336

[12]
(13]
[14]
[15]
[16]

[17]

A. Apostolico and C. Guerra

H. M. Martinez (ed.), Mathematical and com
sequences, Bull. Math. Biol,, 46, 4 (1984).
W. J. Masek and M. 8. Paterson, A faster a
Comput. System Sci., 20 (1980), 18-31.

K. Mehlhorn, Data Structures and Algori i
5 Igorithms 1: Sortin d]
on TCS, Springer-Verlag, Berlin, 1984. § and Soarching, EATCS Honographs

D. Sankoﬁ and J. B. Kruskal (eds.), Time Warps, String Edits and Macromolecules: The Th,
and Practice of Sequence Comparisons, Addison-Wesley Reading, MA, 1983 . o
P. van Emde Boas, Preserving order in a for, , ’ ’ .
Inform. Process. Lett., 6 (1977), 80-82.

R. A. Wagner and M. J. Fischer, The strin
Mach., 21 (1974), 168-173.

putational problems in the analysis of molecular

Igorithm for computing string editing distances, J,

est in less than logarithmic time and linear space

g to string correction problem, J. Assoc, Comput,

Algorithmica (1987) 2: 337-361 - -
Algorithmica

© 1987 Springer-Verlag New York Inc.

Computing on a Free Tree via Complexity-Preserving
: Mappings'

Bernard Chazelle?

Abstract. The relationship between linear lists and free trees is studied. We examine a number of
well-known data structures for computing functions on linear lists and show that they can be
canonically transformed into data structures for computing the same functions defined over free trees.
This is used to establish new upper bounds on the complexity of several query-answering problems.

Key Words. Linear list, Free tree, Query-answering, Range tree, Interval tree, Ackermann’s function.

1. Introduction. In the same way as pushdown automata generalize finite state
automata, free trees generalize linear lists. This generalization relates these com-
binatorial objects together as well as the abstract data types that are built upon
them. For example, consider the obvious similarity between an interval in a list
and a path in a tree. The fact that in both cases two pieces of data fully specify
the object in question allows us to rephrase many problems on linear lists by
mere substitution of the word tree (resp. path) for the word list (resp. interval).
Maintaining intervals dynamically (a typical task in IC design-rule checking, for
example) becomes the problem of maintaining “active” paths in a tree (with
application to, say, communication networks). Since, after all, linear lists are
better understood than free trees, it is tempting to ask the question: can one use
techniques available for linear lists to solve problems on trees, or does the added
generality of the latter type prevent any systematic “transfer’’?

Let us say now that we concern ourselves only with query-answering problems,
that is, problems where a function is to be evaluated repeatedly for difterent
values of its arguments, presented as queries. We show that many data structuring
techniques defined in the context of linear lists can be generalized to work also
on free trees. Moreover, the generalizations can be defined in a canonical fashion,
that is, by using a small number of elementary transformations, quite independent
of the problems to be solved.

A different approach to the problem of computing over free trees has been
developed by Sleator and Tarjan [12], [13]. It can be used for some of the
problems addressed later on; being particularly efficient when certain dynamic

! This work was started when the author was at Brown University, Providence, RI. It was partly
supported by NSF Grant MCS 83-03925. A preliminary version of this work has appeared in the
Proceedings of the 25th Annual IEEE Symposium on Foundations of Computer Science, West Palm
Beach, FL, October 1984, pp. 358-368.

2 Department of Computer Science, Princeton University, Princeton, NJ 08544, USA.

Received April 24, 1985; revised May 8, 1986, and December 19, 1986. Communicated by D. T. Lee.

338 B. Chazelle

capabilities are needed (such as linking or cutting trees) and amortized complexity
is acceptable, Roughly, Sleator and Tarjan’s method involves rewriting a rooted
tree as a “balanced” interconnection of paths.

Our approach is quite different. Instead of developing original data structures
for free trees, we build a framework within which algorithms for linear lists can

indeed generated in that way. Here is a summary of our main results:

In Section 2 we make severa) basic observations and establish a few technical
lemmas to be used throughout,

In Section 3 we show how Cartesian trees (a data structure due to Vuillemin
[16]) can be adapted to operate on free trees. This leads to efficient methods for
solving problems of the kind: preprocess a weighted free tree so as to be able to
compute the minimum weight over an (arbitrary) query path. This, we show, can
be done in constant time and linear space. In the same section we also consider
the problem of storing a collection of distinguished paths in a tree, so that given
a query edge all the paths passing through it can be reported efficiently, We solve
this problem by generalizing the notion of an interval tree [5], [10]. By studying
two simple examples this section illustrates some of the basic tools used later.

In Section 4 we return to the first problem of the previous section, but look at
it in a more general setting. Now, weights are elements of an arbitrary (fixed)
semigroup and queries ask for the cumulated weight of a given path. We describe

2. Preliminaries. We begin with a few technical results which we shall use
repeatedly later. Let T be a free tree, defined as an undirected, connected, acyclic
graph [8], and let v be one of its vertices. If v has at least two adjacent vertices,
then split v into two disconnected vertices v, and v,, and reconnect to either v,
or v, each vertex formerly adjacent to v. We assume that in the process both v

Computing on a Free Tree via Complexity-Preserving Mappings 339

L Sk

Fig. 1. Decomposing a free tree.

and v, get reconnected to at least one vertex (Figure 1). This (ilecomepﬁosetsh thont:;
two subtrees T; and T,, partitions the edge-set of T, and ad sdonb 0 the total
vertex-count. We use the term subtree to refer to any connfecte subg partitior;
We define a partition of T as any set of subtrees of T which forrr;lls1 afgnowm
of its edge-set. Finally, let | T| denote the number of edges of T.f fhe llow ng
lemmas are standard facts about free trees. We n}cluQe' proofs for
completeness, aiming at simplicity rather than optimality.

LeMMA 1. It is possible to preprocess a free tree T in linear time so t.hat f;r ;,n);
pair of vertices u, v and any edge e in T, one can determine in constant time whethe
t4

e is an edge of the path between u and v.

Proor. Perform a depth-first traversal of T. Label the ﬁrsftl edgfe travczirseddli ;lel:i
. i i d twice, first forward an
nd edge 2, etc. Since each edge e is traver‘se , :
:)eacccl)(ward git will be labeled twice, the labels being f(e) 'fmd gle), w1'fh 1=f (e);
g(e)<2|7:| (Figure 2). Label each vertex v by I(v) =m1n{f(e}3|ez adjﬁce:rttet)(() }fl)a;
m i is visi To ensure that each v
i lly, I{(v) denotes the first time v is visited. th
;nfi(i):i?r?ctylab(el) we set [(w) =0, where w is the first vertex v1st{ted. Clea'rly,_e'(:fg
i ’ i ly if exactly one of u or v is visi
lies on the path from u to v if and on
;etween the two visits of ¢, that is, either I{u) € [f(e), g(e)] and I(v) & [{)(ei;gélee)g
or l(v)e[f(e), g(e)] and l(u)2[f(e), g(e)]. Note that no vertex can be

O
g(e) for any e.

(3)

(14) (o)

Fig. 2. Labeling edges and vertices.

340
B. Chazelle

;EMaMtA't 2 j{f T is a free tree of at least two edges then, in linear time, it is possible

partition T into two subtrees T, and T, such that }| T|=<|T||=< T,|=3T|.

iPnllzolm:. Th; ex1stefn.ce part' of .the lemma is the standard centroid theorem. To

plement the pz.lmtlonmg in linear time, we can use the labeling of Le

31 suﬂices to notice that, for each edge e of T, g(e)—f(e)—1 regpresentr;1 T\;iclé

Ceitsm‘(:,i of one of th'e subt‘rees adjacent to e. This allows us to discover the
roid(s) in linear time. Since none of the subtrees adjacent to the centroid(s)

A

can contain more than [|T|/2]=<2|T|/3 edges of T, completing the proof is |

routine.

