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Abstract. This paper investigates the combinatorial and computational aspects of
certain extremal geometric problems in two and three dimensions. Specifically, we
examine the problem of intersecting a convex subdivision with a line in order to
maximize the number of intersections. A similar problem is to maximize the number
of intersected facets in a cross-section of a three-dimensional convex polytope.
Related problems concern maximum chains in certain families of posets defined
over the regions of a convex subdivision. In most cases we are able to prove sharp
bounds on the asymptotic behavior of the corresponding extremal functions. We
also describe polynomial algorithms for all the problems discussed.

1. Introduction

Given a convex subdivision of the plane, how should we place a straight line in
order to intersect the most regions? Intuitively, the maximum number of intersec-
tions, the so-called line span of the subdivision, cannot be too small. Two
companion problems thus arise: to establish the complexity of computing the
line span, and to find sharp bounds on the minimum line span for subdivisions
of a given size. For variants of this problem likely to occur in practice, we can
place constraints on the number of allowed directions for edges of the subdivision,
or set an upper bound on the number of edges adjacent to any region.

A related problem on subdivisions originates from motion-planning and com-
puter graphics. Choose a direction ¢ and construct a directed graph as follows.
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The vertices of the graph correspond to the regions of the subdivision. We place
an edge from region r to region r' if, informally speaking, r can push r’ in the
direction ¢. It is easy to see that this process always creates a dag. Taking the
maximum size of the longest path over all directions ¢ gives the so-called monotone
span of the subdivision. As before, we must ask how hard it is to compute
the monotone span, and how small can the smallest monotone span get for
subdivisions of a given size.

Related problems arise in three dimensions. Given a convex polytope, how
many facets can a single plane intersect (the cross-section-span problem)? Given
a source of light outside the polytope and a fixed screen, what is the largest
number of edges on any projection of the polytope (the silhouette-span problem)?
Note that if we restrict the source of light to be placed at infinity we then have
the classical shadow problem of Moser [MP].

This paper investigates both the computational and combinatorial aspects of
these problems. Our main contribution is to provide sharp bounds for most of
the functions defined above. For example, we show that any n-facet convex
polytope has a cross-section of span Q(log n/log log n); moreover this bound is
tight.! This result solves an old open problem [MP] in a fairly unexpected manner:
indeed, O(log n) was the prevalent conjecture. The extremal functions mentioned
so far are of the form min-max. For completeness we also study the corresponding
max-min questions. In all cases, we are able to give algorithms for computing
these functions in time ranging from O(n’) to O(n?).

What is the significance of our results? From a combinatorial perspective, our
work sheds light on the general study of extremal properties of planar subdivisions
and convex polytopes. This involves a comprehensive investigation of several
classes of problems and their natural variants. The proof techniques which we
introduce enable us to derive optimal bounds for most of the problems considered.
From a computational standpoint this paper introduces a unifying framework
for solving various optimization problems efficiently. Heavy use is made of known
algorithmic tools such as depth-first search, topological sweep, dual transforms,
etc. The main appeal of our approach resides in its generality. We expect to see
further applications of cur techniques.

Our principal results, along with the necessary definitions, are given in the
next section.

2. Summary of the Results

We begin by recalling the definition of a convex subdivision of the Euclidean
plane E’. A set of open convex subsets (called regions) of E’ defines a convex
subdivision (or subdivision for short) if no two regions intersect and the union
of their closures form E°. If the number of regions is finite, then each region is
the intersection of a finite number of open half-planes. The relative interior of
the intersection of the closures of two regions, if nonempty, is called a vertex if

' All logarithms are taken to the base 2, unless specified otherwise.
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it is a point and an edge otherwise. A subdivision is said to be of size n if it is
made of n convex regions, and it is of degree d if every region is adjacent to at
most d other regions (two regions are adjacent if their closures contain a common
edge). We define the line span of a subdivision as the maximum number of regions
which can be intersected by a single line (Section 3).

Theorem 1 (Line Span). The line span of a subdivision of size n can be computed
in O(n?) time and O(n) space. The minimum line span over all subdivisions of size
n is in ©(log n/loglog n). More generally, if only subdivisions of degree d or less
are considered then the bound is in ®(log, n+log n/loglog n). On the other hand,
if the edges of the subdivisions assume at most a constant number of distinct slopes
then the minimum line span is O(log n).

Given a subdivision S and a directed line ¢, wé say that a region r pushes an
adjacent region r' if there exists a directed line parallel to ¢ which intersects r
and r’ in that order. (Similar incidence relations were studied by Guibas and
Yao [GY].) We make the regions of S the vertices of a directed graph G and
we put an edge from r to ' if and only if r pushes r’ (Fig. 2.1). It is not difficult
to show that G is acyclic and therefore that its longest path (or any of them if
there are several) has finite length. This path (or any of them if there are several)
is called the contact chain of S in direction ¢ Let 6 be the angular slope of
{(—m/2=6<m/2). Itis clear that the length of the contact chain depends only
on the slope of ¢ and is the same whether ¢ is directed one way or the reverse.
For this reason, we call G the contact graph of the subdivision in direction 6
(and do not distinguish between 6 and 6 + 7). The maximum length of a contact
chain taken over all angles 6 in [—m/2, 7/2) is referred to as the monotone span
of the subdivision. Our next result states that, surprisingly, line spans and
monotone spans lead to similar bounds (Section 4).

Theorem 2 (Monotone Span). The monotone span of a subdivision of size n can
be computed in O(n’) time and O(n) space. The minimum monotone span over all
subdivisions of size n is in @(log n/log log n). More generally, if only subdivisions
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of degree d or less are considered then the bound is ®(log, n+log n/loglog n). If
the number of distinct slopes in the subdivision is at most k then the minimum
monotone span is in Q(n'’*+log n/log log n).

Informally, a convex polytope is the bounded intersection of a finite number of
closed half-spaces (see [G] for more details). We define the cross-section span of
a convex polytope in E* as the maximum number of facets which can be
intersected by a single plane. By analogy with subdivisions we say that a polytope
is of degree d if no facet is adjacent to more than d others (Section 5).

Theorem 3 (Cross-Section Span). The cross-section span of a convex polytope of
n facets can be computed in O(n*) time and O(n) space. The minimum cross-section
span over all n-facet polytopes is O(log n/loglog n). If the degree of the polytope
is d or less then the bound is ©(log, n+log n/loglog n).

Given a source of light and a fixed screen, the projection of a convex polytope
on the screen is a convex polygon. The silhouette span of the polytope is the
maximum number of edges of the projection polygon over all positions of the
polytope. There is a one-to-one correspondence (actually, a dual mapping)
between cross-sections and silhouettes. Thus, we can state an immediate corollary
of Theorem 3.(Section 5).

Theorem 4 (Silhouette Span). The silhouette span of a convex polytope of n facets
can be computed in O(n*) time and O(n) space. The minimum silhouette span over
all n-facet polytopes is @(log n/log log n). If no vertex of the polytope is incident
to more than d edges then the bound is ®(log,n+log n/loglog n).

