions are equal for i =1. Fori¢ > 1and j=1, B(:,1) =))) o
B(i—1,2) > A(i —1,2) = A(4,1). For i > 1 and j > 1, by We complete the proof by showing B(1 +1,j) > B(i,j + 1)

for i,j > 1. In view of B(i +1,5) > B(i,B(i+ 1,j — 1)),
we need only show B(i+ 1, j—l) > g4+ 1fore,y > 1. The

B(i,5+1) = B(s,])B(z—l B(1,])) > A(l,])A(z—l A,])) > A(m?ngt(qn}jbtpolf_lﬁ ﬁ’-}]i)gves i+Ly—-1)25-2+B(+

the inductive hypothesis and monotonicity of A(s, j),

1 by noting ‘B(2,1) =4 and thus B(i +1,5) > 4
We show by induction that A(i+ 1,7) > B(¢,j). For i =1, for all 2,5 > 1. O
2
‘ 22."2 }J+1 522 }J ‘ Lemma 2.12 For all m and n, with m > n, (m,n) =
A(2,5) =2 =2 > 2" = B(1,5). @(oz(m,n)).
Assuming th?‘t > 1 and' J=1 we have A(z 4+ 1,1) = Proof: Let ¢t = 8(m, n). By the chain of inequalities,
A(4,2) > B(: —1,2) = B(1,1). For j > 1, we use Lemmas
2.6 and 2.8 to derive, A(3t, Lm/nJ) > R <3t —2 Lm/nJ)
B(i,5+1) = B(i,j)B (z -1, B(,])) = R(t, Lm/nJ) = n > logn,
< (z 1, B(i,7) < A(i,B(i,j))2 we deduce 33(m,n) > a(m,n). Let t = a(m,n). From,
< (z,) <A(A(z—l—l,])) R((t—|—4)/3, Lm/"J) = R/(H-z, Lm/"J)

A+ 1,] + 1)
A(t—l—l, Lm/nJ)
oAt lm/n]) o

We omit the proof that B is increasing in j, as it is similar
to that of Lemma 2.7. O

>
>

. . Lo we deduce a(m,n) +4 > B(m,n). That is,
For notational convenience, we change the indices of

R(t,k) by writing R'(¢,k) = R((t + 2)/3,1@)7 and neglect a(m,n) < 38(m,n) < 4+ a(m,n) < 5a(m,n).
the column k = 0 where explosive growth does not occur.
That is, we define, 0
R'(L,k) = 2k, k>1; We therefore have the following lower bound on the
R/(t +1,1) = 3R/(t, 3), t>1; partial-sum problem:
R'(t,k) = R(t,k-1)R(t—1,R (t,k-1)),

Theorem 2.1 If m > n then T(m,n) = Q(m oz(m,n)). If

bk 22 m<nthenT(m,n):Q(n—l—ma(m,m)).

Lemma 2.11 For all ¢ and j, A(i +2,5) > R/(i’j) and Proof: Combine Lemma 2.5 and Lemma 2.12. O
R(i+1,7) > A(Z, 7).

3 An Upper Bound for Multidi-
mensional Partial Sums

A scheme is a method of precomputing sums from a given
set of input variables so that any interval of variables can
be summed up by adding together a small number of these
precomputed sums. Informally, it consists of an algorithm
which first of all specifies how to fill in a memory array
with precomputed sums, and then responds to any query
interval by retrieving a small number of precomputed sums,
presenting their grand total as the weight of the interval.
We refer to the size of the array of precomputed sums as
the space used by the scheme, and the number of partial
sums needed to express any interval sum as the t¢me needed
by the scheme. As it turns out, in a RAM implementation
the overhead of finding the needed partial sums is negligible.

The method of filling the memory array with precom-
puted sums is completely general in that it assumes nothing
about the addition operation or about the particular assign-
ment of values to the input variables. [t is in effect a fixed
map § : X — 8§(X) taking X, an assignment of values
to the input variables, to S(X), the sequence of values in
the semigroup. Our method will have an additional favor-
able property: this map will be calculated at the rate of
one semigroup addition per value of the sequence. That is,
all intermediate results occurring in the setting up of the
scheme are themselves part of the scheme.