0
%anN{A .3. Le‘t T be a fr?e' tree and let k be any integer (1< k=<|T|). In linear
ime it is possible to partition T into subtrees T,,..., T,, such that for each i

(1=i=<p) we have k/3<|T}|=k.
I:RV(:i(:;.a pCol.lgfsefan arbit;ary vertex r of T and represent T as a tree rooted at
, inter from each node (#r) to its parent. We also k i
of the leaves. In addition, we associat iste oy At oy it cach
leave s e two registers, b(v) and c{v), with each
gi):ie v;)e 111n1t1a11y, b(l1))) = (()1 and c¢(v) holds the number of children of v ’We assume
ave an unbounded supply of colors to choose f '
edges. At the outset, each node and ea is gi oo (ot axbriean)
s ch edge is given a distinct (b i
color. At the end, the edge-coloring indi i ey
. , g indicates the d iti i
iterates on the following process. esired partition. The slgorithm
trePlc]k) any leaf v; if v=r therT stop. Otherwise, let w be the parent of v in the
fe. ecrease c¢(w) by 1 and increase b(w) by 1+ b(v). Also, assign the color
z(v)tz Iiv, w) as w.ell as to every edge colored like w. Prune v from the tree. If
w) = k/3, then give w the color of v; otherwise set b(w) to 0 and color i h
a new, as yet unused, color. v
o Tthz algorithm is straightforward. At any time, b(w) holds the size of the subtree
1 fbe(v)ai le,L I:(/);ori,s thfe san;)tz way. This size never increases by more than
= , therefore b(w)=1+2k/3. (Note that since i
: . the lem
Z:):/ﬁouslz true for k<3, we can assume that k=3, which implies b(w) Snllca) E‘
A ca;c:lr:)t vls)/: f:}r:d thalt b(r)bs k/3,then the last subtree is too small. Since k/3 < | T
e only subtree produced, so we can merge it wi
‘ , ge it with any of
adjacent ones to form another tree ¢. Note that |t|=< k+k/3. If |[tf|= k+ 1};th t&z
|caln <apply Lem'ma 2and def:ompose tinto two subtrees t,, t,, with (k+1)/3<|t,| <
tzA\ ?k/ 9, which then satisfies the conditions of this lemma. 1
A ivevcgemarkslco;lce;rnmg the implementation: ¢(v) is used to detect when a
mes a leaf; the recoloring of subtrees can be i i
' ‘ ‘ performed in O(1) time
ll)'y lirr:ipl.ementlng each cqlor as pointers to the head and the tail of a s(e)aiate
inked list (of edges). This ensures the claimed linear time. ° |

i;it'll"lwto Simple (l}eneralizations: Cartesian Trees and Interval Trees. We begin

wo examples of data structures develo i i

h two. ‘ ped in the context of linear orders

\t)x;lel;ch 1(; is partlcular)f easy to port to free trees. The first one is the Cartesiar’l
, a data structure invented by Vuillemin [16] as a geometric representation

Computing on a Free Tree via Complexity-Preserving Mappings 7 341

of a permutation. Let Ay, ..., A, be n distinct real values. We build the Cartesian
tree T(1, n) of this set by using the following rewriting rules: if i > j, then T(i, j)
is null. Otherwise, let A, be the largest value among A, ..., A;; the left (resp.
right) subtree of the root of T(i,j) is T(i, k—1) (resp. T(k+1,j)). Gabow et al.
[6] have observed that one-dimensional range searching for maximum can be
reduced to computing a nearest common ancestor in a Cartesian tree. We apply
these techniques to the following problem: let T be a free tree where each edge
is assigned a weight taken from a totally ordered set; given a query path P,
compute the maximum edge-weight in P.

The data structure J(T) associated with T is built recursively as follows: if
T is reduced to a single vertex then 7(T) is null. If not, let e be an edge of T
of maximum weight, and let T, and T, be the two trees created by the removal
of e (note that T, and T, consist of at least one vertex). We define I (T)as a
binary tree whose root is associated with e, and whose two subtrees hanging from
the root correspond respectively to Th and T, (the order is immaterial). Let v,
and v, be the two nodes of J(T) corresponding to the end-edges of the query
path P. Obviously, the edge of T associated with the nearest common ancestor
of v, and v, has maximum weight among the edges of P. It can be found in
constant time and linear preprocessing, using a technique due to Harel and Tarjan
[7]. One last detail concerns v; and v,. If P is represented by its two end-vertices
(w,, Wa), finding the end-edges might not be immediate (see Lemma 15). What
we can do instead is keep a correspondence table between each vertex of T and
the smallest-weight edge adjacent to it. In this way we may not have the right
end-edges, but certainly the new path will have the same maximum edge-weight
as the original one. Of course, the scheme may fail if not only the maximum
weight of P is sought, but also the name of an edge carrying that weight. In that
case it might then be better prior to preprocessing, to attach a dummy edge of
weight —oo to each vertex of degree larger than one, and keep a correspondence
table between each such vertex and the dummy edge adjacent to it. In this way
the path actually processed will not be P, but its edge of maximum weight will
be the same (assuming that —© is any value less than any edge-weight).

We shall now apply the same method to interval trees and enable them to
handle paths in a free tree, as opposed to intervals in a linear list. The problem
which we wish to solve is the following: given a collection of paths in a free tree,
report all the paths which pass through an arbitrary query edge. We briefly recall
the definition of an interval tree, a data structure discovered independently by
Edelsbrunner [5] and McCreight [10]. Given a set of intervals in {1, ..., n}, set
up a complete binary tree of n nodes and store each interval I in the highest
node of the tree whose rank in symmetric order falls within I The generalization
to free trees is immediate. Let T be a free tree and let C be a collection of paths
in T, for convenience let m denote the size of T or C, whichever is larger. The
data structure J(T), as usual, is defined recursively. If T consists of a single
edge then J(T) is a tree with a single node, associated with the edge of T.
Otherwise, let v be the vertex of T common to T, and T>, as defined in Lemma
2. We replace v by a dummy edge, associated with the root of J(T). The
replacement of v by a dummy edge (along with the recursive occurrences of this

2 B. Chazelle

process) has the effect of creating a new tree T', whose edges are in one-to-one §
correspondence with the nodes of 7(T). Note that the internal nodes correspond !
to dummy edges, whereas the leaves map to the edge-set of T. The second -

observation is that each vertex of T’ can be associated with a unique vertex of
T. Since this correspondence is in general not one-to-one, there might be more
than one way to specify 7. Indeed, let T| and T3 be the new trees derived from
T, and T,, respectively. We can form T’ by connecting T and T} via any edge
(v, vy), provided that v, (resp. v,) is a vertex of T (resp. T3) corresponding to
the vertex v of T. Clearly, there might be several ways to do so. We shall examine
the correspondence between T and T’ in greater detail in Section 5. We have
enough at our disposal at this point for solving our current problem. Any edge
of T is mapped into a unique edge of T’, hence query edges in T can be interpreted
as query edges in T'. Also, a vertex of T is mapped into one of the (possibly
several) vertices of T’ associated with it. This allows us to transform C into a
collection C’ of paths in T'. We can easily verify that the new problem—defined
with respect to T’ and C'—is exactly the same as the former one (despite the
flexibility in the mapping of vertices from T to T'). Next, following the approach
of the interval tree, we insert each path of C’ into the highest node of J(T)
whose associated edge lies on the path. Applying the labeling of Lemma 1 to T'
allows us to classify the paths stored at each node v of (7). Let T} and T% be
the two subtrees of T" associated with the children of v (assuming that v is not
aleaf). We form the lists L,(v)} and L,(v) consisting respectively of the end-vertices
in T7 and T of the paths stored at v. Both lists are sorted by the labels of the
end-vertices. If v is a leaf then L,(v) contains the names of the single-edge paths
of C' stored at v and L,(v) is not defined. The data structure requires linear
storage.

Let e be a query edge. To retrieve all the paths of C containing e, we first map
e into its corresponding edge ¢’ in T’. Then we observe that by binary search we
can identify a path of I (T) from the root to a leaf, whose lists L;(v) are guaranteed
to contain the end-vertices of the paths sought. We can implement this first stage
of the query-answering in O(log m) time. Our next observation is that within
each list L;(v) thus identified the desired entries can be retrieved, each in constant
time, after a binary search in L;(v) with respect to one of the two labels associated
with e’. This leads to a query time of O(k+log> m), which we improve to
O(k+1log m) by using fractional cascading. This data structuring technique, due
to Chazelle and Guibas [4], is a postprocessing method to optimize the search
for a given key in a set of dictionaries connected together by a graph of bounded
degree. It increases the preprocessing by at most a constant factor. This closes
our informal discussion of generalized intervals trees.

The main purpose of this section has been to illustrate, in their simplest form,
some of the mappings used later. Whether our generalization of an interval gives
the solution of choice for the problem considered is unclear. Other solutions can
be contemplated. One is to use Lemma 1 to express the problem as a specific
instance of range searching, and then use McCreight’s priority search tree [11];
we omit the details. Another solution is to recast the approach followed here in
the framework proposed by Sleator and Tarjan [12].

Computing on a Free Tree via Complexity-Preserving Mappings 343

We are now ready for a more complex illustration of the transformational
approach which constitutes the main theme of this work.