We have also obtained companion theorems concerning the max-min versions
of all the problems mentioned above. Interestingly, when nontrivial, most of the
combinatorial bounds are linear, while the complexity bounds remain pretty
much the same (Section 6). The max-min version of the line span is called the
line width; similarly we have the monotone width, cross-section width, and silhouette
width: to give meaning to the latter quantities we require that the cutting plane
(resp. source of light) passes through a fixed point (resp. be placed at infinity).
In the following we call a silhouette whose light source is at infinity a parallel view.

Theorem 5 (Max-Min Problems). The maximum line (monotone, cross-section,
silhouette) width of a subdivision (polytope) of size nis @(n). In all cases, computing
widths can be done within the same asymptotic complexity as computing spans.

We have thus summarized the main results of this paper and included references
to the appropriate sections. For completeness let us only add that Section 7 offers
a short discussion of what we have solved and what we have left open.
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3. The Line Span of a Convex Subdivision

This section consists of four subsections, the first three of which prove some of
the combinatorial bounds claimed in Theorem 1. Section 3.1 establishes a lower
bound on the line span of a convex subdivision of bounded degree. In Section
3.2 we relax the bounded-degree condition and prove a companion result. Section
3.3 deals with the issue of bounding the number of slopes. Finally, Section 3.4
addresses the problem of computing the line span of a given convex subdivision.
All these partial results combine together to prove Theorem 1, as discussed in
Section 3.5.

In the following, we use the notation I;(n) to designate the minimum line
span over all subdivisions of size n and degree d. Since no degree need be defined
above n—1, the minimum line span over all subdivisions of size n is I,_,(n),
which we denote simply by I(n).

3.1. Regions of Bounded Degree

In this section we establish a lower bound on I,(n) which is asymptotically tight
unless d exceeds log n. The proof is intimately based on the notion of wedges
and subwedges. Two lines that intersect in a point p cut the plane into four open
regions called wedges, each of which has p as its apex. A region W, is a subwedge
of a wedge W if

W,=hn W,,

where h is an open half-plane which does not contain p and W, is a wedge with
apex p contained in W. The edge of W, contributed by h is called the cap of
W,; the other edges come from W,.

Lemma 3.1. For any n=2 and d =3, we have l,(n)>log,_, n+log,_;(d —2).

Proof. Let S be a convex subdivision of degree d =3 with n=2 regions, and
let W, be a wedge with apex p that satisfies the following conditions:

(i) W, intersects every region of S.
(ii) W, contains at most d —2 vertices of the region that contains p.

If S contains a region with 0 or 1 vertices, then choose p inside this region.
Otherwise, let v be a vertex of S that is also a vertex of the convex hull of all
points that are vertices of S. Let r be an unbounded region of S that is incident
to v, and let e be the edge of the convex hull that intersects r. Choose p in r but
outside the convex hull and sufficiently close to the edge e. If one half-line
bounding W, goes through vertex v and the other passes through the other
endpoint of e, then W, satisfies (i) and (ii).

The wedge W, is the starting point of an iterative process. We show by induction
that there exists a sequence of subwedges of W,

WO_D.W12W2"',
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Fig. 3.1

such that W, intersects w, regions of S, with w,=n and w,,,=(w,—1)/(d — 1),
for i=0. Let r, be the region of S that intersects W, and contributes its cap.
Initially, r, is the region that contains p, and by convention, we say that r,
contributes the (empty) cap of W,. If W, contains no vertex of r,, then we set

W =int( W\r,)

(Fig. 3.1(a)). Otherwise, r, has at most d —2 vertices within W,. The lines passing
through p and these vertices split W, into at most d — 1 subwedges. Let W be a
subwedge that intersects the most regions of S. We set

Wi =int(tWr,)

(Fig. 3.1(b)). We iterate on this process until W,,, is empty.

It is also possible that W)\ r, consists of two connected components. In this
case, r, must be unbounded and thus have at most d — 1 vertices. To embed this
case in the general case (Fig. 3.1(b)) we act as if the two unbounded edges of r,
had a common vertex and we draw a line through p and this vertex (which
separates the components of W/\r,) when we recurse. Clearly, we have w,=n
and w,.,=(w,—1)/(d —1). Thus, w,=u,, where uy=n and u,,,=(u,—1)/(d —1).
Now,

n ( 1 1 1 )
u = - + et
(d-1) \d—-1 (d—-1) (d-1)

for i = 1. We immediately derive

n 1

ul > b

(d-1) d-2

which implies that u,, and therefore w,, is positive if i<log, ((d —2)n).
Notice that any line through p that intersects W, also intersects regions

ro,...,r_;. Therefore, a line through p that intersects the last nonempty wedge
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W, intersects at least j+ 1 regions, namely r, through r, |, but also r,, a region
which contains W,. By the argument above we derive

])]Ogd |((d"“2)n)_ l»
which completes the proof of the lemma. O

It is interesting to notice that we get a lower bound of }(log,_, n) for almost
any choice of the point p. The key is to avoid vertices of S. The proof is very
similar to that of Lemma 3.1. Unfortunately, the lower bound becomes very weak
as d grows, so a new line of attack is clearly needed. To begin with, we give up
the liberty of choosing p anywhere we please.

3.2.  General Convex Subdivisions
Recall that I(n) denotes the minimum line span over all subdivisions of size n.
Lemma 3.2. For any n>2, we have I(n)=log n/log log n.

Proof. Let S be a subdivision of size n. There always exists a direction which
we call horizontal, which is not parallel to any of the lines formed by joining
pairs of vertices in S. Let K be the closed strip between two horizontal lines and
let £ be the subdivision of K induced by S. If L is an arbitrary nonhorizontal
line, we say that a region of X is critical (with respect to L) if it intersects L. Let
k be the number of critical regions. Through the topmost and bottommost vertex
of each critical region, draw the longest horizontal line segment that does not
intersect a critical region. (This is a well-defined operation since by definition
regions are open.) The effect is to subdivide V, the complement of the critical
regions in K, into a number of polygons with the following characteristics. Each
one is bounded by two horizontal edges connected by two convex polygonal
paths (Fig. 3.2). There might be degenerate cases where the two paths share an
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edge, or edges are of null length, etc. In all cases, however, V gets to be subdivided
into at most 3k —1 polygons. Why is that so? Initially, that is, before drawing
the horizontal line segments, V consists of a single connected component (since
critical regions are open). Let us count the polygons as they are encountered by
a horizontal line h sweeping K bottom up. At the beginning h intersects two
polygons. Then the line encounters one new polygon every time it sweeps over
a topmost vertex of a critical region, and two new polygons every time it sweeps
over a bottommost vertex (Fig. 3.2). This gives at most 3k —1 polygons since
there is no contribution from the topmost vertex of the topmost critical region.
This establishes our claim.

