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Abstract

Computational geometry is at a crossroads. New chal-
lenges and opportunities are likely to reshape the field
rather drastically in the years ahead. I will survey some
of its principal accomplishments, and in light of recent
developments, I will discuss the profound transforma-
tions the field has begun to undergo. There are rea-
sons to believe that computational geometry will emerge
from this transition far richer and stronger but barely
recognizable from what it was ten years ago.

Over the last two decades the field has enjoyed
tremendous successes. Some of them might be dis-
missed as the cheap payoffs to be expected from any
field lacking maturity. But others are the products of
indisputable creativity and should be held as genuine
scientific achievements. More important, the field is
now able to claim a broad, solid foundation upon which
its future can be securely built.

To mature fully as an original subfield of com-
puter science, however, computational geometry must
broaden its connections to applied mathematics while
at the same time pay more than lip service to the appli-
cations areas that it purports to serve. Happily, active
efforts to meet these challenges are underway.

Three recent developments are particular encourag-
ing: one is the building of a theory of geometric sam-
pling and its revolutionary impact on the design of geo-
metric algorithms. Another is the maturing of computa-
tronal real-algebraic geomelry and computational topol-
ogy: both subjects are being revitalized by the introduc-
tion of geometric (as opposed to purely algebraic) meth-
ods. On the practical end of the spectrum, the emer-
gence of a sub-area concerned specifically with issues of
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finite precision and degeneracy in geometric computing
1s a most welcome development.

1 Introduction

Nearly 20 years ago Shamos and Hoey [250] introduced
Voronoi diagrams to the world of theoretical computer
science. Computational geometry was born. To be sure,
Voronoi diagrams had been known long before (sur-
prisingly even Voronoi seemed to have been cognizant
of them), but to compute them efficiently was a new
concern. In short order, researchers identified a list of
top-priority geometric problems to be solved. The oft-
cited reason for working on these problems were their
relevance to computer graphics, chemistry, statistical
analysis, pattern recognition, geographic databases, and
other equally vital applications areas.

I forget how convincing these claims might have
seemed at the time, but with the benefit of hindsight
they appear to have been fairly legitimate. Of course
this might have been a happy coincidence. Taking their
cue from Sir Hillary who, to the question, “Why did you
climb Mount Everest?” replied, “Because it’s there!”
researchers felt that certain problems were central and
compelling enough to merit their attention, with scant
regard for practical fallouts. Classical examples are (i)
computing the convex hull or the Voronoi diagram of a
set of points; (i) computing the intersection of several
objects; (iii) subdividing a complex geometric object
into simpler components, e.g., triangulating a simple
polygon.

These are a sample of geomeiric primitives which we
would expect any geometric software library to have.
Two other important classes of problems emerged: geo-
metric searching and fized-dimensional geometric opti-
mezation. The first category includes problems such as
point location: store a planar subdivision in some data
structure so that given a query point, the face that con-
tains it can be found quickly. It also includes range
searching, e.g., set up a database to support queries
such as: how many unread STOC proceedings are there
within # miles of city y? (Of course, we have here the
added difficulty that reading the question might change



the answer...) Geometiric optimization includes such
problems as: given a set of points, compute its two
nearest neighbors, its diameter, its smallest enclosing
ellipsoid, etc.! )

The good news 1s that most of the theoretical chal-
lenges laid down over a decade ago have been met. The
field is thus ready to forge ahead and broaden its scope
without leaving behind massive areas of darkness. To
be sure, trouble spots remain (e.g., k-set theory, hidden-
surface removal), but most of the classical theoretical
questions have been answered. Most satisfying is the
fact that a whole body of mathematical tools and data
structuring techniques have been created in the process.

The less-than-exhilarating news is that computa-
tional geometry has not yet had the practical impact it
was expected to have. Issues such as robustness, stabil-
ity, and degeneracies were long treated as annoying dis-
tractions from loftier intellectual pursuits. Computers
have trouble with real numbers; theoreticians don’t. As
a result, the transfer of algorithmic ideas to the “real”
world of geometric computing has lagged behind. Fortu-
nately, this is being remedied through several promising
research efforts, and one is entitled to a cettain degree
of optimism.

It is crucial for computational geometry to keep its
eyes on the practical aspects of computing. Granted,
good research should produce general, not ad hoc, re-
sults and this often necessitates a certain distance from
specific, narrowly focused problems. Granted, practical

problems have a knack for bringing up a hybrid mess of
distinct, often contradictory, issues, which no mind of

good taste would ever think of putting together. Try-
ing to tackle all these issues at once is likely to result
in the algorithmic analog of non-alcoholic diet cham-
pagne: pleasing no one by trying to please everyone.
And yet one must pause and wonder: What is the point
of designing convex hull algorithms if they can never be
used or at least influence the way actual code is written?
Practical applications are the lifeline of computational
geometry. If it ever ceases to be so, chances are compu-
tational geometry will cease to be.

One final introductory remark: This little essay does
not represent any views besides mine. Feel free to dis-
agree. Of course, if my points don’t come across, there
won’t be much to disagree about, and you might want
to look at this piece as a harmless survey that the pro-
gram comimittee chairman gently coerced me into writ-
ing. Naturally, as a survey it does suffer from its limited
scope and my personal biases... All right, having thus

Tt is commonly perceived that computational geometry stops
where the dimension of the ambient space ceases to be a con-

stant. For example, linear programming with a fixed number of

variables belongs to computational geometry but general linear
optimization does not. This view is being challenged by recent
developments, however.

pretty much covered all my bases in the disclaiming de-
partment, I can now begin.

In the first three sections of this paper I discuss the
current status of the “classical problems” (geometric
primitives, searching, optimization) and mention sorme
of the most important open problems in these areas.
Section 5 1s devoted to lower bounds, a particularly sore
topic (though no sorer than elsewhere in computer sci-
ence). Section 6 discusses the mini-revolution of sorts
caused by the newly developed theory of geometric sam-
pling. Sections 7 and 8 give a brief account of the
emerging areas of computational real-algebraic geome-
try and computational topology. Section 9 rapidly sur-
veys the current efforts to cope with finite precision and
degeneracies. Section 10 mentions some important de-
velopments in combinatorial geometry, which have di-
rect bearing on the complexity of certain geometric al-
gorithms. Finally, a few closing words are given in Sec-
tion 11.