4. Summing Up Weights Along a Query Path. Let T be a free tre? of nteS%S
and let w be a weight function mapping every edge e.of T 1nto.an e emetr.l)
of a semigroup (¥, +). The problem which weﬂcio;l)s1(<)iff=,rThe\;/ee1sﬁ r(;(;rrllg::ku;% the
i w(e), for an arbitrary query pa . ‘

;url:l;tll:rrrll fzrs)er; a(pl)lrely combinatorial point of view. We show that if m valugz
can be computed in preprocessing, then any .S}lm of the form ¥, p ;(e) ;an ©
evaluated in O(a(m, n)+ n/(m—n+1)) additions (in tt.le sense of &), W e;e ¢
is the inverse of Ackermann’s function defined by Tarjan [1?1]. Then we s 02m
how to implement this combinatorial scheme on a RAM. Fm'ally, we give
application of this result to the verification of minimum spanning trees.

4.1. A Combinatorial Solution

TueoreMm 1. Let T be a free tree of n edges with an edge-weight function w.
For any integer m=n there exists a set W of m semigroup values such that, for
any path P of T, “the quantity Y., p w(e) can be expressed as the sum of
O(a(m,n)+n/(m—n+ 1)) values in W.

To prove this theorem we generalize a techniqye of Yao [18] f_c_>r computm%
partial sums in a linear list. We need some terminology. Let W—.{ql, cees g:)
be a set of m values in the semigroup and let F(u, v) denote the quantity Yoe P :; : 2,1
where P is the path between the vertices u and v. The set W provi ; 2
(t, «)-scheme (a real> 0) if m=an and any F(u, v) can be expresse

. q;,, where t'=1.
leil;;nqliemma 3, we derive the two relations,

k
(1) §<|Tilsk,
7|37l
(2) P A

Let T={Ti,..., T,} denote the partition of Lemma 3. Informall% ;peall;g:js,
the subtrees of 7 can be regarded as the super nodfzs of a.freje tree. This ade v
us to classify any path P in T as either falhpg enqrely within a super Ll: oo
stretching over several super nodes. Computing F in the ﬁrlst cas? ;agssoaated
by a recursive call, while in the other case, precomputed values 0 e
with each super node will be sufficient to evaluate F at P. The re‘:mald o ring
discussion is devoted to developing this argument in more detail and analy

lexity of the algorithm. .
thel)(;;)'::}l)cing }(I)urselves i little from Lemm‘a 3, let us look at I zils.ant ar:;;re:zirr;/
set of trees, {T,--., T} with distinct vertices. Suppose that we join tog

344

B. Chazelle

number of vertices chosen among the T;, so as to produce a single tree T. This .

process involves starting with T empty, and then picking each T;, one at a time,
and identifying one of their vertices with a vertex of T. Note that will thus
constitute a partition of T. We call the set of vertex-pairs joined during the process
an interconnection pattern for 7. Let C(J) denote the set of all interconnection
patterns for 7. For any R e C(9J), we have a unique resulting tree, T, which we
can thus designate by the functional notation, 9. For any i (1<i<p), consider
the subset of vertices in 7T; which contribute an entry to R, i.e. those vertices
merged to some others in T; (j# i). The set, called the fringe of T, induces a
subtree of T;, denoted Q; (i.e, the Steiner minimal tree of the fringe). Unfortu-
nately, Q; may contain an excessive number of redundant edges. To remedy this
flaw, we consider each vertex of degree 2 in Q; which is not in the fringe, and
merge its two adjacent edges. The resulting tree, QF, is homomorphic to Q;, and
every edge of QF maps to a path of Q;. Note that we may easily extend the
domain of F to include the paths of QF so that, for any two vertices 4, v in the
fringe of Q;, the value of F(u, v) can be computed directly from QF. Note that
this is in general not true if u and v are arbitrary vertices of Q;. The union of
all Qf, fori=1,..., p, is easily shown to form a free tree, denoted J%.

We are now ready to describe the underlying data structure, denoted DS(T).
From now on, let § ={T,,..., T,} denote the partition of T given in Lemma 3
and R designate the underlying interconnection pattern. Let V; be the set of
values F(u, v), for all pairs (4, v) where u is any vertex of T; and v is a vertex
on the fringe of T;. We define DS(T) recursively, as follows DS(T) = (A, B, C),
with A={DS(Ty),...,DS(T,)}, B=DS(J%), and C={Vy,...,V,}. The
algorithm for computing F(u, v) is now clear. Let T; (resp. T;) be the unique
tree of J that contains the edge adjacent to u (resp. v) on the path between u
and v. If i=j, recurse on DS(T;). Otherwise, let f, (resp. f,) be the first (resp.
last) fringe vertex on the directed path from u to v. The relation F(u, v)=
F(u, f,)+ F(f.,f,)+ F(f,, v) allows us to evaluate F(u, v) recursively by comput-
ing F(u,f,) and F(f,,v), using V; and V], respectively, and then computing
F(f.,f.), using DS(J%). Let q(T) denote the maximum number of arithmetic

operations necessary to compute F(u, v) for any pair of vertices («, v) in T. We
have

(3) g(T)=max{q(T%)+2,q(T\),..., q(T,)}.

Let us now examine the storage [DS(T)| required by the data structure. Let d;
d;

be the number of vertices in the fringe of T;. These vertices contribute ()

precomputed values to V;, while any other vertex in T, contributes d; values. The
storage, |C|, required by item C is therefore

d;
=¥ I:(|’Ti|+1_di)di+(2)i|s > d:|T:|
1=i=p 1=i=p

From (1) we derive |C|<k Yi=i=p 4. The quantity 3, _,_ d; represents the total
number of fringe vertices in all the 7T;’s. To bound this quantity above is not

'yu

Computing on a Free Tree via Complexity-Preserving Mappings 345

difficult. Starting from any vertex of T, follow any path wi'fh this rule in m.ind:
when entering T;, aim toward another fringe':-vertex of T,», if any, and continue
the traversal in the other subtree. Since T is a trefe, this process must -S;OP- at
some point, and thus identify a tree T, witha smgle frmge-vertex. Tge <cozntr1_ 111';101:}[
of T; to Y ==, di is at most 2, therefore, by induction Li=i=p il_ d(ph t.
follows that |C|<2pk, which from (2) leads to |C|<6|T|. We conclude tha

) IDS(T)|< ¥ IDS(T)|+DS(TR)+6|T|

1=i=p
Let us relate the size of the tree I % to p, the cardinality of 9‘ The contributio‘n
of T, to the number of edges of I * is easily seen to be §om1n§ted by 2d; (this
bound is not tight, but chosen for convenience). We derive |TH| =X, .=, (2di),
hence

(5) |7kl <4p.

Keeping the quantity k as a parameter allows us to esta.blish a clzfss of opglmal
space-time trade-offs. Instead of looking for algorithms with some given pe; orm-
ance, we reverse our perspective and set out to characterize the size of trees
within which a scheme with a prespecified complexity can always be found. VYe
introduce the function D(t, @), defined for all integers t=0, =0 as follows:

1. D(t,0)=D(0, a)=0;

2. D(t, @) = max{n|V free tree T s.t. |T| = n, 3(t, @)-scheme for T} for 1>0, &> 0.
To establish a recurrence relation on D(t, a), we must intI‘OdI:ICe another fuflctlf)n,
p(t, @) related to the maximum cardinality of interconnection patterns yielding
a p,respeciﬁed performance. Let p(4,) be the maximum value of p such that for
any p' (1=p’'=p), any T ={T,,..., T,} with

[Vi(1=i=p"), D(, a)/3<|T;|=D(t, a)]

and any R e C(7), there exists a (1, a +18)-scheme for T . The growth of D(¢, a)
follows two key inequalities.

LemMa 4. Foranyt=1landanya=1,we have D(t, a +18) = (p(4, a)/3)D(t, a).

Proor. It suffices to show that there exists a (¢, « +18)-scheme for any tre;:: T
with at most (p(t, @)/3)D(1, a) edges. We can assume thgt |T|> D(t,), ot er(;
wise the result is obvious. This allows us to follow the lln‘es of 'Lemma 3,han
partition T into p subtrees T,..., T, suc'h that, for each i (I.SIS p), we tz:zci
D(1, a)/3<|Ti|=D(t, a). Note that this is always possible since for anyl ._n
and a =1, we have D(t, a)=1. Since | T|=3D(s, a)p(t, a), we ha\(e from re atltc})1
(2) p<3|T|/ D(t, @) = p(t, @), at which point the proof follows directly from De
definition of p(t, @).

LEMMA 5. For any t=2 and any a =1, we have p(t, @)=3D(t =2, D(4, a)).