Among the polygons thus created, the one that intersects the most regions of
3 is called the kernel of (X, L). If £ has m regions, then S induces a subdivision
of the kernel into at least (m —k)/(3k — 1) regions.

We are now ready to go back to the original problem. Let k be any integer
larger than some appropriate constant k,. We argue that if no nonhorizontal line
intersects at least k regions of S then there is a horizontal line which intersects
at least [logsx_4[(3k—5)n/(k—1)]] regions. This yields a lower bound of

(3k—5)n} log n

=
k-1 log log n

max min{k, l0gax—4
k =k
for any n large enough. To prove our claim we define an iterative construction,
starting with K, equal to the entire plane and L, being an arbitrary nonhorizontal
line. Let X, be the subdivision of K, induced by S. If L, intersects at least k
regions of K, then we are done. Otherwise, let K, be the kernel of (K,, L,) and
let £, be the subdivision of K, induced by S. A horizontal line which contains
no vertex of S and intersects K, also intersects a critical region of K,. We iterate
on this process inside K,. Because of the particular shape of K; we can find a
nonhorizontal line L, which intersects K, in a single line segment s, such that
the smallest horizontal strip that contains s also contains K. This construction
ensures that at stage i every horizontal line that contains no vertex of S and
intersects the kernel K; of (K;_,, L;_,) also intersects at least one critical region
in each of K, through K; ,. We can iterate on this process until either we
encounter a nonhorizontal line crossing at least k regions of V,, the complement
of the critical regions in K, or until V; is empty, whichever comes first.

The latter case can occur only if L; intersects at most k —1 regions of K;. By
the pigeonhole principle the kernel K; intersects at least u, regions of K;, and
hence of S, where u,=n and

- u—(k—1)
TU3(k-1) -1
If we fall in the second case then the index j of the last nonempty kernel must

satisfy u;,, =0, and there exists a horizontal line that intersects at least j+1
regions of S, one region per nonempty kernel. We have

yo—m" _("“1+ k-1 +...+_k_—_1_>
T (3k-4) \3k—4 (3k—4) (3k —4)'
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for i=1. Thus,

n k-1

>————-——-_
“T3k—4) 3k—5

which implies that u,,, >0, unless j+1=log;_4[(3k—5)n/(k—1)]. O

3.3. Bounding the Number of Slopes

In this subsection we investigate the line span of a convex subdivision S under
the condition that all edges of the subdivision have at most a constant number
of slopes. We call such subdivisions isothetic. More specifically, we assume that
there are k given directions d,, d,, ..., di, such that each edge of S is parallel
to one of these k directions. Without loss of generality we take the k directions
as listed above to form a sorted circular sequence. As usual, we denote by n the
size of S and we use I'*'(n) to represent the minimum, over all isothetic sub-
divisions of size n with sides parallel to the k given directions, of the maximum,
over all lines, of the number of regions cut by a line in a given subdivision. We
obtain matching upper and lower bounds for I'“’(n), but only under the assump-
tion that k is a constant independent of n. Thus the results of this subsection are
somewhat weaker than those of the previous two. When we prove the lower
bound (Lemma 3.3), we consider only lines parallel to one of the k directions.
Thus, the result in Lemma 3.3 is slightly stronger than the corresponding statement
in Theorem 1. For the upper bound, however, we need to consider all lines.

Lemma 3.3. For convex isothetic subdivisions of size n we have 1'")(n)=
(log n)/(2k(2+log k)), where k is the number of directions assumed by the edges
and the cutting lines.

Proof. Let S be such a subdivision. Without loss of generality we assume that
all bounded regions of S are contained within a large convex polygon P of 2k
sides, two of which are parallel to each of the given directions d,, d,, ..., d;.
Figure 3.3 gives an example for the case k =3. We show that P can be broken
up into O(k?) convex subpolygons, so that for each subpolygon there exists one
of the given directions such that all lines in that direction cut the subpolygon in
at least one fewer region than they cut P. To prove that such a construction
implies the assertion, we associate each convex polygon Q with two quantities,
w(Q) and a(Q), where w(Q) denotes the number of regions of the subdivision
of Q induced by S. To define a(Q), we let a;(Q) be the largest number of regions
of Q hit by a line with direction d,, and let

a(Q)=a,(Q)+a)(Q)+- - -+a(Q).
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Fig. 3.3

The construction mentioned above allows us to generate a sequence of polygons
with strictly decreasing values of a. The choice of polygons is guided by their
w-values so that the sequence is guaranteed to be sufficiently long. This gives a
lower bound on a(P), where P is the first polygon of the sequence.

In order to produce such a partitioning of P, we arbitrarily choose a particular
direction, say d,. This direction occurs twice among the edges of P. Choose
a particular way of getting around P from one of these edges to the other
(say ccw) and denote by e, e,,...,e,, the k—1 sides (of direction d,,
d,,...,d,_,, respectively) thus encountered. Choose an orientation of each edge
e, (1=i=k—1) such that P lies to its left. Let ¢, be the rightmost line parallel
to e,, with the same orientation, such that all regions of P bounded by e, lie
between ¢, and e, The intersection of the left half-planes bounded by the ¢’s
and P defines a convex polygon R. Define Q =int(P\R) and let A, denote a
region of P that touches e, and I, (Fig. 3.3).

We are finally ready to produce the desired subdivision of P. First, notice that
any line in direction d, must cut R in at least one region fewer than P, since all
regions touching one of the ¢,’s are fully outside R. Thus, we have a(R) < a(P)—1.
Any point x in Q = int(P\R) is to the right of some line /,, so that a line through
it in direction d, must cut A,. This suggests subdividing Q (excluding the special
regions A,) into convex polygons in the following manner: first remove the regions
A,, which leaves at most 2k connected components. This is because we can draw
a planar graph whose nodes are the A, together with R and the unbounded
region. Each connected component corresponds to a face of this graph. Next,
we draw the infinite lines ¢,, which further subdivides Q into at most

2k2+<k>
2

polygons (the term 2k* accounts for the fact that any one of the original 2k
polygons may be cut into two by any one of the k —1 lines; also, any one of the

at most 2 intersections of two lines gives rise to one additional polygon). Some
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Fig. 3.4

of the remaining pieces may be nonconvex as the removal of the A,’s leaves at
most 2(k —1)” reflex vertices (there are k — 1 regions A, with at most 2k vertices
each and at least two of these vertices lie on the boundary of P). These nonconvex
polygons can then be further subdivided into convex pieces, so that the total
number of polygons is at most

2k3+<§>+2(k—1)3=“_’k(k—1)+2.

See region A, in Fig. 3.4: its removal from Q leaves one reflex vertex (one is
resolved by drawing ¢,), which can be handled by extending an edge of A,. We
have thus produced a convex partition of P into O(k®) polygons: the convex
polygons R,, R,, ..., R, _, just mentioned, the polygon R,= R, and the regions
A, A,, ..., A._,. By the above analysis we have m=3k(k—1)+3. Figure 3.4
schematically depicts such a partitioning.