The space used by a scheme is the length of the sequence
S(X). Among the subsets of the input variables are the
queries, interpreted as rectangles by arranging the variables
on points of a multi-dimensional integer lattice. For in-
stance, in d dimensions consider indexing the input variables
by d-tuples ¢ = (i1,...,4q). In this situation a query, speci-
fied by a pair of vectors j = (j1,..., ja) and k = (k1,..., kaq),
is the set of all input variables with indices ¢ such that
7 <1t < k. The partial order < refers to coordinate domina-
tion. The scheme provides a map 1" from queries to subsets
of the sequence §(X') such that for any query g,

v€T(q) z€q

this equality being true for any assignment X. The time
used by a scheme is the maximum size of T(q) over all per-
missible queries g. Given the input variable set of size n, a
scheme using space kn and time ¢ is denoted S,(¢, k). By
abuse of terminology, the list S, (¢,k)(X) will also be de-
noted by 8n(¢, k). The suggestion is that a scheme should
always be thought of in its evaluated form — since cells can
only store elements from the semigroup, it is only in its eval-
uated form that the scheme can be represented in memory.
However, one must consider the assignment X as completely
undetermined and general so that the universal nature of the
scheme 1s not undermined.

Schemes are constructed recursively. A query rectangle
is decomposed into a small number of slices, some fat and
some thin, by considering the problem as a one-dimensional
array of (d — 1)-dimensional arrays. The set of (d — 1)-
dimensional arrays over a semigroup, with addition defined
componentwise, is itself a semigroup. The one-dimensional
scheme gives a list of (d — 1)-dimensional subproblems, each

of which is solved recursively. The construction for the one-
dimensional case is given by a two path recursion — one path
solving “small” queries which fit within carefully calculated
blocks, the other path solving “large” queries which span
over our defined blocks, but which therefore allows us to
treat the entire block as a single value.

Given parameters ¢ and k, there is a maximum number of
input variables within which a scheme with these parame-
ters can be constructed. We give growth functions, Ra(t, k),
indexed by dimension, which both guide the choice of block
sizes and guarantee the construction of schemes. If

max{n;|t=1,...,d} < Ra(t, k)

then we can construct a scheme of size kn; x - -+ X nqg which
solves arbitrary queries in time at most t.

The following function i1s the model for all the Rg’s.
By appropriate change of variables, each function Rgq can
be expressed in this form. For t € {1,3,5,...} and k €

{17 47 77 . '}7

R(LK) = 1, k>1;
R(t,1) = 4, t>1;
R(t,k) = R(t,k—-3)R(t—2,R(t,k—3)), tk> L.

Remark that all images of R are integers congruent to 1 mod
3.

Lemma 3.1 For any (¢, k) in the domain of R and any
n < R(t, k), there exists a one-dimensional scheme Sy (t, 2k)
solving any query in time t using 2kn cells. The scheme can
be constructed in 2kn semigroup additions.

Proof: The construction proceeds by a double induction
and is similar to (Yao [21]). Let the set of n input variables
be denoted by {z;|i = 0,...,n —1}. The cases t < 3
and k < 1 are trivial. We therefore assume that ¢ > 3
and k > 1. Let a = R(t,k —3) and b = R(t — 2,a). By
induction, schemes 8,/ (t,2(k — 3)) and Sy (t — 2,2a) can
be constructed for any a’ < a and b’ < b. We show the
construction of Sn(t,2k) for any n < ab. Without loss of
generality we assume that a < n. Let b = [n/a]. We have
the inequalities,

a§a(f)—1)<n§al§§ab.

The b intervals [0,a—1],[a,2a—1],..., [(l;— 1)a, n] partition
the variable set {x;} into blocks of at most a variables each.
The first b—1 blocks contain exactly a variables and the last
block contains @’ < a variables. Schemes S,(¢, 2(k —3)) and
8. (t,2(k — 3)) are constructed inductively. These will solve
any query falling fully inside one of the blocks. For use by
these schemes we reserve memory cells B; ; with ¢ € [0,n—1]
and j € [0, 2(k — 3)]

Queries that span across blocks are handled in two steps.
First the query is shortened so that its ends coincide with
block boundaries. We precalculate and store in cells C! and
C? what it is possible to remove in this manner. That is,
for 1 € [0,n —1]:

ol {x, fore = —1moda,orifi =n—1;
L zi + Cil-|-1 else.

2 {x, for ¢+ = 0 mod a;
L zi + Cf_l else.

The shortened query can now be considered as a query over
variables Cé,' = Tai + Tait1 + -+ Taig)—1- We seek to
answer this query in time t — 2. With the two remaining
time units we add the appropriate C! to recover the original
query. We reserve cells D for a scheme to answer this query
over reduced variables C}. Since b = R(t — 2,a) and b <
b, there exists a scheme S;(t — 2,2a) which can solve the
shortened query. Since we have 2ab cells available for D,
the induction is complete. Indeed,

2kn — |B| - |C'| = [C?| - |D| =
2kn—2(k—3)n—n—n—2al;
= 4n—2a(b—1)—2a>2(n—a)>0.