Proor. The lemma is clearly true for t=2, so letlus assume that 112. Let
J={T,,..., T,} be aset of free trees such that p=3zD(1—2, D(t, a)). Assume

346 B. Chazelle }

furthermore that for each i (1= i=p) we have D(4 a)/3<|T|=D(1, a). Let R -

be an arbitrary interconnection pattern of C(J); we shall show that I always
admits of a (f, «+18)-scheme. We follow the divide-and-conquer strategy
developed previously. This involves setting up the following data structures:

1. A={DS(Ty),...,DS(T,)}. For each T,, we set up a (t, a)-scheme, which is
certainly possible since |T;|< D(t, a).

2. B=DS(J%). From (5) we know that % has no more than 4p edges. Since
p=iD(t-2, D(t,a)) and t>2, we have |T%|<D(t-2, D(t, a)), therefore
there exists a (¢ —2, D(t, «))-scheme for J%.

3. C={Vy,..., V,}. Define as previously.

From (3) it follows directly that the scheme proposed involves at most f operands
for any evaluation of F over J. Let S represent the amount of storage required
by the algorithm. From (4) we have

S= Y a|T|+4pD(t, a)+6|T|.

1=i=p

From the hypothesis that D(1, @)/3<|T;|, we derive ¥, _,_, |Ti|> (D(1, @)/3)p,
hence p <3|T|/D(t,). This implies that 4pD(t, @) <12|T|, which yields S<
a|T|+12|T|+6|T|=(a+18)|T|. We have thus shown that I admits of a
(t, @ +18)-scheme, which completes the proof. O

LemMMA 6. For any t=2 and any a=1, we have D(f,a+18)=
12D(t, @) D(1 -2, D(t, @)).

Proor. A direct consequence of Lemmas 4 and 5. O

For convenience, we introduce the function B(i, j), defined as follows: for all
i, j=0, we have B(i,j) = |5D(2i+2, 18j)|. We can assess the (fast) growth of
B(i, j) by means of a recurrence relation.

LEMMA 7.

1. Vj=0, B(0,j)=2j.
2. Vi=1, B(i,0)=0 and B(i,1)=2.
3. Vi=1,Vj=2, B(i,j)=B(i,j—1)B(i—1, B(i, j —1)).

Proor. B(0,j)=|1sD(2, 18j)|. Assume that j > 0; a simple solution for achiev-
ing time =<2 is to remove from T one edge adjacent to a leaf, and store the value
of F over each edge of T and over the path between each pair of edges in the
reduced tree. The space used will be

TI-1
+|T],
2

. . . 347
Computing on a Free Tree via Complexity-Preserving Mappings

so there is a (2, 18j)-scheme for all T such that
(T +imi=1si

ie. |T|=36j+1-2/|T|, from which we easily derive (1). We omit the proof that
;he function B(i, j) is monotone (nondecreasing with respect to 1 and j), Fherefore
for all i=1 we have B(i, 1)= B(0,1)=2. Also, from Lemma 6, we derive

B(i,j)= 3B, j-1B(-1, B(i,j- 1),
for i=1 and j=2, from which (3) follows, since
. . 2
" B(ij—1)B(i—1, B(i,j—1)= B(0,j~DB(0, BO,j-1))=8(-1">2. U

We shall now relate the function B(i, j) to Acke.rr.nann’s functif)n. Befc;lrehz}nd,
we recall well-known results; some of them have trivial proofs,_whlch are there or’e
omitted. For a thorough treatment of the numerical properties Qf Ackerm?nns'
function see Tarjan [14]. Let A(i, j) be the function defined recursively as follows:

A(0,7)=2j for any j=0.
A(i,0)=0 and A(i,1)=2 forany i=1.
A(i,j)=A(i—1,A(i,j—-1)) forany i=1 and j=2.
For any m=n=1, we define the function a(m, n) by a(mn)=

min{ili=1, A(i, 4[m/n)>log, n}, and, for any real number x and integer j=2,
we define a(x, j) by

(6) a(x,j)=min{i|i21,A(i,j)>x}.

LemMA 8. The function A(i, j) is monotone.

LEMMA 9. For any j, j' with 3 < j=j' =300j, we have a(x, j)=a(x,j)+4
Proor. Equation (11) in Tarjan [14] states tpat .for any i=0,j=1, v;ze ha;/le
A(i+1,j+1)= A(, 27). Applying this inequality iteratively, we comp ete the

proof by observing that for any i=4, j=3, we have

20— . .
AGj) = A(i-1,277) = Al -4,2 N=..-=A(i-4,300/). U

348

LeEmMA 10. For any x, j with x=1 and j =4, we have a(x, j)= O(a(log, x, j))

LEMmMA 11.

LemMMA 12. For any t =1, we have a(m, n)=< a(im, tn).
LeMMA 13. Forany i, j=0, A(i, j)=< B(i, j).
Proor. Straightforward double induction. O

‘ We ar; now ‘ready to evaluate the performance of our algorithm. Let f(m, n)
en(;te the minimum value of ¢ such that for any tree T with |T| = n, there exists
an algorithm which uses at most m units of storage and computes any value of

J \ ’1 € at y f(2) . S gl.llSh

Case 1: m=T72n>1. Clearl i
. y, fim, n)= = i i
L e S y=min{tjn=D(t, [m/n}])}. Since D is

f(m, n)smin{2i+2I18n£D(2i+2, 18[%48'”)}

Now, because 18 18n| <
implics |m/18n| < |m/n], we have |m/18n}=||m/n)/18], which

f(m, n)smin{2i+2]18ns D(2i+2, 18[_"1_J)}
18n)

We derive

(7 f(m, n)Smin{2i+2|nSB(i’ [ﬂJ)}
18n)/})

Let g(m, n) be the function defined b in{i
X y g(m, n) =min{ijn < A(i
(6) and the fact that A is monotone we find that {ilr (b Lm/ 18] From

®) g(m, n)Sa(n, [ﬂJ)
18n

Ellzyt(tsxlz appl>y Lemma 9, with j = |m/18n] and j' =4[m/n’. We can easily check

o 4[me/r:];Zin, we:avfe 3=j=j'=300j, which directly implies that g(m, n) <

, , and, from Lemmas 10 and 11, we derive 0y =

2 m, n =

fO(E:(:?o)gi ;p,_:lz[nz/n]))) ——-fO(a(m, n)). Lemma 13 and relation (7) sif)W tl)lat
LR = g(m, n), from which we conclude th

e, o ude that for any m, n (m=72n>1)

B. Chazelle ‘

For any m, n with m=n=1, we have a(m, n) = a(logy n,4[m/n1)

Computing on a Free Tree via Complexity-Preserving Mappings 349

Case 2: n=m<72n. The idea is to break up the tree T into p subtrees I =
{Ti > T,}, applying the results of Lemma 3, and computing the function F in
the usual way. Recall that in the general case the path over which F is to be
evaluated is decomposed into three paths, one in I * and the two others in some
of the subtrees of 7. The difference with the previous method is that the procedure
will now recurse only with respect to the path in J%, the two other paths being
handled naively by examining all of their edges in turn. We use n words of
storage to store the data structures associated with all the trees of J and use the
remaining m —n words of storage to apply the technique of the first case to TE.
We wish to prove that in all cases we can achieve a space-time trade-off of the type

©) f(m, n)=0(a(m, n)+;j";n>.

In order to apply the previous scheme to J %, we must assume that the available
storage for 7 * is at least 72 times the number of edges in I *. For this reason,
we shall assume in the following that we have m> n+72. Note that if this
inequality is not satisfied, relation (9) holds trivially. The next result expresses
the relationship between k, the maximum size of each T;, and the storage available

for T% (see Lemma 3).

LemMa 14, If k= [864n/ (m—n)), the decomposition of Lemma 3 leads to
\T%| <75(m —n).

ProoF. We may assume that k= [864n/(m— n)]= n, since otherwise relation
(9) is trivially satisfied. This assumption allows us t0 apply (2,5). From these
relations we derive [Tk[<4p< 12(n/ k), hence |Tk|<12n((m- n)/864n) =

O

L(m—n).

We are now back to Case 1 with respect to Tk We use n words of storage
for all the trees Ty,..., Tp and m —n words for the tree J%. From Lemma 14
we derive an upper bound on f(m, n), the maximum number of precomputed
operands needed in any given evaluation of F:

F(m, n)= O((72|T%), |7 +2 max |Til.

Using relation (1), Lemma 12, |T%|=n, and m <72n, we conclude that

1728n
m—n

f(m,n)=2k+ O(a(72n,n))=[]-l—O(a(m, n)).

Being now in the case m > n +72, this establishes relation (9).