We already verified that a(Ry) = a(P)—1. Wehave a(R))=a(P)—1,forl1=j=
m —1, since each polygon R, lies between some line ¢, and edge e, of P, which
implies that each line parallel to direction d, that intersects R, also meets the
region A,. Among the polygons R, (0=<j = m—1), we call the one that maximizes
w(R,), the number of regions of S that it overlaps, the kernel of P. We now
recursively subdivide the kernel of P and thus generate a sequence of polygons

P:P(),Pl,Pz,...

with the following properties: we have w(P,,,)=[w(P,)—(k—1)]/m, since P,,,
isthe kernel of P,,and a(P,) = a(P,,,)+ 1, as shown above. From the first property,
we derive

n 1 n k-1
W(P,)Z——,—<(k—1) ) —,)>—7—'—“,
m l<i=, M m’ m-—1
which implies that w(P,) is positive, unless j>log,,[n(m—1)/(k—1)]. If w(P)
is positive then a(P,) = k, therefore
n(m—1)

a(P)>k—1+log,, P
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by virtue of the second property. By definition of a(P) as the sum of the maxima
of the numbers of regions meeting a line from any direction, we finally infer that
there is a line that meets at least

k—1+log,[n(m—-1)/(k—1)]
k

regions of P. Straightforward algebraic manipulations imply the assertion. [

For the lower bound on 1*'(n) we considered only cutting lines parallel to
the k directions, in order to get a result as strong as possible. For the upper
bound, however, a stronger result will follow if we allow lines with arbitrary
directions.

Lemma 3.4. For convex isothetic subdivisions of size n we have 1''(n)<
14 log(n+7) —33, where k is the number of distinct directions among the edges.

Proof. We construct a specific subdivision of S of size n such that any line
intersects at most 14 log(n +7) — 33 regions. The edges of S will assume only two
directions. This is sufficient to prove the lemma.

We start with a square and mark two tiny squares in it. These two squares
should be small enough and sufficiently far apart such that a line can cut both
of them only if its angular slope belongs to a small interval I,. Notice that we
can make I, arbitrarily small by scaling down the two squares. Subdivide the
complement of the two squares into seven rectangles, and then recurse within
the two squares. When we do the latter, however, we choose the two tiny squares
such that a line can cut both of them only if its angular slope lies in an interval
I, disjoint from I,. In general, the ith recursive step uses an interval I, disjoint
from I, for all j<i. Figure 3.5 illustrates the construction. After t stages, the
number of regions present will be

T+TX24+TX44- - -+TX2 " 42t =03 _7.

/ lz ’ Il
J v ‘
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///
/
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Fig. 3.5
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In order to construct a subdivision with n regions, we choose the largest ¢ such
that 2'**—7<n, and then further subdivide as many of the 2’ tiny squares as
necessary to get n regions. To obtain an upper bound on the maximum number
of regions we can cut with a single line, we assume that the subdivision is equal
to the one obtained after t+1 stages. Any line cuts at most two tiny squares at
each level of recursion (one at the first level), which implies that it meets at most

7+14+14+ - +14+16=141+9
regions. By the choice of t, we have
t<log(n+17)-3,

which implies the assertion. 0

3.4. Computing the Line Span

The number of regions in which a line ¢ cuts a convex subdivision S is always
one less than the number of edges of S intersected by the line. This assumes that
¢ is in general position with respect to S, i.e., that it does not pass through any
of the vertices of S. A line ¢ that realizes the span of S can then be found simply
by looking for a line that properly cuts as many edges of S as possible. This
stabbing-line problem can be solved by the topological sweep techniques of
Edelsbrunner and Guibas [EG, Section 5.2] in time O(n?) and linear space.

Lemma 3.5. The line span of a subdivision of size n can be computed in O(n”)
time and O(n) space.

3.5. Discussion

We are now in a position to prove Theorem 1. From Lemmas 3.1 and 3.2 we
derive the fact that, among subdivisions of size n and degree d or less, the
minimum line span is Q(log, n+log n/loglog n). Setting d to the value n—1 is
equivalent to relaxing the degree constraint. Since the line span of a subdivision
cannot exceed its monotone span, Theorem 2 provides a matching upper bound.
(The reader has our word that the argument is not circular!) Lemmas 3.3 and
3.4 cover the case of discrete slope domains. Finally, Lemma 3.5 provides the
computational results of the theorem.

Theorem 1 (Line Span). The line span of a subdivision of size n can be computed
in O(n?) time and O(n) space. The minimum line span over all subdivisions of size
nis in O(log n/loglog n). More generally, if only subdivisions of degree d or less
are considered then the bound is in ®(log, n+log n/loglog n). On the other hand,
if the edges of the subdivisions assume at most a constant number of distinct slopes
then the minimum line span is ®(log n).
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4. The Monotone Span of a Convex Subdivision

Recall that the definition of the monotone span of a subdivision S is based on
the notion of a contact chain of S in a given direction. Let ¢ be a directed line
that defines a direction. We say that a region r pushes an adjacent region r' if
there exists a directed line parallel to ¢ that intersects r and r' in this order. A
contact chain of S with respect to ¢ is a longest sequence of regions such that
each region pushes its immediate successor. The monotone span of S is the
maximum length of a contact chain taken over all directions.

Since the monotone span of a convex subdivision is a proper generalization
of its line span, we would expect its asymptotic value to be greater. Surprisingly,
as we shall see below, the two quantities have identical growth rates. In Section
4.1 we establish an upper bound on the minimum monotone span. In Section
4.2 we specialize our discussion to treat the number of distinct slopes as a
parameter, and we derive a corresponding lower bound. Section 4.3 addresses
the computational aspect of the monotone-span problem, and, finally, Section
4.4 wraps up with a proof of Theorem 2.

4.1.  Upper Bounds on the Minimum Monotone Span

Our objective is to construct a subdivision of size n and monotone span
O(log n/loglog n). To achieve this goal we need a slightly more general result
which allows us to control the monotone span by a parameter A. Let A be an
arbitrary integer greater than one. We define an infinite sequence of subdivisions:
for any k =0 the size of the kth subdivision in the sequence (which we call the
subdivision of order k) will be roughly A* and its monotone span will be O(k+ ).
Setting A to the value |log n/loglog n] will naturally give us the desired result.
To facilitate the recursive definition of these subdivisions, we introduce the
concept of orientation. Given two angles a and B (—w/2=a=B<=m/2) we say
that a subdivision of order k has orientation [, 8] if not only its monotone span
is O(k+A) but, when measured with respect to any direction in
[=7/2, m/2)\[ e, B), the span is actually O(k). It is not so easy to make much
sense of this subtlety right now. Roughly, the idea is that a given subdivision has
favorable directions (those falling outside of its orientation) and others less
favorable. Unfortunately, to avoid this distinction seems difficult. Given this fact,
however, it is important to take it into consideration. Indeed, by ignoring it we
would run the risk of overlapping orientations at several levels of the recursion,
and making the span unacceptably large.