Discussion now turns to the linear-time constructibility of
these schemes. We put the additions used to construct the
scheme in one-to-one correspondence with memory cells. We
also need to consider how values for a and b are selected at
each level of the recursion. For this selection we refer to the
table R, and therefore must build that section of R which
contains values less than n. We shall show that R(¢,k) is
increasing in both ¢ and k, so that the required section can
be constructed by the program,

1:=5;

while (R(7,4) < n) begin
3=7;
while (R(i,5) <n)j:=j5+3;
t:=1+2;

end ;

Note that we have omitted the calculation of R(z, j) as well
as the calculation of R(¢, 7) in its constant rows and column.
Clearly, the nonconstant rows of R(t,k) are increasing.
Furthermore we have R(21 + 1,4) = 4' and hence R(2i +
1,k) > 4°, for k > 4. Note that, for ¢ > 0,
R(2i+1,k+3) = R(2i+1,k)R(2i —1,k")
> R(2i+1,k)47,

since k' > 4. We derive the lower bound,
R(20+ 1,35+ 1) > 4U~17
for all 7,7 > 0. So, fors,5 > 1,

R(2(:4+1)4+1,3j+1) >
R(2i+ 1L R2(i+ 1)+ 1,3(j — 1) + 1))
R (20 +1,4'07Y)
R(214+ 1,65 +4),

ANV

from which it immediately follows that the number of values
less than n in the nonconstant rows is at most proportional
to,

(k| R(5,k) < n}] = Olog n).

Given 2k storage cells and n variables, where k is con-
gruent to 1 mod 3 and k& > 4, find the smallest ¢ such that
R(t,k) > n. If the inequality is strict, we have left the con-
structed segment of the table, and should reassign & to be
the smallest appropriate integer such that R(t,k) > n for
this ¢. Now we are assured that R(¢,k —3) < n and hence
lies in the constructed segment of the table. As a result, the

values of a, a’ and b are obtainable from the above construc-
tion. The remainder of the construction uses up one cell of
memory for every semigroup addition performed, hence the
number of additions is the number of cells. O

Schemes for multidimensional variable sets are now con-
sidered. In d dimensions, the variables are indexed by vec-
tors of integers. Queries are d-rectangles with integer coor-
dinates. For each dimension, a function R4(t,k) is defined
for all positive integers t and k. We have,

Ri(tk) = {(ff([th(zw [k/2)1ey) if >0,k > 1,

else,

where |s];(;) denotes the greatest integer < s that is con-
gruent to ¢ mod j. In the d-dimensional case, d > 1, let

{l“(il,...,id) |iJ € [07 ny — 1] }

be the variable set, that is, a d-dimensional array. If n; <
Ra(t, k) for y = 1,...,d, then there exists a scheme using
an k cells per variable, amortized, and which answers any
query in time ¢t. We construct this scheme, having defined,

Ra(t k) = Ry (| V2], [VR]).

Lemma 3.2 Let n = (n1,...,nq) where nj < Rq(t, k) for
all j. There exists a d-dimensional scheme Sy (¢, k) for the
set of input variables x; for i = (i1,...,1q) in the range 0 <
t < n. The scheme can be constructed by usingkni X---Xngqg
semigroup additions.

Proof: We assume t = 74 and k = 9 for integers 7 and
k. 1If this is not true, replace ¢t or £ by a smaller integer
which is a perfect d-th power. Lemma 3.1 deals with the
case d = 1. For d > 1, we reduce the dimension by one, and
by a recursive construction the result follows. That is, we
show how a d-dimensional problem is essentially the product
of two problems of dimensions 1 and d — 1.

Since na < Ra(t,k) = Ra(7% k%) = Ri(7,5), we con-
struct a one-dimensional scheme over ng variables which
uses k cells per variable, amortized, and answers any query
in time 7. The semigroup over which this construction
proceeds is the semigroup of (d — 1)-dimensional arrays,
of dimension (ni,...,n4—1), with entries taken from the
original semigroup and addition defined componentwise.
Thus each “cell” of this construction is itself an array of
ny X --- X ng—1 cells, and each addition of the construc-

X ng—1 additions. Recursively we
d—1 _d—1
KYT)

tion involves ng; X ---
construct a scheme S,/ (7
the one-dimensional construction, which is possible because
n; < Ra(r% k%) = Raa (797, 6%) for i = 1,...,d. Re-
mark that a scheme necessarily contains all singletons in its

for each array given by

domain, because a singleton is a valid rectangle. Therefore,
the cells used by the one-dimensional scheme are fully ab-
sorbed by the recursive constructions.
Hence the total space is,
|Sng (7, @) |8, (771, K71 (kna)(x*"'m1 - nas)

= kni - -nqg.