In all cases we have shown that f(m, n)=O0(a(m, n)+n/(m—n+ 1)), from
which Theorem 1 follows. Yao [18] showed that under reasonable assumptions
this result was optimal if restricted to linear lists. Theorem 1 is therefore optimal.

350

4.2. A RAM Implementation. How difficult is it to implement the solution of
Theorem 1 on a RAM? We begin with a technical result.

LemMA 15, It is possible to preprocess a free tree T in linear time and space, so
that for any two vertices v and w of T the second and next-to-last vertices (if any)
on the path from v to w can be SJound in constant time.

ProoF. For conceptual simplicity we build two trees T’ and T” as follows. Pick
any vertex of T to make 7" into a rooted version of T. With each node of 7' we
keep a pointer to its parent (if any) and its preorder and postorder ranks (to
check whether a node is a descendant of another in constant time). To build 7"
we relink each internal node z of T with its children Zy, ..., z;: the edges
(z,22),...,(z z) are replaced by (z,, z,), .. ., (zk_y, z). We call zi the link-node
of z. The root of T" is the same as that of T'. Finally, we use the linear-time
preprocessing of Harel and Tarjan [7] to allow the constant-time computation
of nearest common ancestors in T". The query-answering proceeds as follows,
Check whether v is a descendant of w or vice-versa. If not, then the pointers of
T’ from v and w to their parents will give us the desired answer. If on the
contrary, say, v is a descendant of w, it then suffices to find the unique child w’
of w which is an ancestor of v. To do s0, we observe that w' is precisely the
nearest common ancestor of v and the link-node of w in T", a

(A) The Preprocessing. We shall proceed in a bottom-up fashion and describe
the implementation of the inner loop of the algorithm first. What is the complexity
of implementing the nonrecursive part of DS(T)?

Recall that T is broken up into p subtrees T,..., T,, via Lemma 3, and that
Thand V, (1<i< p) must be computed. From Lemma 3 the 7;’s can be found
in linear time. For each i (1=i=p) we compute V: in time proportional to its
size by a depth-first traversal of T, starting from each vertex on the fringe. We
store V; as a rectangular matrix with, say, columns representing fringe-vertices.
To facilitate its use we keep a correspondence table which indicates the row-
(resp. column-) index associated with a given vertex (resp. fringe-vertex) of T,.
Next, we build 7% by marking the fringe-vertices in each T;, made into rooted
trees for the occasion, and finding their nearest common ancestor (details omit-
ted). Completing the computation, which also includes removing vertices of
degree 2 and updating edge-weights, is routine. We also need a tree I, defined
as follows: for each T; (I=i=p) create a new vertex z;, and connect each z; to
the fringe-vertices of T;: T is the tree formed by the new edges; its vertices are
Z1, ..., Z, and the fringe-vertices of T. Each edge of I is of the form z;v, where
v is a fringe-vertex of T, Next, split each edge zv into two edges zp' and o'y,
The vertex v is called the image of v'. Finally, apply to I the preprocessing of
Lemma 15. Each tree defined above (T, T’s, 7%, T, etc.) has its vertices labeled
consecutively: the vertices of tree ¢ are labeled 1,2,.. ., [t|+1. This means that
a given vertex is likely to have several distinct labels, depending on which tree
is considered. For this reason we need a few correspondence tables, so that given
the label of a vertex v in tree X we can find its label in tree Y in constant time.

B. Chazelle "%

. . . 51
Computing on a Free Tree via Complexity-Preserving Mappings 3

Specifically, we need correspondences.fror.n TtoTy,..., T,: given ve T, we 327;1
the index i of the tree T; which contains it (or any ot: them if there a;e sevd),
as well as the labels of z; in 9 and v in T, Also, given the label o a node in
g adjacent to some z;, we need constant-time access to the labels of 1t.s 11r.nage
in both T; and J7%. All the operations describ.ed above can be performed in 1ne:15r
time. Moreover, with these data structures in hand ar.1d the use of Lemmriirl
with respect to I, we can easily reduce the computation of F(u, v). (assu tan%[
that u and v do not fall into the samle t.ree (73‘,)) to that of F(f,, f,) in cons
ime— e discussion leading to relation (3). . ‘
tm}te a;;:atr}; that a fixed fraction of the storage is used fo.r storx‘ng Sletgr?}I:iI:
values. For this reason, the quantity m, as used in the fqllowmg, will re ﬁr ot 1
specific amount of storage. It must be understood that it only denotes the actua
storage requirement up to within a constant factor.

i i introduce D'(t, @) to
B) Implementing a (t, a)-Scheme. For convenience, we in
}grgvidepan estimate on D(t, a). (Obviously, the latter should not.be comp;:ted
if preprocessing time is a concern.) For all t=2i>0 anq a=18j=0, we >a\;;e
D'(2, a)=2a, D'(1,0)=0, and D’(#,18) =36. For all t =2i>2 and a =18 =18,
we have

D'(t,a+18) = |13D’'(t, @) D'(t—2, 18| D'(t,)/ 18])].

ions form a well-founded definition of D'(t, @) for all
1t\1=0t2ei ;hgta:ll;eie:r‘;g;t;’o;s the function is left undeﬁned qutsid§ Of, '.chese values.
To begin with, we prove by induction that, as a fupctlon ofiandj, D'is mo?otone.
The cases t=2 and « =0, 18 being obvious, it suﬂ?ces to show that for zlmy
t=2i>2 and o =18j=18 the quantity D'(t, « + 18) is 'gree.lter tl?an or eq.uz;l ;o
both D'(t, @) and D'(t—2, « +18). The former inequality is easily established:
by induction hypothesis we have D'(¢, @) = D’(¢, 18) = 36, therefore

D'(t,a+18)= [£D'(t,a)D'(2,36)| =6D'(t, @) > D'(t, a).

To handle the second inequality, we observe that by inductio,n hypothe51s9w)e
have D'(t,a)=D'(2, a)=2a, therefore D'(t,a+18)=3D'(t-2, 1.8([ia/t'J s
which is at least D'(t—2, a +18) since a =18j= 12?. Next, we provs: by in duc.tlor‘;
that any free tree T with n< D'(¢, @) edges .(t =2i>0and o = 18‘; 28) a ;ntl.rsne
(t, @)-scheme which can be implemented (in the sense of (A)), in O(an . . e
and with =an semigroup values. Following the definition of D', the proof is i

four parts:

1. n=D'(2, @) =2a. See Case 1 in the proof of Lemma 7.
2. n=D'(¢,0)=0. Trivial. .
3. n= D’Et 18) =36. From (1) above a (2, 18)-scheme can be implemented for
= D'(2, 18) = 36. . .
4 ;1= 2i >(2 an<)i a =18j=18, with n= D’'(t, « +18). We can 1mm§d1ately assume
. that n> D’(t, a), and therefore apply to T the preprocessing of (A) for

2 B. Chazelle

k=D'(t, a). From (2) we derive p<3D'(t, a +18)/ D'(t, «), which is at most
iD'(t—2,18|D'(t, «)/18]). At this point the proof of Lemma 5 can be
used verbatim (substituting D’ for D and D'(t—2,18|D’'(t, «)/18]) for
D(t-2, D(1, a))).

We can now put all these results together and derive an algorithm for the general
case.

(C) The General Algorithm. Let T be a free tree of n edges and let m be the
maximum number of semigroup values which we are allowed to precompute,
Given the necessary overhead in storage we may assume that m/n is larger than
a constant, say, 72. Let j(i) be the largest j such that D'(2i, 18j)=<n, and let A,
be the sequence D'(2i,0), D'(2i,18), ..., D'(2i, 18j(i)). We begin by computing
the sequence Ay, A,, ..., A,, where 7 is the smallest i such that 18(j(i)+1)=m/n.
Note that since D’(, 36) is strictly increasing with ¢ and m/n > 72, the quantity
7 is always well defined. Also, it is important to see that each value in any
sequence A,; can be derived from values previously computed: this comes from
the fact that while computing D'(t, « +18) < n we have

D'(t=2,18|D'(t, @)/18]) <= D'(t, a +18) =n.

We are now ready to start the preprocessing proper, that is, the construction of
a (27, 18j(7)+18)-scheme for T, as discussed in (A) and (B). Next, we must
show that the preprocessing time is proportional to the storage needed. The only
difficulty is that we do not know what scheme to use for 7%. Let j* be the largest
j such that D'(27-2,18j)<|7%| (computed by trying out j=1,2,...). Since
|7%| < n this value of D' has been precomputed; we can then proceed recursively
by constructing a (27—2, 18j%+18)-scheme for J%. Since D(z, 18j) is strictly
increasing in j, computing j* adds another linear term to the preprocessing time,
which thus still remains proportional to the storage (Lemma 5). More simply,
because of (1) and the fact that each row increases at least geometrically, finding
the proper entry in row 27 for each T; can be done in constant time by scanning
the row from left to right from the initial position.