The construction is based on the idea of a unit and a frame. Both units and
frames have orientations. A unit of order 0 is simply the subdivision of the plane
consisting of one region, the plane itself. By convention, its orientation is any
interval in [—/2, w/2). For any k>0, a unit of order k and orientation [a, B8]
is built by assembling A units of order k —1 within a frame. For convenience, let
us call these units subunits. The key features of the construction is that the
orientations of all subunits as well as the orientation of the frame are pairwise
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disjoint and fall strictly within the interval [, B]. It appears from this discussion
that the essential ingredient in the construction of a unit is the frame itself, so
this is where we turn our attention next.

Let h be a real number (0<h <1). Given a Cartesian system of coordinates
(Ox, Oy), let R be the rectangle with the origin as its southwest corner and (1, h)
as its northeast corner. Since h <1 there exists a unique circle passing through
(0,0) and (1, h) with its center on the line x =1 (Fig. 4.1). On the circular arc
lying inside R mark 2A +1 points at regular intervals (along the x-axis), starting
at v,=(0,0) and ending at v,, =(1, h). For each i between 0 and 2A —1 the
difference in x-coordinates between v,,; and v, is 1/(2A). Fori=0,1, ..., 2A, let
w, be the vertical projection of the point v, on the line y = h. To complete the
construction of the frame we add the following segments:

(1) v, (0=i<2A).
(1) vy,0y,4, (0=i<A).
(ili) ow, (0<i<2A).
(iv) vw,_,andow,,, (i=1,3,5,...,2A —1).
(v) The two lines y=0 and y = h.

Since A has a fixed value, a frame is completely characterized by its height h.
Fori=1,..., A, the triangle v,;_,v,,_,0,, is called the ith base of the frame. It is
within each base that new frames will be added to form a unit. But before
examining how frames are used to construct units, let us list a few simple properties
relating to their monotone span.

Recall that the monotone span of a subdivision is obtained by maximizing the
length of contact chains for all directions between —#/2 and /2. Given a
direction @ it is thus meaningful to define the 6-span of a frame as the maximum
chain length in that direction. Last bit of terminology: the regions traversed by
a contact chain are said to be hit. A question of interest is to find which regions
of a frame can or cannot be hit in a certain direction. Of course, any single region
can be hit in any direction. The interesting point is to know if, say, two or three
given regions can be hit by a single chain.
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Lemma 4.1. There exist a function u(h), defined for each h (0< h<1), and two
constants (independent of A) ¢, =1 and c,=1 such that:

1. The function w is positive, continuous, and goes to 0 when h goes to 0.

2. For any 6 in [—u(h), u(h)) no more than two bases (of a frame of height
h) can be hit in direction 6. Moreover, the 0-span is always less than c,A.

3. For any 0 outside of [—u(h), u(h)) no more than one base can be hit in
direction 6. Moreover, the 6-span is always less than c,.

Proof. Let 6 be the largest absolute value amongst all the nonvertical directions
defined by the edges of a frame. It is a simple exercise to verify that the function
u(h) =26 not only goes to zero with h, but also satisfies all the claims of the
lemma. 0

The interval [—u(h), w(h)] is called the orientation of the frame. (Note that
the function u is not uniquely defined.) As it turns out, the essential properties
of a frame will be found to be invariant under the group of motions and homothetic
transformations (among the former we actually only concern ourselves with
positive isometries). This means that we are free to move a frame around the
plane anywhere we want as well as scale it to any desired magnitude. As a result,
given any two angles @ and B (—7/2=a <B <m/2), we can always define an
arbitrarily small frame whose orientation falls within [«, B]. We are now ready
to construct a unit of order k and orientation [, B]. Because rotations ‘“come
for free,” we can assume without loss of generality that the orientation is of the
form [—a, a] for 0<a <w/2.

A unit of order 0 is the subdivision consisting of the whole plane as its only
region: its orientation is any closed interval in [—#/2, 7/2). A unit of order k>0
and orientation [—a, a] (0 < a < w/2) is defined as follows. Let J be a frame of
height h and orientation [—u(h), w(h)]. From Lemma 4.1 we can choose h small
enough so that u(h) < a/2. Inside each base v, 10242 (0=i<A) we place a
unit of order k—1 and orientation [a;, B;]. We choose the values «;=
a/2+ia/(4)) and Bi=a/2+(2i+1)a/(8A). By the induction hypothesis such
a unit always exists (after appropriate scaling and isometric transformations). By
“inside the base,” we mean that all the vertices of the unit should lie within the
base. Of course, we clip the unit so that it fits entirely within the base v;05;4105i45.
These A units are called subunits, and the frame is referred to as the master frame.
We easily verify that [—u(h), u(h)] as well as the intervals of the form [a;, B;]
are pairwise disjoint and lie strictly within [—a, a]. We are now in a position to
prove the key property of a unit of order k.

Lemma 4.2. Let ¢, and c, be the constants of Lemma 4.1, and let d, = c,+1 and
d,=c,+2d,. For any integer k=0 and any reals a and B (—w/2<=a<B<m/2),
there exists a unit of order k and orientation [ a, B]. Moreover, for any 0 in [a, B]
the 0-span of the unit is less than d,(k+ A), and for any 0 outside [ a, B] the 0-span
of the unit is less than d,k+1.
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Proof. Once again we assume without loss of generality that instead of [a, 8]
the orientation of the unitin question is [~ a, a]. We prove the lemma by induction.
The case k =0 being easily resolved, we assume that k> 0. By construction, the
orientation of the master frame used in the definition of the unit falls entirely
within [—a, a]. From Lemma 4.1 it then follows that any contact chain whose
direction falls outside [—a, a] can hit at most one base and at most ¢, regions
of the frame outside the bases. Now, we observe that the orientation of each
subunit also falls within [—a, a], therefore by induction hypothesis at most
d,(k—1)+1 regions of a subunit can be hit by a single contact chain. This gives
us an upper bound of ¢,+d,(k—1)+1<d,k+1 on the 6-span of the unit, for
0¢[—a,a]. Let us now consider the case 6 €[—a, a]. The argument is very
similar, only slightly more complicated. If 6 lies in the orientation of the master
frame, then any contact chain in that direction will hit fewer than c¢,A regions,
not counting the one or two bases which may also be hit (Lemma 4.1). Fortunately,
6 will then lie outside the orientation of any subunit, therefore at most 2d,(k —1) +
2 subunit regions can be hit simultaneously. This gives an upper bound of
A +2d,(k—1)+2<d,(k+ A)onthe #-span. Next, if 6 falls within the orientation
of a subunit then it avoids the orientation of the master frame as well as of the
other subunits. This leads to an upper bound of ¢,+d;(k—1+A)<d,(k+A) on
the 6-span. Finally, if 0 lies in [—a, a] but somehow fails to be in the orientation
of the master frame or any of the subunits, we obtain an upper bound of
c;tdy(k—1)+1<d,(k+A). This completes our proof. O

Lemmad4.3. A unit of order k > 0 consists of precisely SA* +8[(A* —1)/(A —1)] -4
regions.