2 Geometric Primitives

Historically, the three main categories are: partition,
intersection, visibility. The latter is more aptly clas-
sified as geometric searching and will be discussed in
the next section. Convex hulls and Voronoi diagrams
occupy a category of their own, mostly for historical
reasons. [ will not mention the practical motivations
behind these problems, but I will include appropriate
references where they can be found.

Polygon Triangulation. Triangulating a simple
polygon with n vertices has attracted a great deal of
attention over the years. After an early O(nlogn) so-
lution by Garey et al. [138] dating back to 1978, lit-
tle tangible progress was reported for many years, be-
sides efficient schemes for restricted classes of polygons.
The first major breakthrough came in 1986 with Tar-
Jan and Van Wyk’s discovery of an O(nloglogn) de-
terministic algorithm [257]. This was followed in 1989
by a simpler solution with the same complexity due to
Kirkpatrick, Klawe, and Tarjan [176]. In the mean-
time, an O(nlog" n) expected-time Las Vegas algorithm
was proposed by Clarkson, Tarjan, and Van Wyk [89],
later simplified by Seidel [247]. Finally, in 1990, an
O(n) deterministic solution was discovered by the au-
thor [55]. (This is a rare case where determinism beats
randomness.) The algorithm was parallelized optimally
by Goodrich [144].

I suspect that the key to linear complexity is not that
a polygon is simple (i.e., free of self-intersections) but
that its boundary is a connected curve. Perhaps the
most interesting problem left in this general area is to
find a “grand unified” solution to polygonal triangula-



tion: Given p (nonsimple) polygons with a total of n ver-
tices, compute all k pairwise intersections and triangu-
late the induced planar map in optimal O(n+k+plogp)
time. Such an algorithm would unify, among others,
linear-time triangulation (p = 1, £ = 0) with the opti-
mal line segment intersection algorithm of [60] (n = 2p).
Another interesting question is to find a truly simple op-

timal polygon triangulation algorithm, possibly using

randomization.

Partition Problems. Polygon triangulation is but
one example of a large class of problems whose objec-
tive Is to partition a geometric object into a “few good”
pieces. The subject has been heavily researched because
of its relevance to the finite-element method, mesh gen-
eration, topology of 3-manifolds, interpolation theory,
tool design, etc. [19, 21, 20, 24, 34, 35, 51, 59, 72, 76,
104, 219, 222, 227]. For example, the Delaunay trian-
gulation is commonly used in the finite-element method
because of its desirable morphology and overall simplic-
ity.

Two goals are usually sought. One is to have par-
titions with relatively few pieces and the other is to
avold long, skinny ones. For example, we might want
to decompose a three-dimensional polytope into a small
number of convex pieces with bounded aspect ratios.
Avoiding thin angles, large aspect ratios, or other kinds
of ill behavior is the main focus of the work in [35, 207].

There is also a tradeoff involved in determining how
many Steiner points (i.e., new vertices) can or should
be added to the object. Steiner points are a nuisance in
practice because they make representations more com-
plicated and cause round-off errors. Unfortunately, they
can rarely be avoided. To make matters worse, deter-
mining whether they are needed is NP-hard, as was
shown by Ruppert and Seidel [238].

To subdivide a polygon into as few convex pieces as
possible can be done in polynomial time, but most vari-
ants or extensions of the problem (e.g., polygons with
holes, covering instead of partitioning) are NP-hard -
see [222] for many references on this subject. The au-
thor showed that an n-vertex 3-polytope can always
be subdivided into O(n?) convex pieces and that this
bound is optimal in the worst case [51]. Refinements
of this result can be found in [19, 20, 24, 72, 76]. An

interesting open problem is to find the complexity of

approximating a minimum-size decomposition within,
say, a constant factor. Similar questions can be asked
involving the other standard parameters (e.g., aspect
ratio, angles).

Intersection Problems. In two dimensions the
archetypical problem is this: given n line segments,
compute all its k pairwise intersections. In 1979 Bentley

and Ottmann [31] used the by-now classical plane-sweep
paradigm to solve the problem in O(nlogn + klogk)
time.? To remove the logk factor took some effort, and
it was not until 1988 that an optimal O(n log n+4&) algo-
rithm was discovered (Chazelle and Edelsbrunner [60]).
Simpler probabilistic algorithms with optimal expected
complexity were given by Clarkson and Shor [88] and
Mulmuley [210, 213, 219].

In three dimensions, a natural operation is to inter-
sect two convex polyhedra. Muller and Preparata [209]
gave an O(nlogn) algorithm in 1978, but an optimal
O(n) algorithm was found only much later, in 1989, by
the author [56]. The method makes extensive use of a
versatile polyhedral hierarchy developed by Dobkin and
Kirpatrick [106].

If all convexity assumptions are removed, only shghtly
subquadratic overhead can be achieved at this point,
ie., O(n®/5ts 4 klogk), where k is the number of in-
tersected edges and ¢ > 0 is any fixed constant (Pel-
legrini [226]), and there is probably much room for
progress. The case where one of the polyhedra is con-
vex is treated by Mehlhorn and Simon [199] and re-
quires O((n + k)logn) time. It is likely that further
improvement will require an increased understanding of
lines in 3-space and ray shooting (see next section). An
intriguing open question is whether a convex n-vertex
3-polytope can be preprocessed in linear space, so that
its intersection with a plane can be computed in time
O(k + logn), where k is the size of the cross-section.

Convex Hulls and Voronoi Diagrams. 1 lump
these two notions together because, as was shown by
Edelsbrunner and Seidel [121], the Voronoi diagram of
a set of points in E¢ is isomorphic to (part of) the
convex hull of an appropriate lift of the points into
E%!  In other words, Voronoi diagrams are special
cases of convex hulls. Computing the convex hull of n
points in two and three dimensions in O(nlogn) time
can be done by using standard algorithmic tools (Gra-
ham [149], Preparata and Hong [229]). For Voronoi di-
agrams in two dimensions a simple plane-sweep method
was developed by Fortune [127]; see also Fortune’s sur-
vey [130].