Each (d — 1)-dimensional scheme returns a collection of at

1

most 747! semigroup values in response to a query. The

one dimensional query has divided the original query into at

most 7 subproblems, hence any query is answered in time
at most 74 = ¢. O

The remainder of this section expresses the time bound
for the constructed d-dimensional scheme in terms of the
inverse Ackermann function. Define,

Ba(k,N) = min{ t| Ra(t, k) > N}.

Lemma 3.3 For k > 149 we have Ba(k,N)

O(B1(k,N)?).

Proof: From Ra(t% k%) = Ri(t,k) we know Ba(k? N) =
(ﬁl(k,N))d. Because Ry(t, k) increases with k, we have
Bi(k,N) > pBi(k% N). To establish the inequality in the
other direction we prove that given d, there exists a T' such

that for all k > 14, Ri(t + T, k) > Ri(t,k%). From this it

follows that 8:1(k, N) < 81 (k%, N)+T. By,
Ri(t+T,k) = R(t+TKk/2)
> R(t+7T—2,R(t+T,(k/2) - 3))
> Ra(t,2R(T, (k/2) - 3)),

we reduce the problem to showing that for 7' large enough,
R(T,(k/2) —3) > k*. Writing T = 27 +1 and (k/2) —

3k 4+ 1, our hypothesis on &k give k > 1. In Lemma 3.1 we

derived R(ZT + 1,35 + 1) > 4775 Chosing T so that

4771 > 14% the inequality is assured. O

Lemma 3.4 Foralli,j > 1, R(2(i+1)+1,3(j+1)+1) >
A7) 2 R(2(1= 1)+ 1,3(j = 1) + 1).

Proof: We actually have, R(G+1)+1,3(7+1

)+
3A(4, j)+4. Recall the lower bound R(2:+1,35+1) > 4 4=
from the proof of Lemma 3.1. For ¢ =1,

t12

R(53(j+1)+1) >4 > 3.2/ +4=3A(1,5) +4.

For:>1and 5 =1,

R(2(i+1)41,7) R(2i4+1,R(2(i+ 1)+ 1,4))
R(2i41,10) > 3A(1 — 1,2) + 4

3A(i,1) + 4.

ANV

For:>1and 5 > 1,
R(2(6+1)+1,3(j +1) +1) >

R(2i4+1,R(2(i+ 1)+ 1,3+ 1))
where 3(5'+1)+1 = R(2(i+1)+1,35+1) > 3A(i, j—1)+4.
Therefore 5° > A(i,7 — 1) and,

R(2(i+1)+1,3(j +1) +1) >
BA(i— 1, A(i,j— 1)) +4
= 3A(i,5) +4.

This establishes the first inequality. For ¢ =1 or 7 = 1 we
directly verify that

Al) > R(2(1— 1)+ 1,3(j — 1) + 1).

Recall that for all @ > 1, A(i,j + 1) > A(4,5)* (Lemma
2.8). Using this and the lower bound on R(t, k) we derive
for ¢,5 > 1,
R(2(i-1)+1,3j+1) =
R(2(i—1)+1,3(j — 1) +1)
R[2(i-2)+ LR(2(i— 1)+ 1,3(j — 1) + 1)]
R[2(—2)+ L,R(2(i — 1)+ 1,3G —)+ 1)]
< R[2(i—-2)+1L3(R(2(6 - 1) +1,
3G—1)+1)—2) +1]
Ali=1L,R2(- 1)+ 1,3 —1+1)) —1]
Ali-LR(2(-1+ 1,3 —1)+1)]
Ali =1, A(i,5)) = A(i,j + 1).

Lemma 3.5 For k > 14,1 (k, n) = O(a(kn,n)).
Proof: Recall that A(i+1,5) > 2409 (Lemma 2.9). Given
i such that A(7,k) > logn we have,

logn < n < 2% < A1 k) < R(2(i42)41, 3(k+1)+1),

hence 2(a(kn,n) +2) +1 > 31 (6k+8,n). If R(2i+1,3(k —
1) + 1) > n then,

logn <n < R(20+1,3(k—1)+1) < A(i+1,k),

and therefore (1/2) (ﬁl(Gk—4, n)—l) +1 > a(kn,n). Clearly,

Ri(i+2,k) > Ri(4, Ri(i+ 2,k — 6)) > Ru(4,6k +d),

for sufficiently large @, provided that we are in the third
column of Ry, that is, k¥ > 14. Therefore, 81(6k + d,n) +
2 > fi(k,n). Also, Si(k,n) > Bi(k',n) for k' > k, by the

monotonicity of R. In conclusion,

Bi(k,n) < pi(6k+8,n) <2a(kn,n)+5
< Bi(6k —4,n) +6 < Bi(k,n) + 6.