Proof. Let N(k) be the number of regions in a unit of order k. (Clearly, this
number is independent of the orientation.) We derive the recurrence relation
N(0)=1and N(k)=AN(k—1)+4(A+1) for k>0. O

Given a fixed value of A, it is clear from Lemma 4.3 that it is not always
possible to construct a unit with a preassigned number of regions. However, we
can approximate this goal quite well. Given any n large enough, we build a unit
of highest order with at most n regions. Then we complete the desired subdivision
by taking each base in turn, and adding a frame into it as long as the number
of regions does not exceed n. When this process terminates we will be short of
at most O(A) regions, so we can basically complete the addition of regions any
way we like. From Lemma 4.2 and Fig. 4.1, it follows that the resulting subdivision
will have degree O(A) and that its monotone span will be in O(A +log, n).
Observing that the degree can always be reduced by a constant factor at the cost
of a multiplicative factor in the monotone span, we can state our results for all
degrees d =3.

Lemma 4.4.  For any positive integer n and any d =3 there exists a subdivision of
size n and degree d whose monotone span is O(d +logy n).
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We might observe certain singularities in the definition of a unit which may
raise the suspicion that these are actually needed in order to achieve the upper
bound of Lemma 4.4. For example, many vertices are adjacent to more than three
other vertices. More ominously perhaps, many edges are collinear, so minute
perturbations might actually break the convexity of the subdivision. It is not
difficult to see, however, that without violating the structural properties of a unit,
each of its angles can be made strictly less than 180° and the degree of its vertices
can be reduced to three, if so desired.

4.2. Bounding the Number of Slopes: A Lower Bound

As we did previously in the case of line spans, we investigate the monotone span
of isothetic subdivisions. We are able to prove slightly stronger results if we
assume that the number of distinct slopes is bounded above by a parameter k,
not necessarily taken to be constant.

Lemma 4.5. Over all subdivisions of size n using k or fewer distinct slopes the
minimum monotone span is Q(n"* +log n/log log n).

Proof. Let S be a subdivision of size n whose edges have slopes in the set
{s1,..., 5. Assuming that these slopes are in increasing order, let ¢, be an
arbitrary direction with slope strictly between s, and s,,, (0<i < k). We also add
the vertical direction ¢,. We say that two regions r and r' are comparable in
direction ¢ if there exists a sequence of regions r=r,, r,, ..., r,=r' such that for
all i between 0 and /-1, r, pushes r,,, in direction £ If a line parallel to ¢ meets
r and r' then r and r’ are comparable in direction L It follows that r and r’ are
comparable in at least one of the directions ¢,. (Indeed, there is a whole interval
of slopes [s,, sy, or (=0, s,,], or [ s,, +00) within which r and r’ are comparable.)
Completing the proof is then easy. If for some parameter m >0, fewer than m
regions are mutually comparable in direction ¢, then by Dilworth’s theorem [H]
at least n/m regions are pairwise incomparable in direction ¢,. If of these n/m
regions no m of them are pairwise comparable in direction ¢,, then at least n/ m’
regions are pairwise incomparable in ¢, and in 4. Iterating on this process shows
that max(m, n/m* ')=n'"* regions are mutually comparable in some direction.
Obviously, the lower bound on the minimum line span can always be used: in
particular, when no restriction is placed on the slopes. O

4.3. Computing the Monotone Span

Given a convex subdivision € of n regions, it is relatively easy to compute its
monotone span in O(n”) time. To do better appears to be an interesting open
problem. We sketch the basic steps of a quadratic algorithm. The basic idea is
to generate all possible contact graphs G, and to find longest paths in these
graphs. Recall that the regions of the subdivision are the nodes of G, and that
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we put a directed edge between regions r and r' if r pushes r’ along direction 6
(see Fig. 2.1). For simplicity, we may assume that the subdivision is represented
with a quad-edge data structure [GS] (although, given the asymptotic complexity
that we are aiming for, almost any type of representation would do just as well).
In O(nlog n) time we sort the slopes of all the edges of the subdivision. This
partitions the set of directions [—#/2, w/2) into a collection of at most n+1
intervals, within each of which the contact graph of the subdivision remains
invariant. Setting up the graph itself is a linear operation, while computing the
longest path is a straightforward application of topological sorting, another linear
procedure. This summarizes the description of the algorithm.

Lemma4.6. The monotone span of an n-region convex subdivision can be computed
in O(n?) time and O(n) storage.

Notice that this algorithm takes only O(kn) time if the edges assume only k
different slopes. This is because there are only k different contact graphs (if we
identify those for opposite directions). In the general case, it is trivial to construct
all contact graphs in linear time, after sorting the directions of the edges. The
challenging task is to maintain a longest path efficiently when the contact graph
changes.

4.4. Discussion

It is easy to put the pieces together to complete the proof of Theorem 2. Let
A=[logn/loglogn]; setting d =A in Lemma 4.4 shows that the minimum
monotone span over all subdivisions of size n and degree greater than A is
O(log n/log log n). For subdivisions of degree d = A we observe that, for n large
enough, we have log, n > d therefore the minimum monotone span is O(log, n).
Matching lower bounds are obtained directly from Theorem 1. The result of
Theorem 2 concerning subdivisions with a bounded number of slopes is a
restatement of Lemma 4.5. Similarly, the complexity of the relevant algorithms
is given in Lemma 4.6.

To tidy things up it is good to mention that the proof of Theorem 2
establishes the validity of the upper bounds of Theorem 1 which had been left
unproven.

Theorem 2 (Monotone Span). The monotone span of a subdivision of size n can
be computed in O(n*) time and O(n) space. The minimum monotone span over all
subdivisions of size n is in ©(log n/loglog n). More generally, if only subdivisions
of degree d or less are considered then the bound is ®(log, n+log n/loglog n). If
the number of distinct slopes in the subdivision is at most k then the minimum
monotone span is in Q(max(n'/*, log n/log log n)).

We mention in passing that the technique of Lemma 4.4 can be used to derive
an upper bound of O(kn'/*'°¢%)) for some ¢ >0, on the minimum monotone
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span of subdivisions of size n with at most k distinct slopes. This result is
admittedly weak and, furthermore, follows the construction given above very
closely, so we do not include a proof of it.

5. The Cross-Section and the Silhouette of a Convex Polytope

Our discussion of cross-sections and silhouettes is organized as follows. In
Sections 5.1 and 5.2 we provide lower and upper bounds on the minimum
cross-section span of a convex polytope. The proof of the upper bound is
somewhat complicated, so the section in question is subdivided into Sections
5.2.1-5.2.4. In Section 5.3 we study the equivalence between cross-sections and
silhouettes. Section 5.4 is concerned with the computational aspect of the prob-
lems. Finally, Section 5.5 assembles all the results above to prove Theorems 3
and 4.

