774

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-33, NO. 9, SEPTEMBER 1984

Computational Geometry on a Systolic Chip

BERNARD CHAZELLE

Abstract — This paper describes systolic algorithms for a num-
ber of geometric problems. For the sake of realism we restrict our
investigation to one-dimensional arrays whose communication
links with the outside are located at the end cells. Implementations
yielding maximal throughput are given for solving dynamic ver-
sions of convex hull, inclusion, range and intersection search,
planar point location, intersection, triangulation, and closest-
point problems.

Index Terms — Analysis of algorithms, computational geome-
try, convolution, parallel computation, pipelining, real-time algo-
rithms, systolic arrays, VLSI.

[. INTRODUCTION

HE pervasive influence of VLSI in the computer science

community has given research on parallel computation
its second wind. In contrast with the traditional conception of
parallel systems, where several computers are each assigned
complicated tasks, VLSI computation, especially of systolic
nature, involves the simultaneous use of a great number of
very simple processors [18], [26].

As commonly referred to, systolic arrays are one- or two-
dimensional arrangements of simple cells locally connected
[18]-[21]. The essential features of systolic cells are their
simplicity, regularity, and modularity. Performance-wise,
these characteristics are definite assets, as they ensure high
levels of pipelining and multiprocessing, hence providing
massive parallelism. They also affect the economics of the
approach by making circuit development more cost effective.
Indeed, with dropping costs of electronic components and
increasing levels of circuit integration, systems designers are
facing the prospect of putting hundreds of thousands of gates
on a single chip, which so far constitutes a formidable chal-
lenge. Systolic architectures are one answer to this challenge.
Their modularity permits the designer to decompose the sys-
tem’s architecture into building blocks which can be used
repetitively with simple interfaces.

From the origin, the epithet systolic has been reserved to
special-purpose devices, such as multipliers, priority queues,
pattern matchers, etc. With this perspective, systolic arrays
were built with wired-in cell implementations, which were
not to be a handicap as long as the overall reconfigurability
of the array, an essential feature of a systolic architecture,
was preserved. Thus, the user was essentially given the free-
dom to tailor the array to the size of his problem, without

Manuscript received November 3, 1982; revised November 10, 1983. This
work was supported by the Defense Advanced Research Projects Agency under
ARPA Order 3597, and the Air Force Avionics Laboratory under Contract
F33615-81-K-1539.

The author was with Carnegie-Mellon University, Pittsburgh, PA 15213. He
is now with the Department of Computer Science, Brown University, Provi-
dence, RI 02912.

having the possibility of modifying the cell definition. If one
wishes, however, to optimize the cell specifications or to
allow a more versatile use of the systolic device, it is essential
that the cell behavior be made programmable [9]. By doing
$0, it becomes possible to experiment with different systolic
implementations of a same scheme without having to build
different chips and be caught in the bottleneck of fabrication
turnaround. Also, programming the array allows the user to
make it fulfill not just one function, but a whole range of
related tasks. The merit of this approach partly resides in the
combination versatility and high performance which it af-
fords. It must also be mentioned that it serves pedagogical
purposes by putting systolic design into the hands of the
laymen, thus making the conception and use of very high
performance devices more accessible.

The purpose of this work is to present a class-related sys-
tolic processor based on the approach just described. This
processor is a programmable systolic array aimed for solving
a wide class of geometric problems in a highly unifying
manner. This class of problems contains many of the most
basic questions of computational geometry. Among others,
we will find dynamic versions of convex hull, inclusion,
range and intersection search, planar point location, inter-
section. triangulation, and closest-point problems. When-
ever possible, we will insist on the dynamic aspect of the
problem, for it is often where systolic solutions are at their
best. On the other hand, many applications areas involve
problems of an inherently dynamic nature, with which we
must cope. For example, air traffic control necessitates the
real-time solution of closest-point problems on an ever-
changing set of points.

After discussing the advantages of systolic architectures in
terms of increased adaptability and cost effectiveness, we
should investigate the gains in performance to expect from a
systolic treatment of computational geometry. To begin with,
let us roughly describe our systolic architecture. We consider
only one-dimensional arrays, i.e., arrays with a single string
of cells, each connected to their one or two neighbors. Fur-
thermore, communication with the outside world (typically,
a host computer) takes place solely at either of the end cells.
It results from this configuration that although there may be
full parallelism in the arrays, the number of I/O operations at
any time is always bounded by a constant. We do not make
this assumption for the sake of simplicity, but for the sake of
realism. Indeed, in most applications, the systolic device will
receive its data from a sequential computer, therefore the
assumption we are making is not a choice but an inevitable
reality.

Being now ready to turn our attention to performance
considerations, we immediately derive, from the assumption

0018-9340/84/0900-0774%01.00 © 1984 IEEE

CHAZELLE: COMPUTATIONAL GEOMETRY ON A SYSTOLIC CHIP

above, that N pieces of data cannot be processed in fewer than
N systolic steps. This may seem like a serious handicap,
when compared to the O(N?) or O(N log N) running times
typically offered by sequential geometric algorithms. One
may hope at best the gain of a factor N or log N; however,
asymptotic figures based on big-Oh considerations are not
too relevant in the matter. Indeed, the sole performance goal
in our case is to maximize the throughput, i.e., have the
systolic array keep up as closely as possible with the
host/device data rate. This data rate is dependent on the pin
bandwidth of the chip, or sometimes in real-time applica-
tions, on the rate at which data are made available to the host
by the outside (e.g., radar, sensor). Note that the new empha-
sis made here reflects yet another departure from the tradi-
tional study of computational complexity.

It is often the case that a circuit will receive streams of
data, each of them pertaining to a different instance of the
problem. In this case, maximizing the throughput is called
pipelining, and to measure the adequacy of the circuit to
respond to a stream of requests, we look at its period. a
concept introduced in {37]. Roughly, the period of a circuit
is the minimum necessary delay between two consecutive
sets of inputs. Of course, it is highly desirable that our sys-
tolic designs have period O(1), which often involves pre-
venting the occurrence of clusters or of the presence of cells
waiting for others in order to complete execution. We will
discuss these issues in detail later on.

In the next section, we describe the general features of the
geometric systolic array, then proceed with a description of
the algorithms in the remaining sections.

II. THE GEOMETRIC SYSTOLIC CHIP

Most of the systolic arrays which we will describe in this
paper have the basic outlook of Fig. 1. Interaction with the
outside world takes place solely at the end cells, called
boundary cells. All of the other cells, called generic, are
alike, and although boundary cells are assigned additional
tasks for I/O purposes, they usually do not differ drastically
from the generic cells. Each cell contains a small amount of
memory, in the form of a few registers. We distinguish two
kinds of registers.

1) Working registers for either storing data (point, edge.
angle. - -+ ,) or for providing temporary storage for the
computations.

2) I/O registers for communicating data between adjacent
cells.

To avoid dealing with implementation details at this point,
we may regard I/O registers as being conceptually “located”
on the connection wires between adjacent cells. This shows
that the intercell links are critical sections of the com-
putation, and therefore special care must be given to the way
they are used. These registers are protected by gates which
can be either open or locked according to the current clock
phase. We assume that the whole systolic array is syn-
chronous, and that each cell operates in lock-step. For sim-
plicity, we also assume the existence of two clocks ¢, and @,
beating in opposition. This allows us to separate input and

775

'
i
I

Boundary Genenc Genenc Boundary

HOST 5»:1 e gl pl | [6-3HOST

Fig. 1. The one-dimensional systolic array.

output stages easily by requiring that input (respectively,
output) gates should all be open (respectively, locked) at ¢,
and vice versa at ¢ (Fig. 2).