Things get considerably more difficult in higher di-
mensions, i.e., d > 3. The full facial complexity of
the hull is ©(nl?/2l) in the worst case. Seidel [244]
gave an optimal O(nl%?)-time algorithm for the case
of even dimension d. An O(nl¥% logn) solution that
fell slightly short of optimal was also discovered by Sei-
del [245]. A remarkable Las Vegas algorithm with op-
timal expected complexity was found by Clarkson and
Shor [88], and a simpler variant was proposed by Sei-

?Space sweeping is the algorithmic version of Morse theory; it
is one of the most popular techniques in computational geometry.



del in [246]. Finally, an optimal O(nLd/ZJ) deterministic
algorithm was found by the author [58]. Interestingly,
the method i1s based on derandomizing the Clarkson-
Shor algorithm. The tools used for the derandomization
are fairly involved, however (see Section 6). The tech-
nique was recently simplified somewhat and generalized
by Bréonnimann, Chazelle, and Matousek [42].

Optimal algorithms now exist, but only in the worst-
case sense. An interesting open problem is to find an
optimal output-sensitive algorithm®. The best known

general solution is due to Seidel [245]: Its running time

is O(n?+hlogh), where h is the facial complexity of the
hull. As was shown by Matousek [189], the quadratic

overhead can be slightly reduced to O(nz— e +s), for

any fixed £ > 0. Whether the complexity can be reduced
to the lower bound of Q(h + nlogh) is an outstand-
ing open problem. Currently, the only optimal output-
sensitive algorithms are due to Kirkpatrick and Seidel
[177] (deterministic) in two dimensions and Clarkson
and Shor [88] (Las Vegas) in three dimensions. The lat-

ter algorithm was derandomized optimally by Chazelle

and Matousek [71].
There is a vast amount of literature on Voronoi dia-
grams. Far-reaching generalizations of the basic notion

have been developed over the years: for example, ab-

stract Voronot diagrams and power diagrams are treated
thoroughly by Klein [178] and Aurenhammer [22], re-
spectively. I highly recommend the comprehensive sur-
vey of Voronol diagrams and their applications by Au-
renhammer [23].

3 Geometric Searching

Hit detection and ray tracing in computer graphics,
range searching in databases, point location in geo-
graphical maps are all classical examples of geometric
searching for which efficient, preferably dynamic, solu-
tions are sought. We quickly review the state of the art
and mention possible directions for future research.

Point Location. In its static version, the problem of

locating a query point in a planar map is completely

solved [92, 119, 175, 180, 240]: It is possible to store a

planar subdivision with linear storage, so that given any
point, finding the region that encloses it can be done in
logarithmic time.

If insertions and deletions of facial features are al-

lowed, however, an optimal O(logn) query /update time

has been elusive. Many solutions exist, but all suffer
from extra logarithmic factors in one or several of the

3Output-sensitive means that the running time is a function
of the input size as well as the actual (as opposed to worst-case)
output size.

relevant resource measures (query, update time, stor-
age) [78, 79, 147, 231]. As was shown in [232] an ef-
ficient solution in the plane would have impact on the
static three-dimensional case. An interesting line of at-
tack 1s to dynamize randomized incremental methods.
Very little work has been done without stochastic as-
sumptions on the sequencing of dynamic operations. A
notable exception is Mulmuley’s recent work on ran-
domized multidimensional search trees [215, 216, 217],
which might contain useful ideas to solve the original
problem.

In higher dimensions, searching among n hyperplanes
in R? means locating a query point in the arrange-
ment formed by the hyperplanes. A solution due to
Clarkson [81] requires O(n4*¢) space and O(log n) query
time. The storage was reduced to O(n?) by the author
[57]. Probabilistic solutions are described in Mulmuley’s
book [219].

Visibility and Form Factors. Ray-shooting in the
plane is now well understood {2, 6, 61, 68, 164]: given a
simple polygon with n vertices, it is possible to shoot a
ray in any direction and find the first point that it hits in
O(logn) time, using only O(n) space. The dynamic case
was tackled recently by Goodrich and Tamassia [148].
The three-dimensional case is still wide open, however,
despite some progress reported in [63, 95, 154, 192]. Be-
cause the problem is akin to ray tracing in computer
graphics [139] its practical importance is considerable.
Agarwal and Matousek [5] have shown how to answer
aquery in time O(n't¢ /m!/%) using O(m!'**) space, for
any n < m < n* which improved on earlier work [6].
Further improvement is likely to require a better com-
putational understanding of the Plicker surface for lines
in 3-space. The work in [63, 226] contains preliminary
steps in that direction. Generally speaking, however, it
seems fair to say that computing with Grassmannian co-
ordinates has been grossly under-researched. Finally, I
should mention the interesting use of parametric search
for ray shooting discussed by Agarwal and Matousek [4].
Visibility is a central issue in the rendering prob-
lem. Current state-of-the-art rendering techniques use
radiosity methods to trace light in order to provide the
most realistic rendering of a scene with lighting [91]. At
the inner loop of these methods is the computation of
form factors. Informally, a form factor is defined for a
pair of atomic objects (typically, triangles) as the frac-
tion of one object visible to the other through the obsta-
cles in the scene. Fast, practical methods for computing
form factors would have a great impact in rendering.

Range Searching. The general setting is this: we are
given a collection of (usually parameterized) regions in
space, called ranges, and a finite set of points. The



problem is to store the points in some data structure so
that given any range, the points that it contains can be
reported or counted efficiently. By and large the clas-
sical instances of that problem have been solved satis-
factorily. For example, simplex range searching on n
points in R can be solved in space m and query time
O(n/m'/%) (up to logarithmic factors), where m is an
adjustable parameter. This means that n points in R¢
can be stored by using m memory units, so that given
any simplex the number of points that it encloses can
be determined within the indicated query time. As it
turns out, this result is nearly optimal (see Section 5).

An earlier, quasi-optimal solution by Chazelle, Sharir,
and Welzl [75] was improved by Matousek [187], who
introduced the powerful concept of simplicial partitions
by extending the earlier notions of partition trees [267]
and low-stabbing spanning trees [77, 264]. See also Ma-
toudek [186]. A nice survey by Welzl on the subject
of spanning trees with low stabbing numbers appears

in [265].

Halfspace range searching (which is the special case

of simplex range searching where the query range is a

halfspace) arises in many problems, in some cases quite

unexpectedly. A general linearization technique of Yao

and Yao [272] shows that many range searching prob-
lems that are expressed by high-degree polynomials can
be reduced to halfspace range searching by lifting them
into higher-dimensional space. An alternative treat-
ment of generalized range searching (where the ranges
are arbitrary semi-algebraic sets) was provided by Agar-
wal and Matousek [5].