5.1. Lower Bounds on the Minimum Cross-Section Span

Let ¢;(n) be the minimum cross-section span of any convex polytope of n facets
of degree d (each facet has at most d edges). If we consider only polytopes
containing the origin in their interior and only cutting planes passing through
the origin then we obtain a restricted function, denoted c}(n). Clearly, we have
c¥(n)=cy(n). Recall that 1,(n) is the equivalent quantity with respect to the line
span of a subdivision.

Lemma 5.1. Forany n> 3 and d =3 we have the inequalities, I;([n/2]) =< c}(n) =
cqa(n).

Proof. Let P be a convex polytope of n facets, of degree d, containing O in its
interior, and let P, (resp. P,) be the polytope formed by the intersection of P
with (z=0) (resp. (z=0)). The central projection of P, (resp. P,) about O on
the plane (z =1) forms a convex subdivision of the plane, which we denote S,
(resp. S). Clearly, both S; and S, are of degree d. Without loss of generality
assume that S, contains at least as many regions as S,; then it has at least {n/2]
of them. Let ¢,(P, w) be the number of facets of P, (discounting P (z=0))
intersected by a plane 7 passing through the origin. Similarly, let ¢(P, 7) be the
number of facets of P intersected by . Let now #* (resp. P) be the plane (resp.
polytope) that achieves c}(n) and let 7 be the plane through O that maximizes
¢(P, 7). We have

c:l;(n) = C(P9 7T*) = C(Pa 77') = cl(P9 77)-

But ¢,( P, ) is precisely the line span of S,. Since [; is obviously nondecreasing,
the proof is complete. O

It is worthwhile to mention that there exist convex subdivisions of any degree
which cannot be obtained as projections of convex polytopes [CH].
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5.2.  Upper Bounds on the Minimum Cross-Section Span

This section consists of four parts. Section 5.2.1 introduces the main concepts
and gives the necessary definitions. Section 5.2.2 describes the construction of a
polytope with small cross-section span. This polytope is used as a building block
to create more complex polytopes recursively. The conditions necessary to carry
out the recursion are discussed in Section 5.2.3. Finally, the desired upper bound
is established in Section 5.2.4.

5.2.1. Preliminaries. The proof of the upper bound is somewhat similar to the
proof of Lemma 4.4. It is more complicated, however, because cutting planes in
E* have three degrees of freedom. The basic idea is to construct a convex polytope
by truncating some of the vertices of a tetrahedron and attaching to them small
polytopes defined recursively. Let A be a parameter (the branching factor of the
recursion tree), which for the time being we simply assume to be a fixed positive
integer. As usual, we assume the existence of a Cartesian system of reference
(Oxyz). A plane parallel to Oxy is called horizontal and a plane or a line parallel
to the axis Oz is called vertical. We say that a tetrahedron is a pyramid if three
of its facets are congruent to each other. The vertex common to them is called
the apex of the pyramid and the opposite facet, an equilateral triangle, is referred
to as its base (apex and base are not necessarily unique). When one apex is
understood, we say that a pyramid is well-grounded if the vertical line passing
through its apex intersects the interior of the base. Let 7 be a plane of equation
ax+by+ z = a. If 7 is not vertical then we can define the transform A(w):(a, b).
These are the coordinates in the plane (z =1) of the unique point of that plane
which lies on the normal to = through O. Therefore any plane parallel to = is
mapped into the same point via A. A more interesting property is that if A, B,
and C are the transforms of the planes supporting the three nonbase facets of a
well-grounded pyramid, then the set of planes that pass through the apex without
intersecting the interior of the pyramid maps exactly into the convex hull of
A, B, C.

The sphere centered at p of radius r is denoted S(p, r). Similarly, when a
plane of reference is understood, we let W(A, L, 8) denote the double wedge with
parameters A, L, 6, where A is a point, L is a line, and 6 is an angle: this is the
locus of points p such that |£(Ap, L)|= 6 (Fig. 5.1). The union of two double

Fig. 5.1
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Fig. 5.2

wedges of the form W(A, L, ) and W(B, L, ) is called a bow. There exists a
unique disk tangent to all four lines bounding the bow: it is called the articulation
of the bow and the line L is called the axis (Fig. 5.2).

The last piece of terminology at this point concerns an operation on the convex
hull of points p,,..., p: in E*. The hull can always be written as ( ),. ,-, h,,
where each h; is a closed half-space whose bounding plane contains a facet of
the hull. Let f be a facet and assume, without loss of generality, that h, is the
corresponding half-space. If h denotes the closure of the complement of h,, then
we let CH(p,, ..., pc|f) designate the convex polyhedron hn((),-,- h,). An
important observation is that CH(p,, ..., p«|f) is not the empty set.

5.2.2. A Building Block. We describe the nonrecursive part of the construction.
Let aa,a,a; be an arbitrary pyramid with apex a. For the sake of exposition, we
assume that the base is horizontal. Let a, be the centroid of the triangle a,a,a,
and let b; be the midpoint of aa; (1=i=<4) (Fig. 5.3). It should be clear that
b,b,b, is parallel and similar to a,a,a;. Now let ¢ be a point on the segment ab,
such that for some £, (0<e,<1) we have

|cba| = €,]abyl. (1)

Fig. 5.3
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Fig. 5.4

Let ¢; be the midpoint of ¢b; (1 =i=4). Once again the triangle c,c,c; is parallel
and similar to b,b,b; and c, is its centroid (Fig. 5.4). Let C be the horizontal
circle centered at ¢,, whose radius is half that of the circle inscribed in the triangle
¢ c,cy (Fig. 5.5). Let cscqcsc3 be four points on C forming a rectangle. This
rectangle is characterized by a direction and a width. Let 6 be the angle between
¢s¢e and a fixed direction X chosen arbitrarily on the plane supporting C:

0=/,(csce, X). (2)

The angle 6 is measured counterclockwise from cscs to X (0= 6 <2#). For any
real €, such that 0 < g, <2|c,cs], let

lescel = €. 3)

We erect a parallelepiped above cscqcicy of height €,. More specifically, the
rectangle dsdqd,dg is parallel to cscqcicg, and its vertical projection coincides
with that of cscec;c5. Also, we have |cscel =|csds| = e,. Let d, be the centroid of
dsdgd,d; (Fig. 5.6). It is crucial that ¢, should be chosen small enough so that

ds, ds, d;, dge CH(b,, by, by, ¢y, €3, €3] ¢, ¢565). (4)
C3
. (@
by
(53
b,
b,

Fig. 5.5
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€2

Fig. 5.6

Since b,b,b;, c,c,¢5, and dsdgd,dys are all parallel, this implies in particular that
the ten points thus enumerated are vertices of their own convex hull.