The lapse of time between two phases ¢, is called a svstolic
cvele. It is to be distinguished from the clock cycle internal
to each cell, which is likely to be much shorter. Indeed, a
systolic cycle must correspond at least to a number of internal
clock cycles necessary for a cell to complete the execution of
its stored program. We should observe that this clocking
arrangement is not unique: systolic arrays with asynchronous
and/or adjacent cells operating in opposite cycles are per-
fectly feasible. so the choice made here serves only explana-
tory purposes. The only bit of notation, used throughout,
that needs be introduced here concerns the representation of
points by capital letters A. M, X, - - -, with a; denoting the ith
coordinate of point A in a Cartesian system of coordinates.

1II. ConvEx HuLL PROBLEMS

Estimating a population parameter in statistics, or simulating
chemical reactions, often requires computing the convex hull
of a set of points in a dynamic fashion [35]. For static and
dynamic solutions to convex hull problems on a conventional
machine, see [16], [17], [29], [30], {35]. Throughout this paper
we will assume that all problems are cast in R*. To fulfill our
purposes, we will devise a systolic structure which supports the
following operations.

1) Insert/delete point M.

2) Report all the vertices of the convex hull in clockwise
(or counterclockwise) order.

3) Determine whether an arbitrary point M lies inside or
outside the convex hull.

Note that M is either a new point or a point already in the
structure, depending on the type of query considered.
The operation “delete point M™ always refers to a vertex
of the convex hull, however. As usual with dynamic convex
hull routines, deletions and insertions proceed in very
different ways. To cope with this problem, we will describe
two systolic arrays, CH1 and CH2. supporting the follow-
ing operations.

Array CHI:

1) Insert/delete point M.

2) Report all the vertices of the convex hull (in arbitrary
order).

3) Determine whether point M lies inside or outside the
convex hull.

Array CH2:

1) Insert point M.

2) Report all the vertices of the convex hull in clockwise
(or counterclockwise) order.

3) Determine whether point M lies inside or outside the
convex hull.

776

X / x
/ <« - ZA
QI Cel! — Cell . ‘ —_— Cell !
i1 Vi C v, : 1+17
x X
ol ‘ ! Write-Out
®. Celt Cel Cell

Fig. 2. Handling critical paths.

As we will see in detail later on, the data representation
differs significantly between CH1 and CH2. Indeed, while
the first array keeps track of the hull vertices in arbitrary
order, the latter stores the edges of the convex hull in clock-
wise order. This distinction will be important in order to
achieve optimal throughput. Note, however, that in both
cases the input is given in the form of query signals, query
points, or new points to be inserted or deleted. We will see
later on that in order to support the operations listed at the
beginning, it suffices to concatenate CH1 and CH2 together.

A. The Array CH1

CH1 consists of N cells, so as to handle up to N points at
any given time, each cell storing one point. We will assume
for the time being that the number of points stored p is very
near N (not so near, though, that insertions would immedi-
ately cause overflow). At the end of the section, we will
consider the case where p may become significantly smaller
than the capacity of the array. All operations (updates and
queries) are initiated at the input cell with the answers ema-
nating from the output cell (Fig. 3). Each cell stores at most
one point, and the order of the cells in the array will not, in
general, coincide with the order of the points around the
convex hull. Because of deletions, the array may have holes,
1.e.. cells that do not store any point, although surrounded by
cells which do.

Implementing Operation 1 is straightforward. Points to be
inserted are pumped into the left cell, and travel from left to
right stopping at the first vacant cell. A point to be deleted is
input in the same way, moving from left to right until it
encounters the cell where its copy is stored, which it then
marks as vacant. Note that, as mentioned, the array does not
keep track of the order of the vertices around the convex hull.
Operation 3 relies on the following geometric fact, whose
proof we may omit. We define a wedge as either of the two
regions comprised between two half-lines emanating from
the same point. A wedge can be either reflex or convex
depending on whether the area chosen forms a reflex or non-
reflex angle.

Observation 1: Let My, - -+, M,., be a set of p points in
the plane. A point M lies outside the convex hull of
My, -+ M, if and only if there exists a convex wedge
centered at M which contains all the points M,, - - - M,

This observation shows that we simply have to make the
query point M travel from left to right, keeping track of
the smallest convex wedge centered at M that contains all the
points encountered so far. Note that this wedge represents
the widest nonreflex angle (MM, MM,) which can be formed
so far. Let T denote this angle which, for simplicity, we

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-33, NO. 9, SEPTEMBER 1984

Input Genenc

M R

Genenc Output

HOST e .

K- HOST

EERER Ty SRS
N

Fig. 3. The overall structure of the array CHI.

denote (M, M;, M;). Updating T at each step can be done by a
trivial case analysis, as illustrated in Fig. 4. To alleviate the
notation, we define the function F(M, A, B) to indicate on
which side of AB the point M lies. F(M, A, B) is the sign of
the expression um, + vm, + w, where uX + v¥ + w =0
is an equation of the line passing through A and B, i.e.,
W =a—b, v=>5b —a;,w=ab, — ab,. This pro-
vides us with an easy characterization of whether two
points M, P lie on the same side of AB, i.e., they do iff
F(M.A.B) = F(P,A,B). For simplicity, we will always as-
sume that no three points are ever collinear (relaxing this
requirement involves adding unessential tedious details to the
algorithms, so it is legitimate to allow such simplifications).
The point M will travel across the array, along with the
current value of T, examining each new point encountered for
a possible update of T. Testing T against a new point C leads
to the operations described in Fig. 4. As soon as a point C is
found yielding a reflex angle with respect to A or B, a flag
(traveling alongside M) can be set to indicate that M has
already been determined to lie inside the convex hull. If the
flag is never set during the entire traversal of M, the point is
declared lying outside the convex hull.

The handling of Operation 3 should be clear by now, so we
can proceed with Operation 2. One solution would be, in a
first stage, to output copies of all the points, then in a second
stage, to reinput them one after the other, executing
Operation 3 on each of them. To achieve the same result in
place and thus maximize the throughput, we must trigger the
motion of each point across the entire array so as to be able
to compare their relative position against all the others. The
problem is to ensure a regular flow that prevents moving
points to overtake or run into each other. To overcome this
difficulty, we should regard the systolic array as a strip of
paper. The idea is to pick up the strip at the input cell end and
fold it over, pulling the input cell over from left to right
(Fig. 5). By doing so, each point will be indeed brought in
contact with each cell in the array. While traveling, each
point will carry along its current wedge T, as defined earlier.

Atany time, there are two types of points to distinguish: on
the one hand, the points not yet in motion, and whose storing
cell is responsible for the updating of their associated wedge;
on the other hand, the points already pulled over and travel-
ing to the right. These points will travel along with their
associated wedge, updating it at each visit of a new cell. The
updating is of the same nature as in Operation 3. Note that
the left end of the folded strip will move twice as slowly
as the right end. For this reason, no operation on the systolic
array should be initiated within N systolic cycles after the
start of Operation 2. This will ensure that no query will ever
propagate to a cell already engaged in a computation for a
previous query. Note that this delay still ensures optimal

A - - e eT—— A S

CHAZELLE: COMPUTATIONAL GEOMETRY ON A SYSTOLIC CHIP

M
HAMB) = FICMB)
T: unchanged
A B HBM.A) = FCMA)
C
- M IAMB) - RCMB)
! T &~ (MCB)
1
F(BM.A) 7 FCMA) i
B
A
FAM.B) + HCMB)
l T €— (MAQ)
F(BM.A) = FCMA)
C
HAM.B) # FCMB)
M 1sinside
convex hull
M F(BM.A) 2 FRCMA)

A B

Fig. 4. Testing inclusion in the convex hull.

s

o

Fig. 5.