Efficient solutions for the reporting case of halfspace
range searching (where the points must be explicitly
enumerated as opposed to just counted) were proposed
by Clarkson [82] and Matousek [188]: the first solu-
tion provides O(logn + k) query time for O(nl%/2+)
storage, where n i1s the number of points and k is the
size of the output; the second method has a query time
of roughly O(n!=1/L4/2]) for linear storage. Two gen-
eral techniques, filtering search and fractional cascading,
have proven quite useful in speeding up range reporting
algorithms. The first one, developed by the author [52],
exploits the simple idea that if the output is large then
the algorithm can slow down proportionately, since the
output size can be used to amortize the search cost; this
in turn leads to savings in storage. The second tech-
nique, developed jointly with Guibas [69], deals with
the problem of searching for the same key in several
dictionaries at once: auxiliary dictionaries are created
that allow instant transitions from one dictionary to the
next.

In closing this section, I will mention the comprehen-
sive survey on range searching by Matousek [190], which
I highly recommend.

4 Geometric Optimization

I now briefly discuss recent developments that have had
an 1mportant impact in geometric optimization. One is
parametric search; the other concerns fixed-dimensional
linear programiming.

Parametric Search. Almost a decade ago, Megiddo
devised a beautiful algorithmic paradigm known as
parametric search [195, 196]. A clever improvement
which under some conditions speeds up the method was
proposed by Cole [93]. The main feature of parametric
search is to turn a checking algorithm for an optimiza-
tion problem into one that actually searches for a solu-
tion. Certain conditions must be satisfied, of course, but
the setting is general enough to have wide applicability.
For example, it can be used to solve the 2-center prob-
lem in the plane, selecting slopes or distances, comput-
ing the kth leftmost vertex in a line arrangement, per-
form ray-shooting in 3-space, etc. See, e.g., [4, 8, 65, 94].

One of the main conditions of Megiddo’s technique
is that the checking algorithm be parallelizable. This
condition can be somewhat weakened, but actually it
would appear that in a geometric setting the require-
ment should be reducible to nothing but a mild form of
multidimensional searching,.

An interesting open problem is computing the diam-
eter of n points in E® (i.e., the distance between its
two furthest points). Clarkson and Shor [88] gave a
randomized algorithm with an optimal expected com-
plexity of O(nlogn). Attempts to derandomize it have
been unsuccessful so far. Building on previous work
[58, 65, 191, 235], Bronnimann, Chazelle, and Matousek
[42] gave an O(nlog® n)-time deterministic solution. It
1s currently the best known but it is unlikely to be op-
timal. The algorithm uses parametric search as well as
the entire derandomization machinery of [58]: one won-
ders whether the diameter problem really requires all
these hybrid complicated techniques.

We close our discussion of parametric searching by
mentioning an important generalization of the method,
where the parameter to optimize is not a single value but
a point in higher-dimensional space [90, 96, 189, 221].

Linear Programming. In 1984 Megiddo [197] gave
the first linear-time algorithm for linear programming
with a fixed number of variables. The running time of
his algorithm is O(cqn), with ¢g = ‘22‘1, where n is the
number of constraints and d is the number of variables
(the dimension of the ambient space). The constant cg
was improved to 3¢° by Clarkson [80] and Dyer [111].
Still lower dependency on d was achieved by randomized
methods (Dyer and Frieze [113], Clarkson [83], Seidel
[246]), the current best being Clarkson’s algorithm, with



an expected complexity of O(d?n + d4/2+o) logn).

Kalai [171] and then independently Matousek, Sharir,
and Welzl [193] developed algorithms with a subex-
ponential dependency on both n and d.  These
(dual) simplex-like methods rekindle the hope that ‘a
strongly polynomial-time algorithm for general linear-
programming might exist. Combining these methods
with Clarkson’s yields a randomized algorithm for lin-
ear programming with expected running time O(d?*n +
eo(m)). To derandomize these algorithms appears
far from obvious. The best current deterministic solu-
tions for linear programming in fixed dimension have
complexity d%n [9, 70].

An abstract framework for optimization problems
similar to linear programming but much more general
was introduced by Sharir and Welzl [253] and Matousek,
Sharir, and Welzl [193]. Similar techniques to those
used in the solutions we mentioned above can be made
to bear on these LP-type problems. Gartner [137] was
able to derive a subexponential method for a subclass of
these problems. Similarly, the method of Chazelle and
Matousek {70] can be used to solve in linear determin-
istic time problems such as computing the minimum-
volume ellipsoid enclosing a set of points or finding the
maximum volume ellipsoid within the feasible set of lin-
ear constraints. Solutions with higher dependency on
the dimension were found earlier by Dyer [112].

5 Lower Bounds

Sadly enough, surveying the status of lower bounds in
computational geometry is a fairly easy task. As long as
the information-theoretic bound is good enough, there
are nice tools at one’s disposal. A proof technique by
Yao [269] for proving that any algebraic decision tree
for computing the convex hull of n points in the plane
must have depth Q(nlogn) was generalized by Ben-Or
[29] and can be applied to many problems. The case of
integer inputs was treated by Yao [270].

If the information-theoretic bound is too weak, how-
ever, we are seriously out of luck. Range searching is
one of the few exceptions to this rule, because it has a
nice combinatorial characterization. In a range search-
ing problem, think of each point as a variable over a
semigroup. The answer to a query is the semigroup
sum of the variables associated with the points falling
in the query range.

In that model, originally introduced by Fredman and
Yao, remarkably strong lower bounds can be proven.
Fredman established optimal lower bounds for dynamic
orthogonal range searching [134] and quasi-optimal ones
for dynamic halfplane range searching [135]. Yao
[268] established a lower bound for orthogonal range
searching in two dimensions, while for arbitrary di-

mensions Vaidya [259] provided nontrivial but subopti-
mal lower bounds. The author obtained quasi-optimal
lower bounds for orthogonal range reporting, orthogonal
range searching, and simplex range searching [54, 53].
Other lower bounds were established by the author
Jointly with Rosenberg [73] (simplex range reporting)
and Bronnimann and Pach [43] (halfspace range search-
ing).