The data structure can be regarded as a tree & (of high degree), each of whose
nodes points to the root of another (distinct) tree of a similar nature. Each node
of & is associated with a certain subset of vertices in T (of size bounded by a
constant in the case of a leaf). Given a query path from v, to v,, let I, and I, be
the two leaves of & associated with v, and v,, respectively. The first task must
be to determine the nearest common ancestor of [; and L in O(1) time. (This is
necessary to ensure relation (3).) Once again, we turn to the linear algorithm in
Harel and Tarjan [7] for constant-time computations. In this manner our earlier
remark about storage can be made now with respect to time. The actual query
time will be at most proportional to the number of semigroup operations needed,
in other words, proportional to 7 = f'(m, n). To show that f'(m, n) can be estimated
just as its counterpart f(m, n), it suffices to show that the function B'(i,j) =
|fsD’'(2i+2,185) |, defined for all i, j=0, satisfies all the conditions of Lemma

i i i 353
Computing on a Free Tree via Complexity-Preserving Mappings

7. Since D' is monotone, 0 is B'. The first two conditions are easily checked.
R'egarding the last one, observe that B'(i, j) is equal to

Hg[ﬁD'@i +2,18j— 18)D'(2i, 18 |_D'(2i+2, 18/ — 18)/18) M,
which is larger than or equal to 12B'(i,j—1)B'(i— 1, B'(i,j~1))]. Since B’ is
monotone, we have

] . s 2
B'(i,j—1)B'(i-1,B'(,j—1)=B(0,j- 1)B'(0, B'(0,j—1))=8(j—1)"=8,

therefore
B'(i,j)> B'(i,j—1)B'(i—1, B'(i,j—1)).

This proves our claim and shows that for all i, j =0, Al j)= Bt’(l:i,, j)\;,g:hc?:c;f;
ime i Let ¢> 1 be the constant by
that the query time 18 O(a(m, n)). : : o nust
ipli i time) requirement. If we ass
be multiplied to obtain the actual storage (or sume
i i tant, the proof of Lemma
that m/n is larger than some appropriate constant, : :
be easi{y adapted to show that a(m, n) = O(a(cm, n)). The time riefAciel:d ‘:,(1)1 ilzl}l‘lli(:
the data structure is proportional to m and the sum |A+- 1AL
easily shown to be o(m+n+a(m, n)), which is also o(m).

TueoreM 2. Let T be a free tree with n weightefi edges. There exz.st;t: ;Z)r:;ta::;
¢>1 such that, for any integer m > ci, it is possible to sum up vyelogf is along o7
arbitrary query path of T in time O(a(m, n)). The data structure 1

m and can be constructed in time o(m).

4.3. A Theoretical Application. Let G be a connecte'd grap‘l; witp m wig?;;i
dg i j 15] has shown that verifying if a given subgr
edges and n vertices. Tarjan [51 e,
ini i ST) can be done 1n (ma(m,

f G forms a minimum spanning tree M :) :
(\)?Ve can rederive this result fromr Theorem 2. Interestingly, our method is com
ly different from Tarjan’s. ‘ . '
ple]f:tyT be a spanning tree of G. Recall that T 1s an N;ST if an 01;11)(; Ii; 3112

i i T is not smaller than that of any edge €
Wl of o aen the o * i = n—1 there exist a constant
d-vertices of e. Since m=n e
P o amintege oy ! where c is the constant of Theorem
d > 1and an integer m’=dm such that m'> cn, ’ Theore
i in Theorem 2 to be equal to m’, one ¢a
2. Setting the amount of storage 1n ‘ e s, the
i ! i ocessing cost 0 m). "
each edge of G in O(a(m’, n)) time, at a prepr : e
veriﬁcat%on is complete after O(ma(m', n))=O(ma ()m, n)l)do;:axlﬁgz)?):fxm
i ian trees) wou
that the method of Section 3 (Cartesian : . :
Zﬁsf}:zechecks in O(m) time; unfortunately, as is easily seen, the preprocessing

might require Q(n log n) time.

354 B. Chazelle

Before closing this section, let us recall that Komlés [9] has shown that O(m)
comparisons suffice to decide whether a spanning tree is minimum. To implement
an algorithm on a RAM which performs within the same time bound is still, to
our knowledge, an open problem.

5. Generalizing Range Trees: The Emulation Dag of a Free Tree. A balanced
tree is a versatile tool to represent a linear list. In this section we develop the
equivalent notion for a free tree, which we call an emulation dag. To motivate
the discussion we look at a specific problem: let T be a free tree supplied with
a real edge-weight function w; given a query consisting of a path P and a real
interval [x, y], compute |{e € P|x < w(e)=y}|. This problem is a generalization
of orthogonal range counting in R>. We develop our solution in three stages:
first, we describe the emulation dag of T and the canonical decomposition of a
path; then we generalize the notion of a range tree to provide a near-optimal
solution; finally, we use a compaction scheme to optimize the data structure. In
light of the following discussion it will be clear that the same ideas can be used

to solve the “free tree” generalizations of many other orthogonal range searching
problems [2], [3], [17].

5.1. The Emulation Dag. We encode T by means of a directed acyclic graph
9, called the emulation dag of T. We start the construction of J by calling the
procedure of Lemma 2 recursively and putting this process in correspondence
with the nodes of a binary tree. For this reason, we use binary tree terminology
to refer to the nodes of J. Note that since centroids are not always unique, the
emulation dag may often not be uniquely defined. To avoid confusion between
T and its emulation dag, we will refer to the vertices of T and the nodes of J.

Let T; and T, be the two subtrees of Lemma 2. Associate the root of J with
T, and its left (resp. right) child with T, (resp. T,). In the general case, each
node v of J is associated with a tree T(v), which is a subgraph of T. Recursive
application of Lemma 2 completes the definition of 7, with the understanding
that every leaf I of J has its associated tree, T(I), made up of a single edge.
Note that each node v of I thus corresponds to a unique partitioning vertex of
T, denoted o(v) (o is in general many-to-one). If v, and v, are the two children
of an internal node v of J, then o(v) is the unique vertex common to 7(v,) and
T(v,). If v is a leaf of J, let uu’ denote the unique edge of T(v) and let w be
the parent of v. Observing that o(w) is a vertex of uu’, say u, we define o(v) to
be u'. Each edge of J is directed from parent to child. It is easily seen that I
has height at most [log, 5| T|]. Ignoring the dashed edges, Figure 3(b) illustrates
the construction of 7. Note that four nodes of I are mapped to the same vertex
of T, labeled 2. This is because this vertex was picked as the centroid on three
occasions, and is also in correspondence with a leaf of 7.

In order to show that J induces a natural (so-called canonical) decomposition
of any path in T, we must first augment J with additional edges. Why is that
necessary? Certainly, a path of T such as (7, 11) in Figure 3(a) can be expressed
in I by the four edges connecting the root to the leaf labeled 11. But what about

—_— e —
~

Computing on a Free Tree via Complexity-Preserving Mappings 355

it
|
1
1
[}

(b)

Fig. 3. A free tree and its emulation dag.

the path (7,6)? We have no choice but to take the left edge from the root and
then hope for the best. Unfortunately, this edge corresponds to a path .of T, (7,. 2),
that is not a subpath of (7,6). We need shortcuts in T to remedy t.hls situation.
The idea is to link any node v to any descendant whose asso<‘:1ated subtree
contains o(v). For each internal node v € 7 in turn, apply the fol}owmg procedure.
Let I, (resp. r;) be the left (resp. right) child of v. We describe the p.rocedure
with respect to [, only, with the understanding that it must also be applied to Lt

Of the children of I, at least one of them, call it [, is such that T(l,) conta.nns
o(v). If this property is satisfied by both children (hence cr(zf) =a(ly)) or if [y
has no children, then no additional link is provided. Otherywse, we proYlde a
direct edge from v to I, and iterate on this process by considering the twg children
of I, (if any). Specifically, let /;,..., I, be the sequence of nodes of J defined

as follows (initially, i=1):

1. If I is a leaf or o(}}) = o(v), then set k=1iand stop..
2. Else, let I, be the unique child of I, such that o(v) is a vertex of T(l..1); set
itoi+1andgotol.