The fold-over operation.

throughput as long as the number of points stored is on the
same order of magnitude as the size of the array. To imple-
ment this fold-over operation, we need essentially two sig-
nals: one is the query itself, which follows the right end of the
covering strip; the other follows the other end, i.e.. the front
of the folding strip. Keeping track of the front is necessary so
as to signal the next cell to be started that at the cycle follow-
ing the next, it will have to send a copy of itself to the right,
thus becoming the current left front of the covering strip.
Array CH1 is quite simple and we do not feel the need to
elaborate further on its description. Details of the cell imple-
mentation for CH2 will be given in the next section, how-
ever, because of the more complex nature of the algorithm.

If the actual size of the convex hull p is significantly
smaller than N, we notice some inefficiency in the scheme
just proposed that might jeopardize the maximal throughput
feature of the array. First of all, there is no need for a delay
of N systolic cycles after the start of Operation 2. A reduced
delay of roughly p cycles will indeed prevent any subsequent
query to overtake the front of the folding strip, and will
therefore be sufficient (provided that the array is free of large
vacant gaps). Also, while the one-way scheme grants maxi-
mal throughput, a single query takes on the order of N cycles
to be answered. We could possibly reduce this delay to a
figure proportional to p by requiring each answer to reverse
its motion as soon as it is computed, and thus be output
through the “input” cell. These modifications are important

777

at the implementation level, for they grant interesting trade-
offs between performance and design simplicity. These are
design and not conceptual issues, however, and are as such
beyond the scope of this paper.

B. The Array CH2

This structure supports only insertions, but in return it
provides an ordered description of the convex hull at any
time. Also, since the array stores only vertices of the convex
hull, it can support an arbitrary number of insertions, as long
as this convex hull always keeps a number of vertices on the
order of N. To begin with, let us give the geometric back-
ground behind the algorithm. Assume that M, - -+, M,_, are
the vertices of a convex p-gon P, given in clockwise order.
Let M be an arbitrary point outside P. Considering the infinite
line passing through an edge e of P, it is easy to see that
adding M to the convex hull will cause the disappearance of
e if and only if the line lies between M and P. The following
result is simply a more formal statement of the remark above.
and we leave out the proof (see illustration in Fig. 6). Once
again we shall assume that no three points may be collinear.
F is the function defined in the previous section. For clarity,
we will use the notation F(X,Y,Z) < 0 (respectively, > 0) to
denote F(X,Y,Z) = “—" (respectively, = “+7).

Observation 2: Let M. -+, M,_, be the vertices of a con-
vex p-gon P. in clockwise order. Let M be an arbitrary point
and Q denote the convex hull of P U {M}.

1) M lies inside P iff F(M. M, M,.,) <0, for all i;
0=i=p -1 (modp).

2) M:M,., is an edge of Q iff F(M,M,.M,.,) < 0. Also,
if M does not lie inside P, it is a vertex of Q and its ad-
jacent vertices are, in clockwise order, M, and M,, defined
uniquely by F(M,-,,M,. M) <0, FM,.,,M,, M) <0,
FM, M M) <0,and FM,.,,M.M,) <0.

The array CH2 has the same overall structure as CH1
(Fig. 3). Instead of a point, each cell now stores an edge of
the convex hull, however. and the left-to-right order in the
array corresponds to a clockwise traversal of the boundary of
the convex hull. Operation 1 (inserting point M) causes M to
travel from the input cell to the output cell, computing the
function F defined above in order to determine whether M lies
inside the convex hull. If it lies outside, two edges have to be
added to the structure, and in general, a bunch of consecutive
edges (at least one, anyhow) must be removed. More pre-
cisely, assume that M\M,.,, -~ ,M,_\M; are the consecutive
edges of P to be removed. Upon encountering M;M,.,, M
must cause the cell currently visited to substitute M;M for
M.M..,. All the subsequent cells will delete their contents,
until M encounters the first edge (M;M,.,) not to be affected
by the insertion of M. At this point. the current cell must hand
the cell M;M,., to its right-hand side neighbor, and keep the
edge MM, in store. M has now ceased to cause changes in the
array, and it can terminate its motion. However, there is now
one cell in the array with two edges.

To repair this anomaly, we make sure that the cell keeps its
additional edge but forward its former contents to its right
neighbor. This only causes to shift the anomaly one cell to the
right, but iterating on this process will eventually cause the

778

Mé
=

Domain { X | FiXMMv) <0}

\

\

Fig. 6. Computing convex hulls in clockwise order.

last nonvacant cell to release an edge to its neighbor, which
solves the problem. This phenomenon is known as rippling,
as it mimics the propagation of a wave on water. We should
observe that if the last nonvacant cell has no right neighbor,
overflow must be reported. However, the insertion may have
Just caused the deletion of a number of edges, in which case
reporting overflow would be undesirable. In general, we
pose as a requirement that: “No overflow should be reported
if there is any vacant cell in the array,” no matter where. To
comply with this rule. we must ensure that vacant cells which
have edges on their right-hand side, i.e., holes, must be filled
by edges from the right. To do so, it suffices to have each cell
always check whether its left-hand side neighbor is vacant, in
which case it must pass its contents to it. As a result, it
appears that, in general, two opposite motions will take place
within the array: one, to the right, corresponds to queries and
insertions, while the other, leftwards, is meant to fill the
holes just created.

Operation 2 can be implemented in the same manner as
CHI, folding the array over itself, with the difference that no
computation is required in this operation since the edges are
already ordered around the convex hull. An alternative is to
pump out all the edges of the array through the input cell,
which will give the edges in clockwise order (note that the
array will then no longer exactly conform to Fig. 3 since the
left end-cell should now be labelled input/output cell instead
of simply input cell). Operation 3 is a simple application of
Observation 2, similar to Operation 1, yet without altering
the state of the array. The query point M travels left-to-right,
checking its location with respect to each edge in turn. If M
is always found to lie on the same side of the edge as the
interior of the polygon, inclusion must be reported, otherwise
M lies outside the convex hull.

If the capacity of the array is significantly larger than p, the
size of the convex hull, we face the same issues mentioned in
the previous section but our previous comments still apply.
Aside from this concern, it is clear that CH2 confronts the
designer with a whole set of problems that did not apply to
CHI1. The most delicate of them comes from our insistence
on preventing spurious overflows by constant hole checking.
For this reason, we must take a closer look at the imple-
mentation of CH2. In order to preserve the conceptual sim-
plicity of this paper, these technical considerations appear
in Appendix.

The last item which we must examine is the coupling of

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-33, NO. 9, SEPTEMBER 1984

CH1 and CH2 mentioned at the beginning of this section.
If we concatenate CH2 to the right of CH1, we add the
capability of ordered convex hull report to the present func-
tionality of CH1. Indeed, a report signal will trigger a fold-
over operation in CH1, which will in turn feed every point of
this array into CH2. The latter array will then proceed to
insert each of these points, thus forming the ordered list of
convex hull edges. Finally, after a specified delay (see Ap-
pendix for a discussion on interquery delay), a report signal
from CH1 to CH2 will complete the computation, with all
the edges being output through either the right or left end-cell
of CH2, depending on the scheme chosen. Note that the
fold-over operation in CH1 can be released from any convex
hull computation, if desirable, since CH2 must take up this
task anyway. Synchronizing the entire process entails, in
particular, specifying the number of cycles CHI1 must wait
before receiving any further query. This delay depends on the
relative speeds of CH1 and CH2, but is easily seen to involve
at most N cycles, up to within a constant factor.