Unfortunately, if we allow subtractions, i.e., if we op-
erate over a group as opposed to a semigroup, all these
lower bounds collapse miserably. This is very similar to
the difficulty of proving lower bounds for general circuits
as opposed to monotone circuits. New ideas seem to be
required. At this point, any nontrivial lower bound for
any nontrivial (constructive) instance of range searching
in the group model would be a major result.

The second challenge is to handle computational as
opposed to combinatorial models. For example, none
of the current methods can be used to derive nontrivial
lower bounds for Hopcroft’s problem: this is the prob-
lem of deciding whether, among n lines and n points,
all the points are disjoint from all the lines. Several
solutions exist that require roughly n%/3 time, the best
of which is due to Matousek [186], but Q(nlogn) is the
only existing lower bound.

Problems of that sort can be formalized as follows:
Given a k-variate polynomial P of fixed degree with
rational coefficients, and given n numbers z;, ..., z,, is
there a k-tuple among the z;’s that is in the zeroset of
P? There exists a trivial O(n*) solution, to which slight
improverments can be made by using fairly complicated
batching techniques. But again the best known lower
bound is only on the order of nlogn.

Bjorner, Lovdsz, and Yao [38] have derived lower
bounds (for nongeometric problems) that make novel
use of topological invariants and might provide useful
tools. However, these tools in themselves are still in-
herently information-theoretic and therefore unlikely to
break the nlogn barrier. Erickson and Seidel [125] have
proved elegant lower bounds for problems such as test-
ing if a set of points is in general position, but their
model of computation is far too restrictive to give much
hope that a satisfactory solution should be anywhere in
sight.

6 Randomization and Deran-
domization

Randomization has had a tremendously positive effect
in computational geometry. Not only has it led to a host
of fairly simple, efficient probabilistic algorithms, but it
has led to a complete rethinking in the design of deter-
ministic algorithms through the process of derandom-
ization. Perhaps this phenomenon is best illustrated by



the convex hull problem discussed in Section 2.

After several years without noticeable progress on the
problem, Clarkson and Shor [88] produced an optimal
randomized algorithm. Around the same time through
the efforts of several researchers, in particular Matousek
(183, 184, 185, 186], a beautiful theory of deterministic
sampling in range spaces of finite VC-dimension was
being developed. Also, general derandomization tech-
niques began to emerge, such as the method of condi-
tional probabilities of Raghavan and Spencer [234, 254].
It was only with the help of all these powerful tools
that the author was able to derive an optimal convex

hull algorithm [58]. It is one of a growing number of

deterministic algorithms that literally cannot be under-
stood without referring to their probabilistic counter-
parts. Unfortunately, in this case, derandomization ex-
acts a hefty price, as the algorithm (and especially, its
analysis) are quite complicated. If history is a guide,
however, one should expect much simpler versions to
emerge in the near future.

One of the main ingredients of the algorithm is a
method of deterministic Monte Carlo integration, using
¢-nets and e-approximations (see definitions below) as
tools for estimating functions that are too hard to eval-
uate exactly. It is a fascinating open question whether
this can be extended to other problems, such as higher-
order Voronoi diagrams or even line segment intersec-
tion.

The papers of Clarkson [81], Clarkson and Shor
[88], and Haussler and Welzl [160], all concerned with
probabilistic geometric algorithms, proved to be enor-
mously influential. Two main classes of algorithms
emerged: some use divide-and-conquer via random sam-
pling; others, called randomized incremental construc-
tions, use insertions in random order. For a small ran-
dom sample of papers relevant to the first class, see
(81,82, 87, 88, 89,116, 117, 160, 236]. I also recommend
the surveys by Clarkson [85] and Seidel [248], as well as
Mulmuley’s textbook [219] for excellent introductions to
the use of random sampling in computational geometry.

A key notion in the analysis of probabilistic geo-
metric algorithms is that of range spaces of finite VC-
dimension. Let ¥ = (X,R) be a set system. Given
Y C X, let R|y denote the set system {RNY; R € R}.
We say that Y is shattered (by R) if Rly = 2¥. The
maximum size of a shattered subset of X is called the
Vapnik-Chervonenkis dimension, or VC-dimension, for
short, of the set system X. Given ¢ € (0, 1), a subset
A C X is an e-approzimation for X, if

[ANR| |R]
—— 1 <e
‘ 4] IXT]
for every set R € R. A subset S C X is called an e-

net for (X, R) provided that SN R # @ for every set
R € R with |R|/|X| > ¢. Remarkably, as long as it has

finite VC-dimension, ¥ admits e-approximations and -
nets whose sizes are independent of |X| (Vapnik and
Chervonenkis [260], Haussler and Welzl [160]).

The question of constructing e-nets deterministically
was investigated by Chazelle and Friedman [67], who
gave polynomial-time algorithms for computing an e-
net of size O(¢ = loge™!). A major advance was subse-
quently made by Matousek [185], who showed that un-
der some natural computational assumptions about the
set systermn X, it is possible to compute z-approximations
and e-nets of size O(e "% loge™!) and O(c¢ ™! loge™"), re-
spectively, in time O(e~2¢ log? 71| X|. A simpler proof
was given by Chazelle and Matousek [70] and slightly
better running times were achieved by Bronnimann,
Chazelle, and Matousek [42] by introducing the notion
of sensitive e-approzimations.

With the use of these tools (among others) derandom-
izing divide-and-conquer type algorithms has been very
successful. But lately, the attention has shifted towards
randomized incremental constructions [40, 41, 66, 87,
88, 89, 102, 103, 153, 210, 211, 212, 213, 214, 246, 247).
These algorithms examine the input elements in ran-
dom order and at each step maintain a partial solution
based on the portion of input examined so far. This
approach has produced surprisingly simple Las Vegas
algorithms of low expected complexity. Unfortunately,
their derandomization has proven elusive so far. Actu-
ally, the author’s convex hull algorithm [58] is currently
the only successful derandomization of a randomized in-
cremental construction.

To understand the computational power of random-
ness has been a central preoccupation in theoretical
computer science. While only few general derandom-
ization techniques have been discovered [12, 15, 182,
234, 254], several clever schemes have been found to re-
duce the amount of randomness needed by probabilistic
algorithms [14, 28, 32, 33, 170, 208, 220].

As was shown by Mulmuley [218], such techniques
can be used to prove that most randomized geometric
algorithms require few (truly) random bits; but still too
many, however, to allow efficient deterministic simula-
tions. Interesting geometric use of expanders (which act
as quasi-random graphs) has been made by Ajtai and
Megiddo [11] and Katz and Sharir [174].