We combine the constructions of Lemmas 3.1 and 3.2 with
the above results to state this section’s result.

Theorem 3.1 In every dimension d, given a problem of
sizen = (n1,...,nq) and any k > 14%, there exists a scheme
using k cells per variable, amortized, which solves any query
in time O(oz(kN7 N)d). The scheme can be constructed in

time proportional to its size.

Proof: We select a ¢ for which Rq(t, k) > N. Using Lemmas
3.2, 3.3 and 3.5, we deduce t = O(oz(kN7 N)d). O

To summarize this section, we have given an algorithm
which prestores partial sums of a multidimensional array
such that only a small amount of additional computation
need be done to compute any rectangular sum in the ar-
ray. This is true whenever the elements have a commuta-
tive semigroup structure. Omitted from this abstract is the

proof that the method can be implemented on a RAM with-
out adding any asymptotically significant overhead. Proving
the optimality of our solution is left as an open problem.

Acknowledgments. This research was supported in part
by the National Science Foundation under Grant CCR-
8700917.

References

(1]

(2]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

Agarwal, P., Sharir, M., Shor, P. Sharp upper and lower
bounds on the length of general Davenport-Schinzel se-
quences, manuscript, 1988,

Alon, N., Schieber, B. Optimal preprocessing for an-
swering on-line product queries, TR 71/87, The Moise
and Frida Eskenasy Institute of Computer Science, Tel
Aviv University, 1987.

Bentley, J.L. Decomposable searching problems, Info.
Proc. Lett. 8 (1979), 244-251.

Bentley, J.L. Multidimensional divide and conquer,
Comm. ACM, 23 (1980), 214-229.

Bentley, J.L., Maurer, H.A. Efficient worst-case data
structures for range searching, Acta Informatica 13
(1980), 155-168.

Chazelle, B. Filtering search: a new approach to query-
answering, SIAM J. Comput. 15 (1986), 703-724.

Chazelle, B. A functional approach to data structures
and its use in multidimensional searching, STIAM J.
Comput. 17 (1987), 1988, 427-462.

Chazelle, B. Lower bounds on the complexity of multidi-
mensional searching, Tech. Rep. CS—-TR-055-86, Dept.
Computer Science, Princeton University. Abridged ver-
sion in Proc. 27th Annu. IEEE Symp. on Foundat. of
Comput. Sci. (1986), 87-96.

Chazelle, B., Guibas, L.J. Fractional cascading: Il. Ap-
plications, Algorithmica 1 (1986), 163-191.

Fredman, M.L. A lower bound on the complexity of or-
thogonal range queries, J. ACM 28 (1981), 696-705.

Hart, S., Sharir, M. Nonlinearity of Davenport-Schinzel
sequences and of generalized path compression schemes,
Combinatorica 6 (1986), 151-177.

Lueker, G.S. A data structure for orthogonal range
queries, Proc. 19th Annu. IEEE Symp. on Foundat.
of Comput. Sci. (1978), 28-34.

Mehlhorn, K. Data structures and algorithms 3: mul-
tidimensional searching and computational geometry,
Springer-Verlag (1984).

Overmars, M.H. The design of dynamic data structures,
LNCS, Vol. 156, Springer-Verlag, 1983.

Tarjan, R.E. FEfficiency of a good but not linear set
union algorithm, J. ACM, 22 (1975), 215-225.

Tarjan, R.E. Complexity of monotone networks for
computing conjunctions, Discrete Math. 2
(1978), 121-133.

Vaidya, P.M., Space-time tradeoffs for orthogonal range
queries, Proc. 17th Annu. ACM Symp. on Theory of
Comput. (1985), 169-174.

Annals

10

[18]

[19]

[20]

[21]

[22]

Willard, D.E. New data structures for orthogonal range
queries, SIAM J. Comput. 14 (1985), 232-253.

Willard, D.E. Lower bounds for dynamic range query
problems that permat subtraction, Proc. 13th Internat.
Coll. on Autom., Langu. and Program. (1986)

Willard, D.E., Lueker, G.S. Adding range restriction

capability to dynamic data structures, J. ACM 32
(1985), 597-617.

Yao, A.C. Space-time tradeoff for answering range
queries, Proc. 14th Annu. ACM Symp. on Theory of
Comput. (1982), 128-136.

Yao, A.C. On the complexity of maintaining partial
sums, STAM J. Comput. 14 (1985), 277-288.