IV. INCLUSION, INTERSECTION,
AND CLOSEST-POINT PROBLEMS

We next show that many of the most common geometric
problems can be solved by means of a simple unifying
scheme. The underlying idea, already used in arithmetic or
pattern matching [12], [18], [20], exploits the inherent suit-
ability of systolic designs to testing each input data against
the contents of each cell, or more precisely their ability to
perform pipelined convolution-like computations.

Let §,.---,Sy be the data stored in the array, and let
a, -, a;denote alist of queries in the order with which they
arrive at the input cell; the goal is to compute for each query
a, the value of T}Y', defined by the recurrence relation

Ttk()) — 0
Ti-” = F(Tl(:[-“, Siay) .

Fig. 7 sketches a systolic solution for this class of prob-
lems. As we will see, it is possible, in most cases, to make
the systolic scheme dynamic, that is, capable of handling
updates in the array. If no order among the S,’s is required, a
delete(e) operation simply results in marking the cell storing
e vacant, while insert(e) causes the storing of e in the first cell
vacant from the left. If on the other hand, some order is to be
preserved among the S.’s, an insert operation will involve
searching for the appropriate (nonnecessarily vacant) cell,
and store the new element in it, thus possibly causing the
remaining cells toripple to the right. Symmetrically, deleting
an element will incur the creation of a hole and the start of a
leftward motion aimed at filling it, resulting in the propaga-
tion of the hole to the right end of the array. For a list of
applications areas where the geometric problems addressed
next arise in practice. consult Shamos’ thesis [35].

A. Inclusion Problems

1) Point/Polygon: Does point M lie in polygon P =
M, - M
The polygon is taken to be simple, but no convexity as-

S R T

s s

CHAZELLE: COMPUTATIONAL GEOMETRY ON A SYSTOLIC CHIP

—p—
—— S

1t

X €« X

out n

y €«— F(ym,S],x)

out n

Fig. 7. A systolic scheme for iterative problems.

sumptions are made. It is possible to achieve unit period with
the following systolic scheme. The register §; holds the pair
(M,,M,.)), where the list M, - - - , M, corresponds to a clock-
wise traversal of the boundary of P. The variables x and y of
Fig. 7 are, respectively, the point M and the pair (uv, u'v'},
where uv and u'v’ are the edges of P (with u,vand u’,v’
giving the clockwise direction), such that their intersection
with the vertical line L passing through M forms the smallest
segment so far containing M (Fig. 8). Testing for the inclu-
sion of point M involves pumping M throughout the array,
from left to right, updating the pair of edges in y on the fly.

Eventually, the array can output an inclusion message if Y,y
falls into case b) of Fig. 8, or a noninclusion signal if it falls
into case c¢). This is a direct application of the Jordan Curve
Theorem, stating that a simple closed curve in the plane
divides the plane into two parts: the inside and the outside.
Note that the scheme used above is far from unique, and other
tests for inclusion may lead to equally simple systolic struc-
tures. For example, simply counting the number of inter-
sections with the line L above and below M is sufficient since
these numbers are odd iff M lies inside the polygon. Note
that the edges of the polygon do not even have to be stored
in order in the array. Ensuring that each edge is directed,
say, in clockwise order, is sufficient.

2) Planar Point Location: Given a planar graph with
faces f;, - - -, Fy, and a point M, determine the face where M
lies.

For this problem, several sequential algorithms with an
optimal O(log N) query time exist [11], [22], [31], [35], but
for the most part these methods require complicated prepro-
cessing. Instead, we can design a very simple systolic array
to solve this problem with unit period. To do so, we simply
represent the graph by placing in the array, next to each other,
clockwise descriptions of the faces. This consists of storing
an edge per cell so that each face is described by a subarray
of contiguous cells. Each cell will therefore store an edge,
along with the name of the face associated with its subarray.
Since in this way each edge is represented exactly twice, no
more than a linear number of cells will be required. If we
now regard the graph as a union of polygons, locating a query
point M comes down to testing the point for inclusion with
respect to each polygon in turn. We can use the previous
scheme, finally concluding with a report of the name of the
unique polygon (or edge, or vertex) that contains M.

779

]
> DRI
M
M
) B D

(a) (b) (c)

Fig. 8. Testing inclusion.

3) Range Search: Givena set S of N intervals and a query
point M, compute the number of intervals of S that contain M
[1],[4].16],[10],[24].,[25].[28].

The systolic array will store one interval per cell, so that

the query point can scan the array left-to-right, checking for
inclusion in the interval stored in each cell, and updating the
partial count. Note that the problem can be extended to
d-ranges and arbitrary polygons, as long as each cell is only
made to store a constant amount of data. For example, poly-
gons should be represented by subarrays of cells, each stor-
ing one edge. We omit the details of these straightforward
extensions.
4) Intersection Search: Given a set of intervals (respec-
tively, rectangles parallel to the axes) and a query segment
(or a query rectangle), report the number of segments
(respectivelv, rectangles) that intersect the query object
[1].[4].16].[10],[24], [25]. [28].

Once again, testing pairwise intersection requires constant
time, which ensures unit period. The algorithm is straight-
forward and needs no further development.

The last two problems arise constantly in graphics (27],
and in design-rule checking for VLSI circuits [1], [4]. Often,
however, instead of a mere number of intersections, an ex-
plicit report of all the intersecting pairs is desired. To give our
systolic arrays this added capability, it is sufficient to add
only a few instructions to the algorithms. One solution is to
prescribe that upon encountering an intersection, a query first
sends the intersecting pair forward to the next cell, then only
proceeds in the same direction. Of course, this will cause a
slowdown, therefore to prevent overtaking by subsequent
queries, we require that before moving an object to the next
cell, the algorithm first check the vacancy of that cell. To that
end, each cell must keep sending vacant or occupied signals
to its left-hand side neighbor. The scheme is somewhat simi-
lar to the traffic management described for CH2.

B. Intersection Problems

For sequential algorithms, see [1], [4],[6].17], (23], [28],
[35]1,[36].

5) Intersection of Polvgons: Given two polygons P, Q,
determine whether they intersect.

If we wish to determine only if the boundaries intersect, we
may simply store the edges of P in the systolic array, and have
those of Q travel left-to-right, testing each edge encountered
for intersection. It is easy to extend the method and solve the

780

general problem by observing that P and Q intersect if and
only if at least one of the following conditions is satisfied.

1) A vertex of P lies in Q.

2) A vertex of Q lies in P.

3) The boundaries of P and Q intersect.

Thus, it suffices to add to each cell two copies of the
procedure described for Problem 1); one with respect to P,
the other with respect to Q. Note that each cell must check
whether the passing edge is the last edge of Q. in which case,
it must tag a yes or no signal to the tail of Q to acknowledge
if either endpoint of the edge stored in the cell lies inside Q
or not. This is straightforward, and details are left to the
attention of the reader.

6) Intersection of Half-Planes: Given N half-planes
H,, .-+, Hy, compute their intersection.

This problem requires Q(N log N) time on a conventional
machine [5], [35], [36]. As usual, we expect our systolic im-
plementation to yield maximal throughput, and thus display
an overall O(N) time performance. Moreover, as we will see,
it is easy to provide the array with the capability of handling
queries and updates, without losing on the overall per-
formance. This addition is very similar to the connection of
CH1 and CH2 described earlier for the solution of dynamic
convex hull problems. Actually, the similarity between the
two problems is very deep, for it stems from the geometric
duality which exists between convex hulls and intersections
of half-spaces [5], [32].