Matousek, Welzl, and Wernisch [194] established
that the effectiveness of e-nets and e-approximations
for divide-and-conquer in computational geometry is
closely tied to the discrepancy of certain set systems.
A better understanding of the relationship between dis-
crepancy and sampling might hold the key to under-
standing what makes derandomization feasible or not.



7 Computational
Real-Algebraic Geometry

Planning the motion of a robot amidst obstacles usu-
ally boils down to asking connectivity questions about
semi-algebraic sets. Although reasonably efficient meth-
ods are already known for answering such questions, the
larger picture is still blurred. For example, one would
often like to navigate in configuration space in real-
time, perform point location and ray-shooting, modify
the constraints on-line, etc. Also, it might be desirable
to obtain more information about the cycle structure
besides path-connectivity: for example, one might want
to compute the full homology of a cell decomposition
(see next section). Although much progress has been
done in that general area since Collins’ pioneering work
[97], e.g., Schwartz and Sharir [242], Canny [44], two
central questions remain open: (1) triangulating real-
algebraic varieties in singly-exponential time, and (2)
keeping polynomial coefficients below doubly exponen-
tial. Here is a brief explanation:

Given n polynomials in Q[z1, ..., z4], we wish to par-
tition RY into simple cells over which each polynomial
remains sign-invariant. A simple cell could be, for ex-
ample, a smooth manifold (i) topologically equivalent tc
a k-ball (k < d) and (i1) specified by a constant-size sen-
tence in the theory of the reals. This is the motivation
behind a particular type of decomposition known as.a
stratification [44, 64, 74, 97, 233, 242, 266]. Property
(i1) is used to ensure that the cells of the decomposition
are computationally “tractable.”

Informally a triangulation is a special case of a strati-
fication where adjacent faces glue “nicely” to each other,
e, in a lattice-like fashion. This added property is
crucial for, say, navigating in configuration space, e.g.,
moving a robot amidst obstacles: in configuration space
the robot is a point in a space of dimension equal to
its degree of freedom and the obstacles are modeled by
{usually) algebraic constraints.

As shown by Chazelle and Sharir [74], an economical
sign-invariant stratification yields more efficient algo-
rithms for problems as diverse as computing the longest
segment fitting inside a polygon, finding the minimum
vertical separation between two sets of segments in R3,

computing the first time the convex hull of a set of

moving objects reaches its stationary configuration, etc.
Another motivation for studying this problem is that
its language is powerful enough to express any multidi-
mensional searching problem expressed as a first-order
predicate in the theory of reals. .
An effective algorithm for constructing a sign-
invariant stratification of size roughly O(n?¢=3) was
given by Chazelle et al. [64]. Although the algorithm
represents an attractive alternative to Collins’ decorn-

position (whose size is doubly exponential in d), it raises
three major open questions: One is to reduce the size to
O(n?), which by the Thom-Milnor bound, would then
be optimal. (We omit to mention the dependency on
the size and degree of the polynomials.) Another is to
reduce the complexity of the algebraic numbers used to
describe the cells from doubly to singly exponential (in
the dimension). Although it is known that eliminating
quantifiers is inherently doubly exponential (Davenport
and Heintz [100], Weispfenning [263]), many restricted
problems related to the theory of the reals can be solved
in singly-exponential time.

The mathematical landscape in real-algebraic geom-
etry has changed dramatically in the last few years. An
eminently readable survey by Heintz, Recio and Roy
is given in [163]. A good introduction to the (non-
computational part of the) field is the text (in French)
by Bochnak, Coste, and Roy [39]. Let us mention a few
examples of the recent progress. A very useful lemma
by Grigor’ev and Vorobjov [152] gives an upper bound
on the size of a ball about the origin that misses any
component of a semi-algebraic set (as a function of the
number of polynomials, the maximum degree, the coef-
ficient sizes, and the number of variables). This was an
important tool used by Goodman, Pollack, and Sturm-
fels [142] to give sharp estimates on how large a grid
must be if it is to accommodate all point configurations
of a given size (up to order type).

Pollack and Roy [228] showed that the number of con-
nected components of all non-empty realizations of sign
conditions of n polynomials in d variables, each of de-
gree at most b, is bounded by O(nb/d)?, thus improving
on an earlier bound based on a result of Heintz [161].
(Note that the coefficients need not be in Q but in any
real-closed field). See also Basu, Pollack, and Roy [27]
for a more general result concerning the cross-section of
a semi-algebraic set with a given variety.

In [26] Basu, Pollack, and Roy give an algorithm that
returns a small set containing an algebraic point in each
connected component of each non-empty sign condition
in time n(n/d)4°(d) - see also Canny [47, 48, 49]: this
improves on the (nb)?(4 algorithms of Canny [45] and
Renegar [237].

Since Collins’ work [97], important results in the gen-
eral (i.e., fully quantified) first-order theory of the reals
have been obtained. The works of Ben-Or, Kozen, and
Reif [30] and Fitchas, Galligo, and Morgenstern [126] led
to an interesting arithmetic-operation counterpart to
Collins’ bit-operation construction. Grigor’ev [151] dis-
covered a method that is doubly exponential only in the
number of quantifier alternations. The best complexity
in both the arithmetic and bit models was achieved by
Renegar [237]. Another quantifier elimination method
was also given by Heintz, Roy, and Solerné [162}). Fur-
ther improvements over both methods are reported by



Basu, Pollack, and Roy [25].

Somewhat outside the scope of this discussion, the
theory of Groebner bases ought to be at least mentioned,
because it is a very active area In computational al-
gebraic geometry with many applications in geometric
modeling. A good introduction can be found in the
book by Cox, Little, and O’Shea [98]. A more in-depth
treatment is provided by Mishra [206].

8 Computational Topology

The purpose of the subject is to study computational
questions regarding the classical topological invariants,
e.g., fundamental group, homology groups. Some of
these problems, like the word problem for automatic
groups, are very interesting from an algorithmic and
data structuring viewpoint, but they are not germane
to computational geometry. It is a different matter
with homology theory, however. Computing homology
groups can be done by algebraic methods, but it is often

highly ineflicient. Exploiting the specific geometry of

the manifolds can lead to much faster algorithms. Simi-
larly, checking homotopy equivalence between curves or
homeomorphisms between surfaces can gain a lot from
a computational-geometric approach.