Next. add to T the directed edges (v, L), ..., (v, It). The augmentation.edges of
g ar; shown as dotted lines in Figure 3(b). Note that (v, 1,) 1s alregdy in J. ljet
L(v)={(v,1,),...,(v, k)}, and L,(v) be the sequence defined 51m'11arly w1.th
respect to v and ry, the right child of v. These two sequences form the adjacency-list
associated with v in the representation of J. For any pair u, ve J, let P(y, z‘))
designate the path of T between o(u) and o(v). Each edgfe (v, w‘)e g is in
correspondence with the canonical path P(v, w): by co‘nstructlon‘, t_h1§ path 1.1€S
in T(w) and is possibly reduced to a single vertex. Incidentally, it is interesting

356

(a)

(b)

Fig. 4. A case of nonplanarity.

to Obsetve tl‘at tl‘e exnulauo’l da 18 Ilot IleC€SsaIﬂV planaI IlOdes 1_5 fOrIIl a

LEMMA 16. Let T be a free tree of
. n edges. An emulation da T
edges and each of its nodes has indegree and outdegree O(log n)g of T has Om)

lI:ROOF.bThe outdeggrvee.of each node cannot exceed twice its height. An
l})per ound on |7 is thus given by the recurrence relation U (n)=
('n1)+'U(n2)+O(log n), with U(1)=0(1), n,+n,=n, and 1=n,, n,=3
which gives U (n).= O(n). That the indegree and outdegree of each 1n,od2 e
O(log n) follows directly from the O(log n) height of 7.) ar[]e

L s
d:cxleA 17 Any path of T can be partitioned into O(log | T|) canonical paths. The
omposition can be computed in O(log |T|) time, after preprocessing. ‘
(I;:Cooﬁi)osli,:i:':) rll’ denotg the 'path to be decomposed. One crucial primitive in the
procedure is the ability to check in const i
stretches over both subtrees of N ethor cach aubtree
7 a node v of J, that is, whether
_ ‘ , , each subtree
contains at least one node which o maps into a vertex of P. Lemma 1 provides

B. Chazelle - 4

Computing on a Free Tree via Complexity-Preserving Mappings 357

1\23 55\
! / \70 / °
-/\

3 22775 S TP
] S
4

/7[
103 /

s io?
12
i

Fig. 5. A tree in normal form.

almost the answer to this question. We say almost because the lemma recognizes
edges and not vertices as queries. To overcome this difficulty, we express T in
normal form by creating a dummy edge for each partitioning vertex of T. This
is accomplished by examining cach node of 7 level by level in a top-down
fashion. Let v be an internal node of J with children v,, v,. Replace o()in T
by a dummy edge 8(v)=(o’'(v), a"(v)): T(v,) is now adjacent to o'(v) and T(v,)
to o"(v). If v is not the root, then 8(v) might be adjacent to other edges which
are neither in T(v,) nor in T(v,): in this case these edges are now adjacent t0
either o’'(v) or o"(v) indifferently. For consistency, if v is a leaf of 7, we define
8(v) as the edge of T' corresponding to (o(v), c(w))in T, with w the parent of
». Figure 5 represents the tree of Figure 3(a) in normal form: dummy edges have
been labeled with superscripts indicating their level in J. Each vertex of T is
now associated with one or several vertices of T’ forming a connected subgraph
of T'. Note that from the definition itself the normalization is in general not
unique: the dummy edges associated with a given vertex of T form a subtree
that is not defined uniquely.

Let T’ be the tree T in normal form. The analogue of T(v)in T'is denoted
T'(v). A path P of T canbe mapped into a path P’ of T' in constant time. Since
the mapping is not one-to-one, arbitrary conventions can be made to make the
conversion deterministic. The ambiguity comes from the end-vertices of P. The
path (1, 11) in Figure 3(a) causes no difficulty, but the path (2,11) canbe mapped
into a path that contains any of the edges, 2, 2%, 2°, indifferently. Any such path
will do. With T in normal form, we are now ready to describe the decomposition
of P. Initially v is the root of 7 and V is the empty list. At the outset of the
computation, V will contain each edge of 7 in the canonical decompostion of
P. We assume that P contains at least one edge.

1. If v is a leaf, let w be its parent and V ={(v, w)}, then stop. Otherwise, let
v, v, be the two children of v. If P’ lies completely in T'(v,) and does not
contain 8(v), thenset v =1, and iterate recursively through step 1. Otherwise,
check whether P’ lies completely in T'(v,) without containing §(v). If this is

A

358

the case, then set v = v, and iterate recursively through step 1. Elsesetc=d =1
and proceed to step 2.

2. Let v, (resp. v,) be the left (resp. right) child of v, and let p, (resp. p,) be the
end-vertex of P’ in T'(v,) (resp. T'(v,)).

3. From the list Ly (v) = {(v, w,), ..., (v, w)}, compute j the smallest index i such
that o(w;) = o(v), or the path of T’ between p, and ¢'(v) contains the edge
8(w;), or g(w,) is the end-vertex of P corresponding to p.. If none is found,
then go to step 4. Otherwise, add the edge (v, w;) to the list V, provided that
o(w;) # o(v). Proceed to step 4 if p. corresponds to o(w;). Otherwise, set
v=w; and let v, (resp. v,) be the left (resp. right) child of v. If p, is a vertex
of T'(v,), then set d =1, else set d =2. Iterate recursively through step 3.

4. Stop if already passed through step 4. If not, reset v to its value at step 2,
then set c=d =2 and go to step 3.

With T in normal form, the labeling technique of Lemma 1 applied to P’ allows
us to execute step 1 in constant time. It suffices to store the relevant labels with
the nodes of 7. In steps 2 and 3 we can check whether the edge 8(w;) lies between
p. and o'(v) in constant time. Checking whether p. is a vertex of T'(v,) is also
easily done in constant time, again using the technique of Lemma 1. Each list
L4(v) is scanned from the beginning until the index j is found. If none is found,
the whole list will have been examined but then we will either stop or go to step
4. In this way, at most two nodes of J per level are visited during the computation,

and each visit takes constant time. This leads to the claimed O(log|T|) running
time. U

The reader familiar with segment trees will recognize similar features in the
emulation dag. At the end of step 2, node v is the highest-level node of I such
that P’ can be rewritten as the concatenation of P,=P'n T'(v,), 8(v), and
P,=P'~ T'(v,). Paths P, and P, either are null or lie on distinct sides of the
dummy edge 8(v). Step 3 is applied successively to P, and P,. Its role is iteratively
to identify an edge of J whose associated path in T is a subpath of P. By
construction, except at the end, one of the edges adjacent to v always satisfies
this property. The edge (v, w;) with highest-level node w; is chosen, since it then
allows the recursion to proceed with respect to one of its subtrees. Which one is
determined by the end-vertex of P’ under consideration. Of course, there is no
need adding the edge (v, w;) to the current list V if the corresponding path in T
is reduced to a single vertex, that is, o(w;) = o(v). Checking whether o(w;) = o(v)
. during the scan of step 3 prevents a premature jump to step 4; note that in that
case P’ might not always pass through 8(w;). This is immaterial with regards
toT, however. To illustrate this point, consider the path of T’ formed by the
edges labeled 7°, 7% and 8 in Figure 5. The second iteration through step 3
proceeds “as though” 7' was in the path.

To illustrate the previous discussion further, consider the decomposition of
the path of T from 6 to 11 in Figure 3(a). Referring now to the labels of the
nodes of J in the figure, we obtain (7, 5)-(5, 6) and (7, 10)-(10, 11). The node
v found in step 2 is in this case the root of 9. The decomposition can be expressed

B. Chazelle 2.

. . . 59
Computing on a Free Tree via Complexity-Preserving Mappings 3

as the sequence [(6, 5)-(5, 7)-(7,10)-(10, 11)]. As a sequence of edges this does
not form a path in J but its image under o does form the path (6,11) of T.