Let I be the intersection of the N half-planes H,, - -, Hy.
If 7 is not empty, it is a convex polygon with possibly one
open side, i.e., two edges that are half-lines meeting at in-
finity. Note, for the sake of completeness, that the inter-
section / may also be reduced to a single half-plane or an
infinite parallel strip. It is possible to represent / either by a
list of the lines supporting the edges of /, in arbitrary order,
or if we wish more information, by a list L of edges (A, B),
as they appear in a clockwise traversal of the boundary. In
case of an open polygon /, we require that the vertex at
infinity should appear at the ends of the list. For example, we
may have two points /,,1,, in the list

L = {(IMAI)’ (A17A3)7 T 9(Ak5[/()}

with the understanding that the edge /,A, (respectively, A1)
is the infinite ray starting at A, (respectively, A,) and passing
through I, (respectively, I,).

Similar to CH1 and CH2, we will design two systolic
arrays INT1 and INT?2 to support the following operations.

Array INTI:

1) Insert/delete half-plane H.

2) Report all lines on the boundary of / in arbitrary order.

3) Determine whether point M lies in /.

Array INT2:

1) Insert half-plane H.

2) Report all vertices of I in clockwise (or counter-
clockwise) order.

3) Determine whether point M lies in /.

Because of the similarity with CH1 and CH2, we may only
sketch the algorithms. Any standard representation of half-
planes is adequate. For example, (u, v, w, =) can be used to

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-33, NO. 9, SEPTEMBER 1984

denote the half-plane uX + vY + w = 0. As before, each
cell will store either a single line in the case of INT1 or a
single vertex (expressed as the intersection of two lines) in
the case of INT2. The only point to investigate about INT1
is, in Operation 2, the type of matching involved in the
“fold-over™ process. To begin with, it is easy to see that a
half-plane H, contributes an edge to / iff its supporting line
L, lies in the intersection of the N — | remaining half-planes
Hy.--- H.\,H;\, -, Hy. Then since the intersection of L,
with the intersection of any subset of H,, - - .Hy is, if not
empty, a segment, a half-line, or L, itself, it can be expressed
by means of at most two points, which can then be updated
as L; is matched against each H; in turn. All of the other
features of INT1 are similar to those of CH1. As for INT2,
we assume that, at all times, the array contains a clockwise
description of /, with each edge stored in a separate cell.
Once again, all the operations are handled as in CH2, includ-
ing the hole-filling process, so we may omit the details.

C. Closest-Point Problems

7) Nearest Neighbor: Given N points, M,, - - - . My, and a
query point M, determine the nearest neighbor of M (see
2].(3]. [35]).

For this problem, we allow the dimension of the space to
be arbitrary and the distance to be based on any of the
L,,L,, -+ ,L. norms. Recall that the L, norm of a vector
(xi,+ v, xg) ind-space is (|x,[F + -+ + |x,/)'”. Whereas ef-
ficient solutions on a conventional machine involve the use of
fancy data structures (e.g., Voronoi diagrams, point location
search trees, k—d trees, etc.) entailing substantial imple-
mentation overhead, a simple dynamic systolic scheme can
be devised as follows.

Once again, we store one point per cell. Queries travel
left-to-right, determining their nearest neighbor on the fly. To
do so. each query is accompanied by the closest point found
so far. Updates in the structure are handled as in CH1, that
is. inserting a point into the first available cell encountered,
and deleting it by simply marking the corresponding cell
vacant. If desired, a report-all-nearest-neighbors query can
be added to the set of allowed operations. This instruction,
which causes the nearest neighbor of each point in the array
to be output, can be implemented by the fold-over procedure
of CHI1.

Applications areas where a device for reporting near neigh-
bors would be of great interest are many. Air traffic control
is one example: in this situation, typically, a few radars trans-
mit streams of signals giving updates on the position of
nearby airplanes, and minimum safety distances between
planes must be constantly ensured. To speed up the signal-
ing of anomalous positions, an emergency output port can
be reserved on each cell, with direct link to the host. Al-
though slightly unsystolic, this feature is quite feasible as
long as emergency reports remain rare events.

8) Euclidean Minimum Spanning Tree: Given N points in
the plane, construct a tree of minimum total length whose
vertices are the given points [35].

In{33]. Savage proposes a systolic structure for computing
the connected components of a graph. This structure is a

CHAZELLE: COMPUTATIONAL GEOMETRY ON A SYSTOLIC CHIP

one-dimensional systolic array, which can be connected to
Leiserson’s priority queue [21], so as to compute the mini-
mum spanning tree in linear time. This result has appeared in
the literature [33], so we refer the reader to this source for
details. We only wish to mention that since the complete
graph underlies the Euclidean minimum spanning tree prob-
lem, it might be desirable to deal with a sparse subgraph
known to contain the MST (for example, the Delaunay trian-
gulation [35]).

9) Triangulation: Partition the convex hull of N points
M, +++, My into triangles, so that the vertex set of the par-
tition is exactly the set of N points.

This problem, which arises frequently in numerical analy-
sis (finite element method, numerical interpolations, etc.),
has an (N log N) lower bound on a sequential machine [35].
A one-dimensional systolic scheme can yet achieve linear
time, while supporting the following features.

Array TRI:

1) Insert a point in the triangulation.

2) Determine in which face of the triangulation a query
point lies.

3) Report all the faces of the triangulation, each face in
clockwise order.

Operation 1 is to be understood as the insertion of a new
point into the current triangulation, thus necessitating the
introduction of new edges. The input arrives in the form of
points to be inserted or in the form of query signals. The array
TRI computes an arbitrary triangulation, without any con-
sideration of “goodness.” Since in many cases, however, it is
crucial that certain quality criteria are met, e.g., minimizing
a function of the edges, the array might be used more ad-
vantageously within the framework of a more complicated
heuristic. Each occupied cell may serve one of two pur-
poses: either it stores an edge of the convex hull (Register
R = (A, B)) with A, B giving the clockwise orientation, or it
stores the vertices of a triangle in clockwise order (Register
R = (A,B,(C)). We also require that, from left to right, the
edges stored in the cells of the first kind should appear in
clockwise order (Fig. 9). Finally, we assume the existence of
aflag F to signal the first edge of either the upper or the lower
chain of the convex hull; see Fig. 13 and discussion of CH2
in the Appendix for the definition of these terms. With this
arrangement, Operation 2 simply involves testing the query
point against each triangle, carrying the containing triangle
along with M, when detected (if ever), otherwise reporting an
outsideface message, if no such triangle has been found. Yet
simpler, Operation 3 involves pumping out the contents of
each cell storing a triangle, one by one — see report opera-
tion in Section I1I-B. To handle Operation 1, two cases must
be considered.

1) M lies inside a triangle (e.g., DFC in Fig. 9). We must
replace R by, say, MCD, and insert the triangles MDF and
MFC into the next two right neighbors of the current cell.
This is done by rippling to the right (Fig. 10, case 1).

2) M lies outside the convex hull, and thus will become a
vertex of the new convex hull. The algorithm is very similar
to CH2. Instead of deleting non-convex-hull edges, however,
we must now insert new triangles into the array. Referring

781

BI'D Fi ‘ D DIC FG FGC
H first { i

Fig. 9. Triangulating a set of points.

CASE 1
Drc FG TGC end cmpty
MCD
MDF)
j2¢] FGC d
Mic en empty
FG
MCD MDF MFC FGC end
|
end
MCD MD} MEC FG FGC empty
|
|
MCD o MDI MIC FG FGC end
|
GA |
CASE 2 first GAC |
!
GM |
first MAG GAC | AB ABC
]
GAC MBA ABC
.
[EF
ABC BDC MLB BED | fit
|
|
‘ LEF
ABC BDC MEB BED ME] first

Fig. 10. The triangulation array TRI in action.

to Fig. 12, with AB being the edge currently examined, and
C,A,B occurring in clockwise order around the convex
hull, we can give the new case analysis (see example in
Fig. 10, case 2). 1) Delete AB, add AM and MBA; 2) no ac-
tion; 3) delete AB, add MBA; 4) add MA.