Homology Groups. The connectivity properties of

a geometric structure can reveal a lot of information
about it, but they are usually much more subtle and
difficult to compute than for combinatorial structures.
The homology groups describe the cycle structure of a
manifold. Their main advantage over the fundamen-
tal group or higher-dimensional homotopy groups is
that they lend themselves to effective computations. It
would be extremely useful to be able to compute ho-
mology groups efliciently for low-dimensional geometric
cell complexes. There are many important applications
in pattern recognition and classification in biology and
chemistry as well as in robotics and scene analysis [99].
Comparing homologies is a good (if not foolproof) test
to rule out topological equivalence: two manifolds with
different homologies cannot be homeomorphic; unfortu-
nately, the converse is not true. )
There are also fascinating applications to the clas-
sification of time series and the analysis of dynamical
systems (Freedman [136]). Spectral analysis has long
been the standard tool for classifying time series. In
the absence of sharp harmonics, the signal is dismissed
as noise. Analysis for nonlinear dynamics can be done,
however, by computing topological invariants of the at-
tractor set for the system being measured. This can be
done by mapping the time series into R? by scanning

a “comb” of length d across the series and thinking of

each d-tuple of entries at the teeth as a point in R?.

(This is the time-lag imbedding of the series; in prac-
tice the imbedding dimension d is often less than 10.)
By grouping all (k + 1)-tuples of points at a distance
less than € from one another, we can define k-simplices.
By introducing the obvious boundary operators, this
yields a complex whose (Cech) homology is called the &-
homology of the set. Because Cech homology commutes
with inverse limits, this is an appropriate methods for
computing the homology of the attractor. Moreover the
use of e-homology (where simplices are defined only in
terms of pairwise distances) should have computational
advantages. A similar notion, called alpha-shape, has
been developed by Edelsbrunner. This is a very inter-
esting area to explore where computational-geometric
methods can be brought to bear.

Schwartz and Sharir [242] gave a general method for
computing the homology of a real-algebraic variety, but
unfortunately it is doubly exponential in the dimension
of the ambient space. More recently, Donald and Chang
[109] proposed a randomized algorithm for computing
the homology groups of a cell complex, which takes ad-
vantage of the sparsity of its incidence structure. By
and large, however, the problem has been treated in
full generality, with little focus on the specifically geo-
metric nature of the complex. A notable exception is
the work of Delfinado and Edelsbrunner [101], where a
nearly optimal method for computing the betti num-
bers of a subcomplex of a triangulation of S2 is given.
(Recall that these particular homology groups are free,
i.e., without torsion, so they are specified entirely by
the betti numbers). This result has interesting appli-
cations to the so-called alpha-shapes mentioned earlier,
which are generalizations of convex hulls used in geo-
metric modeling.

Mayer-Vietoris sequences should be useful in de-
signing eflicient divide-and-conquer schemes for com-
puting the homology of higher-dimensional complexes
[101, 168, 239]. This is an exciting open area of re-
search. The goal is, in a somewhat narrow sense, to do
computational linear algebra by geometric means.

Edelsbrunner [115] has given efficient algorithms for
computing topological, combinatorial, and metric prop-
erties of the union of finitely many balls in R¢. These
algorithms are based on short inclusion-exclusion for-
mulas derived from a complex dual to a decomposition
of the balls. These methods have applications to biology
and chemistry, where unions of balls are commonly used
as models of molecules. Further work on triangulating

topological spaces has been reported by Edelsbrunner
and Shah [123].

Topology of Curves. Interesting questions in two-
dimensional computational topology have been inves-
tigated recently. Mehlhorn and Yap [200] and Veg-
ter [261] considered an algorithmic discrete version of




the Whitney-Graustein theorem, which states that up
to kink-free deformations a regular closed curve in the
plane is completely determined by its winding number.
In particular, Vegter gives a linear algorithm for deform-
ing a regular polygon into any other regular polygon
with the same winding number.

Motivated by the desire to be able to decide quickly
whether two surfaces are homeomorphic or whether
curves on them are homotopic, Vegter and Yap [262]
looked at the classical question of putting in canonical
form the polygonal schema of a closed triangulated sur-
face. They showed how to implement the Brahana pro-
cedure (of the Dehn-Heegaard classification theorem) in
O(nlogn) time, where n is the size of the triangulation.

In [241] Schipper presented an algorithm for decid-
ing whether a curve on a triangulated surface is null-
homotopic, i.e., contractible to a point. A similar ques-
tion regarding the detection of null-homologous cycles
on surfaces was investigated by Dey [105]. See also [258].

9 Robustness and Degeneracies

There are two kinds of numerical difficulties in imple-
menting geometric algorithms: finite precision causes
round-off errors or inconsistent results, while often more
brutal, degeneracies or near-degeneracies cause pro-
grams to crash. A program is usually termed robus:
if it is immune to these ills (as much as possible). A
growing research effort is underway to provide the pro-
grammer and algorithm designer with tools, guidelines,
and options to deal with these difficulties. Fortune has
an excellent survey [131] on the subject to which the
reader is referred. Hoffmann’s book [165] is also a good
source. | will briefly sketch some of the issues and lines
of research in that area.

»

Finite Precision. A typical atomic geometric opera-
tion is to determine whether three points make a left
turn or if a fourth one lies inside the circle passing
through the first three. In general, there is a certain
determinant whose sign must be determined. An inter-
esting approach for doing that is given by Clarkson [84].
If we must use exact representation, one option is
to use modular arithmetic. As Fortune notes in [131],
fairly little seems to be known in a specifically geometric
context. This is an interesting subject to explore.
Rational arithmetic is another option. Again, the ab-
sence of error is the major drawing card. An obvious
problem, however, is that the represention length grows
rather quickly. Karasick, Lieber, and Nackman [172]
report some cases where appropriate optimization and
careful use of interval arithmetic result in running times
that are competitive with floating-point computation.

How general these techniques are, however, remains un-
clear.

Yap [275] has argued that exact geometric computa-
tion need not be hopelessly costly, and that the answer
might be to enhance traditional BigNumber packages
and customize them to geometric situations. See also
Fortune and Van Wyk [133].

Away from exact computation, another route, fol-
lowed by Greene and Yao [150], is to round newly com-
puted points to the nearest point on a fine enough lat-
tice. The usual incidence laws no longer apply, however,
and to preserve some measure of consistency is no easy
task.