5.2. Generalizing Range Trees. We return to our original problem: ger‘lerahz‘e(}il
range counting. Following the idea of Bentley’s range tree [2], we a.ssocmte glt
each edge (u, v) of the emulation dag J an array C(u, v) containing (‘;he edges
of P(u, v), sorted by weight. To answer a query (P,. x, y), we start with a ec}?mgo-
sition of the path P into its canonical parts, using Lemma 17. For eac b‘e ge
(u, v) of the decomposition we search C(u, v) for the keys x aqd y. Using 1r.1ary
search this gives us the number of weights between x ?,nd y in O(log n) tlmf.
Repeating this operation for each edge of the decom;z)osmf)n allqws usto c?lmpu e%
the desired answer, [{e€ P|x= w(e)=y}|, in O(log® n) time. Since thg e g;sﬂ(:
P(u, v) lie in T(v) (recall that v is a descende;nt ;)f; u), the added—sme; De
arrays C(u, v) for fixed u amounts to O((1+§4t(§) +--)T =0 (fu) .
Therefore the size S(n) of the data structure satisfies a recurrence of the dolrr:
S(1)=0(1) and S(n)= S(n1)+(Sgn2)(-)i-(0§n) (;1 >1), where n=n,+n; and 1=
= . Tt follows that S(n)= O(nlogn). ‘
" il?xt, 3vr;/r::educe the storage to O(n) and the query-time to O(l.og n) by adapting
a compaction technique originating in Chazelle [3]. To begm' with, for each r}ode
v of T we define the list B(v) as follows: let C(v) be the 11§t of edges‘ of (vI)f
sorted by weight. For simplicity, we shall assume that all welghts are distinct.
» is either the root of I or a leaf, then B(v) = C(v). Otherw1§§, let v, (resp. v2)
be the left (resp. right) child of v. Since C(vy) an<'i C (_vz) partition C(v), we cag
form B(v) by replacing each entry of C(v) by 0 1f.1t is a memper of C(vl),}?ph
1if not. The B(v)’s are boolean arrays, accessed via the function .z(u, k),. whic
gives the number of zeros among the first k bits of B(v)..For the time being, we
hat this function can be computed in constant time.
assi?:rlee;ch edge (u,v) of 7, the list C(u, v) being a subset of C(v),.w? can
define the boolean array B(u, v) by replacing each entry of C.‘(z_)) by 1 if it l}(es
in C(u, v), and 0 otherwise. We define the function z(u, v, k). similarly to z.(v,)d
The data structure is almost complete. The missing part will be best rpotlvatfe
by discussing the query-answering algorithm now. W1'th B(u, v) SubStltll(.lted or
C(u, v) the problem is now to search fo.r x and y in arrays whose eys‘t‘are
implicitly represented by individual bits. Given a real z, leF r(v, z) be the post ion
of the smallest entry in C(v) at least as large as z (or|C (v)|if none); by conventlc})ln
the first entry has position 0. Let {(uy, v1)s . .- , (U, U)} b‘e the edges of'f e
decomposition of the query path P. It is easy to see that th.e entlfe query-answermg
process can be completed in O(log n) steps if, fqr each i 1=i=m), r(v;, x) a;l
r(v;, y) can be computed in 0(1) time. Indeed, it suffices to sum up .the number
of 1’s between positions r(v;, x) and r(v, y) in B(w;, v;), for each i=1,. o mci
This can be done with the function z(u;, vi, k). I.det V be the set of nodes visite
during the decomposition.of P (Lemma 17); V includes, among others, the rog)t
ve of 7 and each u;, v; (1=i=<m). We compute r(vg, X) in Q(log n) step‘s/ y
performing a binary search in B(vy) = C{vo). Then we deal with ee‘lch vE a(si
follows. If v is not the root then its parent u is 1n.V, axi1d k=r(u, x). is computed
before r(v, x). Then we derive r(v, x)=z(u, k) if v is the left child of u, an

360

r(v, x)=r(u, x)—z(u, k), otherwise. This allows us to compute r(v;, x) (and

similarly r(v;, y)) for each i (1=i=m) in O(log n) time.

REMARK. A curious effect of the compaction process is that the array B(u, v)
is not accessible from u but only from the lower node v. To allow constant-time
access from u is possible but it necessitates too much storage.

To complete the description of the algorithm we must show how to implement
the function z(v, k) (the case of z(u, v, k) is similar). Let A = [log, n] be the size
of a computer word (or a lower bound on it). We represent all the boolean arrays
by filling up A bits per word. In addition, we keep a companion array Z(v) for
each node v of 7 its ith word indicates the number of zeros among the first i
words of Z(v). We also keep some auxiliary arrays: A,[i] indicates how many
zeros the binary representation of i contains (1=<i=n) and A,[i] gives the value
of 2' (1=i<\). With these arrays, it is elementary to show that z() can be
computed in constant time. (Note that the array A, is used to truncate a word
by a given number of bits, via a division.)

To summarize, we have obtained a compact representation of our earlier data
structure which allows us to answer any query in O(log n) time. For each internal
node u distinct from the root the added size of all the arrays B(u, v) is
O(|C(u)|/ A +depth of u). Consequently, if N is the total number of arrays
used in the data structure, the new storage requirement is easily shown to be
O(N+(nlogn)/A), which is O(n). To show that the entire data structure can
be built in O(n log n) time is left as an exercise.

THEOREM 3. Let T be a free tree with n weighted wedges. Given an arbitrary query
path it is possible to find in O(log n) time how many of its edges have their weights

between two query values. The data structure is linear in size and can be built in
time O(n log n).

Once again, our main objective was to extend techniques developed for linear
lists to the case of free trees. As mentioned earlier, the more specifically tree-
oriented data structure of Sleator and Targan [12], [13] can be substituted for
the emulation dag (applying to it the same compaction technique). This might
be the solution of choice if dynamic operations such as linking or cutting trees

are needed. A similar reasoning to the one above can be applied to adapt these
techniques.

6. A Few Closing Words. We have shown that it is possible to go from linear
lists to free trees without forsaking all the efficient techniques developed in the
context of lists. Moreover, the extensions can be defined in a fairly automatic
manner by applying certain elementary transformations. It might be interesting
to characterize formally the domain of problems and techniques amenable to
that transformational approach. Also, one might wonder what happens if arbitrary

B. Chazelle,;‘

Computing on a Free Tree via Complexity-Preserving Mappings 161

graphs are substituted for free trees. Difﬁculti?s arise because of the non}xlmiqute-
ness of a path between two vertices. Restricting oneself to sh(?rtest paths o‘rblo
planar graphs, or perhaps representing paths as regular expressions, are po(sim e
approaches to the general problem, which we believe deserves further study.

Acknowledgments. I wish to thank Bob Tarjan for his valuable.: comrr}ents on
this work. I also wish to thank the referees for their useful suggestions to improve
the presentation of this paper.

References

[AV Aho, . E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] I L. Bentley, Multidimensional divide and conquer, Corf1m. ACM, 23.(?980),.214;229. "

3] B.Chazelle, A functional approach to data structures and its use in multidimensional searc ng,
S}AM J. C,omput. (in press). Preliminary version in Proceedings of the 26th Annual IEE
Symposium on Foundations of Computer Science, 1985, pp. 165—174.. ' Aleorithmica

[4] B.Chazelle and L. J. Guibas, Fractional cascading: 1. A data structuring technique, Algoritnmica,
1 (1986), 133-162.)

[s] H(Edelsbrunner, A new approach to rectangle intersections, Part 11, Internat. J. Comput. Math.,

1983) 221-229. .)

[6] ;-:I; (N G)abow J. L. Bentley, and R. E. Tarjan, Scaling and related techniques for .geombtay

pr’oblems, Proceedings of the 16th Annual ACM Symposium on Theory of Computing, 1984,
.135-143.

71 II))p Harel and R. E. Tarjan, Fast algorithms for finding nearest common ancestors, SIAM J.
Comput., 13 (1984), 338-355. ' .

[8] D. Elf Knuth, The Art of Computer Programming, Vol. 1, 2nd edn., Addison-Wesley, Reading,
MA, 1973 . _

[9] J. Komlds, Linear verification for spanning trees, Proceedings of the 25th Annual IEEE Sym
posium on Foundations of Computer Science, 1984, pp. 20}—206. o 1

[10] E. M. McCreight Efficient algorithms for enumerating intersecting intervals and rectangles,
Technical Report CSL-80-9, Xerox Pare, 1980.

[11] E. M. McCreight, Priority search trees, SIAM J. Comput., 1.4 (1985), 256-276. < i 26

[12] D.D. Sleator and R. E. Tarjan, A data structure for dynamic trees, J. Comput. Systen SCi.,

1983), 362-391. .

[13] (D D. Sieator and R. E. Tarjan, Self-adjusting binary search trees, J. Assoc. Comput. Mach.,
32 (1985), 652-686.) .

[14] R. 55 Tarjan, Efficiency of a good but not linear set union algorithm, J. Assoc. Comput. Mach.,
22 (1975), 215-225. .

[15] R. E. Tarjan, Applications of path compression on balanced trees, J. Assoc. Comput. Mach.,
26 (1979), 690-715.

(161 J. Vuillemin, A unifying look at data structures, Comm. ACM, 23 (1980), 229-239. 14(1985)

[17] D. E. Willard, New data structures for orthogonal range queries, SIAM J. Comput., 14 { R

232-253. . .
[18] A.C. Yao, Space-time tradeoff for answering range queries, Proceedings of the 14th Annual
ACM Symposium on Theory of Computing, 1982, pp. 128-136.