Fig. 10 illustrates the two basic cases on a running ex-
ample. Some steps in the rippling process have been omitted
for the sake of brevity. Also, since the figure only shows a
subpart of the array, we have indicated the correspondence
between successive subparts by curved lines. Before closing

782

this section, a few remarks concerning the throughput of the
array are in order. As usual, a report signal will preempt all
subsequent queries until completion. More interesting is the
processing of inserts. In both of the cases examined above, at
most a constant number of objects (edge or triangle) is
added to the structure (via rippling) except when dealing with
the repeated occurrence of case 2.3. This corresponds to the
situation where M is outside the convex hull and (referring to
Fig. 12) we are deleting AB and adding MBA. Since adding
a triangle is in this case always accompanied by the deletion
of a convex hull edge, we can use the same register to store
the new object. This shows that only two more registers will
be needed in the worst case when inserting a new point. These
registers will store the two new convex hull edges. Recall that
only one was needed in the case of CH2 (see the Appendix).
Following the reasoning found in the Appendix, we conclude
that a delay of nine idle cycles between successive queries
will ensure that queries cannot overtake each other. This
margin of safety is actually overly conservative, and there is
ample room for optimization.

V. CONCLUSIONS

The purpose of this work has been to present systolic de-
signs for several geometric problems. Most of the algorithms
described in this paper involve two distinct types of tasks.
One is concerned with the actual computation of geometric
functions, and is in general the easier to understand. The
other involves initiating and granting requests, which entails
moving data around, i.e., adding new items into the array or
filling holes created by deletions. In general, the flow of data
is irregular and not predetermined since it is contents de-
pendent. With the exception of priority queues and similar
structures [14], [21], this constitutes a major departure from
most systolic arrays described in the literature, especially
those for arithmetic computations [12], [18], [20]. Instead,
most of the known systolic structures have a fixed prede-
termined data flow, usually highly regular. One major diffi-
culty with random motion is the absence of adequate tools for
proving the correctness of the algorithms, and in particular,
describing the behavior of the data flow. There, certainly, lie
promising avenues of research.

In practice, most of the algorithms given here should un-
dergo substantial revision before being implemented, so as to
take into account the opportunities for local optimization
granted by the particular applications for which the device is
intended. Also, the current state of VLSI technology cer-
tainly imposes definite constraints which are bound to influ-
ence the overall design. For example, the pin/bandwidth lim-
itation of today’s chips, rightly seen by many as the major
bottleneck in VLSI, can be partly overcome by clustering
several cells onto a single chip. Also, one highly desirable
feature of a systolic array is that it should be compute bound
and not I/O bound [19]. This amounts in practice to ensure
that the cells do not spend most of the time idle, waiting for
inputs to come. As things stand it is doubtful that this could
be the case with the algorithms given here since executing the
microcode, alone, is most likely to take longer than com-
pleting any I/O operation. At any rate, it is always possible

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-33, NO. 9, SEPTEMBER 1984

to circumvent this difficulty by providing each cell with a
small random access memory (perhaps ~(1-2K) with present
NMOS technology), and simulating a few dozens of cells
sequentially with a single processor. This solution also has
the advantage of making the handling of very large inputs
possible, without requiring an excessive number of chips,
hence partly overcoming the interchip communication bottle-
neck. Of course, this may seem like an overt denial of the
systolic philosophy. However, the presence of many cells
(~100) within the array will largely preserve the systolic
nature of the overall structure as well as its benefits.

At the implementation level, we urge staying away from
floating-point representations whenever possible because of
the inevitable complications which they entail. Note that in
all the algorithms given above, only fixed-point additions,
subtractions, and multiplications are needed, with the excep-
tion of the intersection algorithms, which involve the solu-
tion of linear equations. In this case, division is needed,
yet can be avoided if rational numbers are kept as pairs of
fixed-point numbers, as is common practice in linear
programming. We should also observe that the arithmetic
computations involved in the algorithms are in general
very simple and limited, most of them consisting of simple
fixed-point inner products.

Future work in the area of systolic algorithms includes, of
course, their actual implementation and evaluation. Also,
trying to classify the problems that lend themselves to sys-
tolic implementations appears very worthwhile. Finally, we
must once again emphasize the current need for an original
description language for systolic systems, as well as new
tools for studying the behavior and proving the correctness
of the underlying algorithms.

APPENDIX
IMPLEMENTING CH2

For reasons which will become apparent later on, the fre-
quency of operations initiated on the input cell must follow
the rules below.

1) After starting an operation on the input cell, wait for at
least seven idle cycles before initiating another request.

2) No operation can be initiated before Operation 2 is [
completely finished. A special symbol end will acknowledge :
this fact. ‘

These figures correspond to a general relation, which will |
be discussed later on. For the sake of simplicity, actually, our |
rules have been made overly conservative. Because of its
generality, we may focus exclusively on the generic cell.

A. The Implementation

We assume that the report scheme chosen involves pump-
ing out the edges through the left end-cell. As shown in
Fig. 11, the generic cell can be described with six basic
variables and three registers R, F, C, the former storing one
edge (A,B) of the convex hull. The type of the variables
X, v, zis, respectively, (data, signal, data/signal), where sig-
nal denotes flags or commands. Testing the inclusion of a
point x;, = M in the convex hull involves having y, set to
thruinclusion if noninclusion has already been determined, or

CHAZELLE: COMPUTATIONAL GEOMETRY ON A SYSTOLIC CHIP

z € z,
R,CF ,
Yo =1 ¢ —2> You
Xin i - xouv.
Fig. 11. The generic cell for CH2.

inclusion otherwise, in which case, computing F(M, A, B)
allows us to iterate on to the next cell. The variables zj;, Zou
serve a double purpose. On the one hand, if z;, is a pair (A4, B),
the cell is vacant (R = ¢) and must be filled (R < z;,). On the
other hand, once a report (Operation 2) has been initiated on
the input cell, the contents of each nonvacant cell will get to
travel towards the input cell to be eventually output. To
distinguish between these two kinds of leftward motion,
one bit (report) is tagged to z, i.e.., z,, = (report,A,B), so
that the cell knows that it must only pass this value along
(zon < (report, A, B)). Of course, if v, = report, z,, is set to
(report,R).

The last case to examine (Operation 1) is by far the most
delicate. To decide the status of a point M in the convex hull,
Observation 2 shows that four possible situations should be
considered. With M traveling along the array from the input
to the output cell, let R = (A, B) be the edge stored at the
cell currently visited, and let the variable u be set to in if
the edge (C,A) of the previous (nonempty) cell satisfies
F(M,C,A) <0, or out otherwise. A variable v is defined
similarly with respect to F(M, A, B). Observation 2 shows
that the following actions should be taken.

1) u = in,v = out [Fig. 12(a)]. Delete R to replace its
contents by (A, M).

2) u = in.v = in [Fig. 12(b)]. No action.

3) u out,v = out [Fig. 12(c)]. Delete R.

4) u = out,v = in [Fig. 12(d)]. Insert (M, A) before R.
Send R to next cell.

Note that if all four cases should arise, they would occur
with the order 2,---,2,1,3,+-+,3,4,2,---,2 (up tocircu-
lar permutation). Since we wish to pipeline the updates, it is
very important that as an insert-M operation travels left-to-
right, the insert signal, at any time, leaves behind the exact
clockwise description of the boundary as it should be after
inserting M. For this reason, we must ensure that if the four
cases should arise, they do so in the following order:

2_...’2,1’3,...’3’4’2,...'2.