A variant on the Greene-Yao rounding idea that in-
creases its flexibity involves “fattening” the lines. Build-
ing on this idea, Milenkovie [204, 205] was able to
develop low bit-complexity algorithms for fundamen-
tal geometric problems in higher dimensions. See also
Milenkovic [203].

Sugihara and Iri [256] considered the problem of
maintaining low-bit complexity in the face of solid-
modeling operations: these are often nested computa-
tions which tend to blow up representation lengths.

In practice the user sometimes has no choice but to
use a floating point representation. A standard ap-
proach is to add a third truth value, “don’t-know”, to
the logic. Variants of interval analysis techniques (so-
called epsilon-geometry) were used by Guibas, Salesin,
and Stolfi [155]. Dobkin and Silver [107] suggested
adding the use of randomization and sampling.

Backward analysis is another standard error analysis
technique which has been adapted with success to some
geometric situations. Fortune [128] redesigned the Gra-
ham scan method for computing planar convex hulls,
so that the output is the true convex hull of an appro-
priate perturbation of the input points. A variant is
described by Li and Milenkovic [179]. The complexity
of computing a line arrangement robustly (by stretching
lines into pseudolines when necessary) was analyzed by
Milenkovic [201, 202] and Fortune and Milenkovic [132].

Other interesting work on maintaing consistency and
small error using floating-point arithmetic appears in
(Sugihara and Tri [255], Hoffmann, Hoperoft, and Kara-
sick [166, 167], Karasick [173], Fortune [129]). The prob-
lem of performing rotations was addressed by Canny,
Donald, and Ressler in [50].

Degeneracies. Perturbing the input data ever so
slightly can sometimes ensure that it is in general posi-
tion. As has long been known in linear programming,
the perturbation can be made symbolic. This approach
was adapted to a geometric context by Edelsbrunner
and Miicke [120] and Yap [273, 274].

The overhead in using these techniques can be quite
high. Emiris and Canny have proposed schemes to alle-



viate the cost of computing long sequences of determi-
nants [124]. Two problems inherent to these methods
are the lack of control over the perturbation and the
lack of discrimination between coincidental and mathe-
matically implied degeneracies; e.g., three input points
might or might not be collinear, but they always are if
one 1is the midpoint of the other two. We close this brief
overview by mentioning an interesting investigation of
perturbations techniques by Seidel [249].

10 Combinatorial Geometry

I will briefly mention a few developments in combina-
torial geometry that have had a considerable impact in
the analysis of geometric algorithms.

Thanks to the effort of several researchers, (notably
Sharir), the theory of Davenport-Schinzel sequences is
now fairly advanced [7, 159]. We omit the discussion of
this subject and instead refer the reader to the forth-
coming book by Sharir and Agarwal [252]. There have
been numerous applications to motion planning, trian-
gulation, optimization, etc.

Zone theorems have also played a prominent role
lately. Given an arrangement of n hyperplanes in R4,
the zone complexity of any hyperplane & is the total size
of all the cells that A intersects. Edelsbrunner, Seidel,
and Sharir [122] showed that the maximum zone com-
plexity is O(n9~1). Aronov, Pellegrini, and Sharir [18]
generalized the proof technique to the case of the zone of
an algebric surface, while Aronov, Matousek, and Sharir
[17] bounded the mean square cell complexity.

A related question is to bound the sum of the com-
plexities of m cells in an arrangement of n hyper-
planes in R? In the two-dimensional case, Clark-
son et al. [86] prove that this complexity is at most
On+m+ n12/3712/3), which 1s tight. An efficient algo-
rithm for constructing the corresponding cells is given
by Edelsbrunner, Guibas, and Sharir [117]. The higher-
dimensional case is treated by Edelsbrunner, Guibas,
and Sharir [118], Aronov, Matousek, and Sharir [17],
and Agarwal and Aronov [3].

In problems of placement or Voronoi diagrams-related
questions, it is important to have estimates on the com-
binatorial complexity of the lower envelope of an ar-
rangement of hyperplanes or surfaces: this is the locus
of points visible from a point at infinity. This problem
is easier than the zone problem, but unfortunately the
cases of interest are those for which no zone theorems
are available. However, Sharir [251] recently provided a
quasi-optimal upper bound of O(n4=!*¢), for any fixed
€ > 0, on the size of the lower envelope of n surface
patches in R? bounded by algebraic surfaces of con-
stant maximum degree. Specializations to three dimen-
sions were investigated earlier by Halperin and Sharir

[157, 158]. Many applications are discussed in [252].

We conclude by returning to geometric sampling and
mentioning an intriguing extension of e-nets that was
proposed by Alon et al. [13]. Given a finite point set
P, they define a weak c-net (for convex sets) to be a
collection S of points such that any convex set that
contains a fraction € of the points in P must intersect
S. Alon et al. proved that although the underlying
range space does not have finite VC-dimension, such a
set S exists (often outside of P) such that the size |.9|
is polynomial in 1/¢ and, most important, independent
of |P|. The bound was slightly improved by Chazelle et
al. [62] for the general case, and optimal bounds were
found for special cases by using tilings of the hyperbolic
plane. Nevertheless, the problem is still by and large
wide open.

We close this section by mentioning the nice survey
by Guibas and Sharir [156] and the forthcoming text on
combinatorial geometry by Pach and Agarwal [224].

11 Concluding Remarks

Computational geometry is more active and diverse
than ever. [ have not touched on vast areas of re-
search, e.g., motion planning [243], assembly, kinody-
namics [110, 108], Groebuner bases [98], transversal the-
ory [143], parallel computational geometry [10, 145],
hidden surface removal [146, 271], art-gallery theorems
[222], Borsuk-Ulam type search (ham-sandwich cuts,
centerpoints) [181], arrangements and configurations
(140, 141], k-set theory [225], mesh generation [36, 37],

geometric problems in computer vision [16, 169].

There exist several introductory textbooks in com-
putational geometry: Edelsbrunner [114], Mehlhorn
[198], Mulmuley [219], O’Rourke [223], and Shamos and
Preparata [230].

Today, the field covers a pretty wide front and is still
rapidly expanding. There is no way to tell what 1t will
look like in the year 2000. Whatever the new millenium
has in store for computational geometry, however, I am
sure that it will continue to be vibrant and fun!
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