This problem comes from the fact that the variable u can-
not be computed for the first cell since it involves knowledge
of the last occupied cell in the array. To overcome this diffi-
culty, we adopt a slightly different representation of a convex
polygon, which involves partitioning the boundary into two
chains of consecutive edges. One, the upper chain. consists
of the upper edges of the polygon, i.e., edges with increasing
x-coordinates in clockwise order; the other, the lower chain,
consists of the lower edges, defined as the edges pointing to
the left (Fig. 13).

We now require that from left to right, the array CH2
should store first the edges of the upper chain, then the edges
of the lower chain, both in clockwise order. Of course, we
must assume the presence of a flag register F in each cell,

783

w
>
=
o

(a) (b)

i
)A\c
M
(c)

@
>
e}
<

(@

Fig. 12. Establishing the status of a new point.
A 4
m
Y A W
v v

>

0 X
Fig. 13. The partition of a convex polygon.

which takes on the value firstup (respectively, firstlow), if
the cell is currently storing the first edge of the upper (re-
spectively, lower) chain. Otherwise, F is set to €. The flag
plays the role of u for the two edges in the array whose
neighbors, in counterclockwise order, are conceptually two
infinite vertical rays.

Situations 1 and 2 are straightforward to handle, unlike
situation 3 which creates “holes” in the array, and situation 4
which adds one extra edge. In the latter case, the edge R and
the flag F will bounce their contents on to the next cell, which
will store them in its registers, and send the former contents
of these registers to its neighbor. This process will iterate
until the last cell (R = end) has been reached, thus adding
one to the overall cell occupancy. While a cell is busy send-
ing its contents to its neighbor, it must hold up the insert
request to forward it at the next step. To do so, it uses the
third register C. To handle situation 3, i.e., to fill holes,
we require that at the end of the computation, each cell
checks whether it is vacant (R = €), in which case it issues
a hole signal to its right-hand neighbor (y,,. < hole), pro-
vided that y,, has not already been set to another value
(e.g., a query/update signal). Upon receiving a hole signal
(yin = hole), the cell must empty its register T onto its left-
hand neighbor (z,, < R). One major difficulty is that with a
naive implementation a right-moving query/update may miss
some left-moving edges. To circumvent this pitfall, we re-

784

serve the odd systolic cycles for all leftward transfers, and the
even cycles for the remaining computations.

Only a few words need be added concerning the input and
output cells. Before computation starts, we assume the pres-
ence of R = end in the input cell. Aside from a special
treatment for the first three points entering the array, most of
the behavior of this cell is identical to that of the generic cell.
As for the output cell, its most notable feature is to detect and
report possible overflows, as well as outputting an inclusion
message if v, = inclusion, and a noninclusion message if
Vin = thruinclusion.

B. Correctness of the Algorithm for CH2

To begin with, we should note that along with an insert-M
request, two flags (1 and w) should be tagged to M. The
variable u is, as shown above, the status in or out of M with
respect to the previous cell, and w is a flag set to firstup
(respectively, firstlow) if the next edge created, MA, happens
to be the first of the upper (respectively, lower) chain. This
information is needed when the first edges are deleted by
repeated occurrences of situation 3, and w is thus the only
way to acknowledge the first new edge that it is indeed the
firstedge of a chain. It is important to realize that filling holes
with a left motion of edges is meant only to improve the
performance of the array, i.e., put the limitation on the size
of the convex hull rather than on the number of operations
which can be performed. For this reason, we may for the sake
of the exposition ignore the hole-filling task momentarily.
One crucial point to ensure in the algorithm is that during a
single cycle y,, is never set more than once.

In order to do so, we may start with a few helpful obser-
vations. Let us call an even srage the conjunction of an even
cycle followed by an odd cycle. The rules on operation rate
specified at the outset of the Appendix impose a delay of at
most four even stages between two consecutive operations.
However, an insert operation may entail the loss of one stage,
caused by the possible (unique) setting of C, thus reducing
the above delay to 3. On the contrary, a cell may issue a hole
signal (you < hole) possibly at every even stage, and simi-
larly a cell is in a position to respond to a hole message at
every odd stage (z,, < (R, F)). From these facts, we derive
in particular that whenever C # €, we also have v, = e,
from which it is easy to see that there is never any conflict in
setting Yo, Now including the hole-filling instructions, we
only have to show that there is no conflict in setting the
register R. More precisely, we must prove that whenever
zn = (A,B,F) # €, we have R = €. This comes from the
factthatz, = (A, B, F) if and only if at the previous odd cycle
You had the value hole. This, in turn, implies that at the end
of the previous even cycle, wehad R = €. Since, in addition,
R can only be set to € (if it is ever) at odd cycles, our proof
is complete.

The last item to verify is what precisely motivated the
distinction between odd and even cycles: the assurance that
all right-moving queries or updates encounter all the edges of
the array. If z;, = (A, B, F) # e, the first action taken by the
cell at an even cycle is to set (R, F) to z;,, so that an inclusion
or insert operation at that cycle will effectively deal with the

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-33, NO. 9, SEPTEMBER 1984

just-left-moved edge. On the other hand, since the edge
leaves the cell only under a y,, = hole situation, the cell will
not have to handle any query/update at the next even cycle,
so its contents may leave the cell without missing any match-
ing, which proves our claim. Our final investigation concerns
the storage efficiency of the array. We claim that no overflow
will ever occur as long as the number of vertices in the convex
hull at any time does not exceed N/2.

The above assumption clearly implies that no more than
N/2 cells are occupied (R # €) at any time since inserting a
vertex involves first deleting old edges, then adding the new
ones. Trouble may arise, however, if edges tend to cluster
towards the output cell. To dispel that worry, we introduce
the concept of leading front, defined as the rightmost cluster
of occupied cells, i.e., the rightmost group of cells without
R = €. A leading front can be characterized by the position
H of the first cell, measured as its distance to the input cell,
along with the length L of the cluster. To prove the absence
of leading fronts near the output cell, hence the absence of
overflow, it clearly suffices to establish the following result.

Observation 3: H + 2L < N.

Proof: To look at the evolution of a leading front, sup-
pose that the front (H,L — 1) just had one cell added to it as
the result of an insertion, yielding a front (H,L). From the
rules, it follows that during the next seven cycles, no more
cell can be added to the front. However, a hole signal will
necessarily be transmitted to the leftmost cell of the front
during the first two even cycles; therefore, this cell will be
detached from the front by the second odd cycle, at the latest.
For the same reason, a hole signal will reach the new leftmost
cell of the front by the fourth even cycle at the latest; there-
fore, this cell will also detach itself before the seven cycles
are elapsed, thus leaving a front (H + 2, L — 2) in the worst
case. This completes the proof. "

It is easy to generalize the rules specified above, which
may be useful for tuning the algorithms according to the
average distribution of requests. For the sake of simplicity,
we will give a very conservative estimate of a safe scheduling
of requests. Let A be the number of cells in the systolic array,

and let & be the ratio speed of head/speed of tail. If we wish |

to allow up to N convex hull vertices in the array at any time,
we must have the relation aA <A — N, hence a <1 —
N/A, satisfied. On the one hand, if a (respectively, b) is the
delay, measured in number of stages, imposed between con-
secutive insert (respectively, inclusion) operations, the right-
end of the leading front cannot grow at a speed higher than
1/a. On the other hand, over a period of time T, the number
of stages during which the left-end of the leading front is
unable to transfer the contents of its register to the left is at
most T /a + T /b. This shows that the speed of the left-end
is at least 1 — (1/a + 1/b); therefore, we have the relation
I/a = a(l1 — (1/a + 1/b)). Consequently, setting the re-
quirement that

l/a= (1 = N/A)(— (1/a + 1/b))

will prevent the leading front from stretching all the way to
the right-end of the systolic array; it will therefore ensure a
safe scheduling.

'

CHAZELLE: COMPUTATIONAL GEOMETRY ON A SYSTOLIC CHIP

This completes our discussion of implementation issues
related to CH2.

ACKNOWLEDGMENT

The author wishes to thank H. T. Kung and the
Programmable Systolic Chip Group at Carnegie-Mellon
University as well as the referees for their helpful comments.

REFERENCES

{1] J.L. Bentley and T. Ottmann, “Algorithms for reporting and counting
geometric intersections,” IEEE Trans. Comput., vol. C-28, Sept. 1979.

[2] J.L. Bentley, D. F. Stanat, and E. H. Williams, Jr., “The complexity of
near-neighbor searching,” Inform. Processing Lett., vol. 6, Dec. 1977.

[3] I.L. Bentley, B. W. Weide, and A.C. Yao, “Optimal expected-time
algorithms for closest-point problems,” in Proc. 16th Allerton Conf.
Commun., Control and Computing, 1978.

[4] J.L. Bentley and D. Wood, “An optimal worst-case algorithm for report-
ing intersections of rectangles,” IEEE Trans. Comput., vol. C-29,
pp. 571-577, July 1980.

[5] K.Q. Brown, “Geometric transforms for fast geometric algorithms.”
Ph.D. dissertation, Carnegie-Mellon Univ., Pittsburgh, PA, 1979.

[6] B. Chazelle, “Filtering search: A new approach to query-answering,” in
Proc. 24th Annu. FOCS Symp., Tucson, AZ, 1983, pp. 122-132.

[7] ——, “Intersecting is easier than sorting,” in Proc. 16th Annu. STOC
Symp., Washington, DC, 1984, pp. 125-134.

(8] 1. Clark, “A VLSI geometry processor for graphics,” Lambda, vol. 1,
no. 2, 1980.

{91 Y. Dohi, A. Fisher, H. T. Kung, and L. Monier, personal commu-
nication, PSC Group, Carnegie-Mellon Univ., Pittsburgh, PA, 1982.

[10] H. Edelsbrunner, “A time- and space-optimal solution for the planar
all-intersecting-rectangles problem,” Tech. Univ. Graz. Graz. Austria,
Tech. Rep., Apr. 1980.

(1] H. Edelsbrunner, L. Guibas, and J. Stolfi, “Optimal point location in a
monotone subdivision,” in preparation, 1983.

[12] M.J. Foster and H.T. Kung, “The design of special-purpose VLSI
chips,” Computer, vol. 13, Jan. 1980.

[13] M.R. Garey, D.S. Johnson, F P. Preparata, and R.E. Tarjan, “Tri-
angulating a simple polygon,” Inform. Processing Lett., vol. 7, June
1978.

(14] L.J. Guibas and S. M. Liang, “Systolic stacks, queues, and counters.” in
Proc. Conf. Adv. Res. VLSI, Massachusetts Inst. Technol., Cambridge,
MA, Jan. 1982.

[15] L.J. Guibas, H. T. Kung, and C.D. Thompson, “Direct VLSI imple-
mentation of combinatorial algorithms.” in Proc. Caltech Conf. on VLSI,
Jan. 1979.

[16] R. A. Jarvis, “On the identification of the convex hull of a finite set of
points in the plane,” Inform. Processing Letr., vol. 2, 1973.

[17] D.G. Kirkpatrick and R. Seidel, “The ultimate planar convex hull algo-
rithm?,” in Proc. 20th Annu. Allerton Conf., Monticello, IL, Oct. 1982.

(18] H.T. Kung, “Let’s design algorithms for VLSI systems,” in Proc.
Caltech Conf. on VLSI, Jan. 1979.

[19] ——. “Why systolic architectures?,” Carnegie-Mellon Univ., Pittsburgh,
PA, Tech. Rep. CMU-CS-81-148, Nov. 1981; see also Computer,
Jan. 1982.

[20] H.T. Kung and C.E. Leiserson, “Systolic arrays for VLSIL,” in Proc.
Sparse Marrix 1978, Soc. Indust. Appl. Math., 1978.

(25]
{26]
{27
(28]

(29]

(34]

(35]
[36)

785

C. E. Leiserson, “Sysivlic priority queues " in Proc. Caltech Conf. on
VLSI, Jan. 1979.

R.J. Lipton and k. E. Tarjun. _.pplicatiorn’ i a planar separator
theorem,” SIAM J. Comput.. vol. 9, 2o, 3, %

H. G. Mairson and J. Stolfi. “Reporting and counting line segment inter-
sections,” unpublished, 1984.

E. M. McCreight, “Efficient algorithms for enumerating intersecting in-
tervals and rectangles,” Xerox Palo Alto Res. Center. Palo Alto. CA,
Tech. Rep. CSL-80-9, June 1980.

——, “Priority search trees.” Xerox Palo Alto Res. Center, Palo Alto,
CA, Tech. Rep. CSL-81-5, 1981.

C. Mead and L. Conway. Introduction to VLSI Systems. Reading,
MA: Addison-Wesley, 1980.

W.M. Newman and R.F. Sproull, Principles of Interactive Computer
Graphics. New York: McGraw-Hill, 1973.

J. Nievergelt and F. P. Preparata, “‘Plane-sweeping algorithms for inter-
secting geometric figures,” Commun. Ass. Comput. Mach., vol. 25,
Oct. 1982.

M. H. Overmars and J. Van Leeuwen, “Dynamically maintaining config-
urations in the plane,” in Proc. 12th Annu. SIGACT Symp ., Los Angeles,
CA, May 1980.

F. P. Preparata, “An optimal real-time algorithm for planar convex hulls,”
Commun. Ass. Comput. Mach., vol. 22, July 1979.

. “A new approach to planar point location,” SIAM J. Comput.,
vol. 10, no. 3, Aug. 1981.

F. P. Preparata and D. E. Muller, “Finding the intersection of a set of N
half-spaces in time O(N log N),"” Theoretic. Comput. Sci., vol. 8, no. 1,
Feb. 1979.

C. Savage, “A systolic data structure chip for connectivity problems,” in
Proc. Carnegie-Mellon Univ. Conf. on VLSI Syst. and Computat., Pitts-
burgh, PA, Oct. 1981.

J.B. Saxe and J.L. Bentley. “Transforming static data structures to
dynamic structures.” in Proc. 20th Annu. FOCS Symp., Puerto Rico,
Oct. 1979, pp. 148-168.

M. 1. Shamos, “Computational geometry,” Ph.D. dissertation. Yale
Univ., New Haven, CT, 1978.

M. 1. Shamos and D. Hoey, "“Geometric intersection problems,” in Proc.
17th Annu. FOCS Symp., Oct. 1976, pp. 208-215.

J. Vuillemin, “A combinatorial limit to the computing power of VLSI
circuits,” in Proc. 21st Annu. FOCS Svmp., Syracuse, NY, 1980,
pp. 294-300.

Bernard Chazelle received the Diplome d’ingénieur
from the Ecole Nationale Supérieure des Mines
de Paris. Paris, France, in 1977, and the M.S.
and Ph.D. degrees in computer science from Yale
University, New Haven. CT, in 1978 and 1980.
respectively.

From 1980 to 1982 he was a Research Associate
in the Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, PA. In September
1982, he joined the Department of Computer
Science. Brown University, Providence, RI, where

he is currently an Assistant Professor. His research interests include analysis of
algorithms, complexity theory, computational geometry, VLSI, and graphics.
Dr. Chazelle is a member of the Association for Computing Machinery.