Consider the rectangle dsd.d,dg. Let e,, ..., e, (resp. f,,...,f,) be the points
that divide dsdg (resp. d¢d,) in A +1 equal-size segments and let C, (resp. C5)
be the circle passing through ds, dg (resp. de, d;), and d,. We define e, (resp. f)
as the intersection of e, f; with C, (resp. C,). Let F, (resp. F,) be the convex hull
of dg,ds,e},..., e\ (resp. dy,dq, f1,...,f)) (Fig. 5.7). Look at F, and F, as
two flaps which we can open up. We do so by half the maximum amount we
can, where “‘we can” means ensuring that both flaps remain strictly within the
nonempty polytope CH(cy, ¢, ¢3, ds, dg, d;, dg| dsded,dsy). (5)

We can easily verify that, indeed, the flaps can always be opened up by a nonzero
angle. This is illustrated in Fig. 5.8, which distorts the proportions for clarity.
Each edge ef| is parallel to dsd¢d,ds and is an edge of the convex hull of
ds,dg,d;, dg, ey, ...,ex,f1,...,f%. Wenow truncate little pieces off that convex
hull. For each i (1=i=A) we define some additional points. Let g,, g,, and h;
be respectively the midpoints of ej_,e;, ei.,e;, and f/e;. For convenience we

d e, e €x dg
e{| e\
13
Py
p 1 :>3>‘T$i:.\‘\
' £
dg d,
h f A

Fig. 5.7
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Fig. 5.8

pose e, =ds and e}, = dy. Similarly, for j=1,2, let h, be the midpoint of ge;.
Obviously the triangle h,h,h; is parallel and similar to g,g.f, (Fig. 5.9). Let T
and T’ be two triangles coplanar with and similar to h,h,h;, whose centroids
coincide with that of h h,h;, and whose areas are respectively two-thirds and
one-third the area of h, h,h;. Recall that there is a distinct triangle T for each i
between 1 and A. Since none of their supporting planes are identical it is always
possible to find a point m, in each T  such that the points {m,,..., m,}
are collectively in general position. Clearly, a random pick will give such a set
with probability 1. Therefore there exists some r>0 such that the spheres
{S(m,,r),...,S(m,, r)} are also in general position. (6)

What we mean here is that any four points on distinct spheres cannot be coplanar.
We choose r small enough so that the circle C, formed by the intersection of
S(m,, r) and the plane supporting T lies entirely inside T (Fig. 5.10). (7

Now, let @,a,a; be an equilateral triangle with vertices on C, and no edge
parallel to the edges of h h,h;. The latter condition is added simply for con-
venience: in this manner, indeed, the convex hull of «a,, a-, as, g, &>, and f,
always has precisely eight facets. Let a be the apex of a pyramid aa,a,a;, such

.\\- 4/6./+

+1
82
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Fig. 5.10

that « lies inside
CH(g, 8,1, a), s, a;|a,aya3) " S(m,, r). (8)

We put £;=|m,al; note that g,, g,, f', a;, a>, a;, and « are the vertices of their
convex hull (Fig. 5.11). Let J, ={a, a,, a,, a3} and B,=J,u{g,, g, f.}. A block
is defined as the convex hull of

{a,, a5, a3, by, by, by, ¢, c5, C3,ds, dg, dy, dx}u(] U B,).

<1=A
By construction, the vertices of the block are precisely the points in the above
set and none other. The pyramid formed by the convex hull of J, is called a joint.
A block has A joints; it is based on a pyramid (aa,a,a;) and parametrized by
the triplet (&,, ,, €3, 0). Figure 5.12 gives an overview of the upper part of a
block. The specification of a block is determined solely by its base pyramid and
the four parameters ¢,, &,, €3, and 6. It is uniquely defined up to scaling, assuming
a deterministic choice of the points m,,..., m,. Indeed, the steps which were
described in a probabilistic or existential manner can always be made deterministic
(conditions (6) and (7)). At any rate conditions (1)-(8) summarize the main
specifications of a block.

Lemma 5.2. For any (well-grounded) pyramid aa,a,a,, there exists a func-
tion t: [0,1]—[0, 1] with the following property: for any &, (0<g,<1), any &,
(0<e,<t(gy)), and any 0 (0=6<2w), there exists v such that, for any &,
(0<e3<w), there is a block based on aa,a,a; with parameters (¢, €, €5, 0).
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Fig. 5.12

5.2.3. Tuning a Cap. Let P be a well-grounded pyramid. We define a cap of
order k, based on P, as any polytope C such that if

1. k=0, then C = P; else if
2. k>0, then C is a block based on P, where each of its joints has been
replaced by a cap of order k—1 based on the joint.

The A caps of order k—1 are called the child caps of C. Note that, although we
no longer assume that the base of the cap should be horizontal, well-groundedness
is always satisfied, since by construction, all facets are visible from point (0, 0+ c0),
except for the base of the initial payment.

Lemma 5.3. A cap of order k has exactly four facets if k=0, and 107"+
23[(A*=1)/(A =1)]1-6 facets if k> 0.

Proof. By simple examination we find that a block has 10A + 17 facets, therefore
the number N, of facets in a cap of order k follows the recurrence relation:
Ny=4 and N, =6A+17+AN,_, for k=1. O

Before defining the concept of a tuned cap we must introduce two notions:
the shadow and the estate. Informally, the shadow includes the bad planes of
E’, that is, the planes intersecting many facets of a block. The estate is a region
of safety which avoids the shadow. Fortunately, it is possible to describe these
notions by mapping them in two dimensions via A, which considerably simplifies
the discussion. '

Using the previous notation, let C be an arbitrary cap of order k>0, and let
{1 be the transform of the plane supporting the base of P via A. It is clear that
the closed region {A(#)|plane = intersecting both triangles a,a,a; and b,b,b}
surrounds but does not contain (). Let D* be the largest open disk centered at
() that does not intersect the region: D* is called the dual base of the cap. Any
square parallel and congruent to cscedsds that lies adjacent to dsds and ded,,
outside the parallelepiped formed by the c;’s and d,’s, is called a screen. Let d,
(resp. d,o) be the midpoint of dsd (resp. d;dg) and let £ be the set of lines that
intersect two screens distant from each other by

1
1 . S—
Jlere| 200+1) |dsds|.
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Fig. 5.13

We define S, (resp. S;y) as the smallest sphere centered at d, (resp. d,,) that
intersects every line of & (Fig. 5.13)—note that £ is defined over all pairs of
screens. By choosing &, small enough we can force the spheres to be as small as
desired. This allows us to define the shadow of the cap as the closed region

{A(w)|plane 7 intersecting S, and S,,}\ D*.

If the cap is of order 0, then its shadow is the empty set.
We can now introduce the notion of an estate. We say that the cap C admits
of an estate E if:

1. E is a bow whose articulaiion contains the dual base of C.
2. If k>0 then (i) the shadow & of C lies inside E, and (ii) each child cap
admits of an estate which lies entirely inside E\¥.

Intuitively, the estate covers the set of bad planes (or rather its map via A). A
plane is said to be bad if its map through A lies either in the shadow or in the
estate of the child caps. Condition 2 carefully prevents the shadow and the estates
of the child caps from overlapping, thus avoiding compounding unfavorable
situations. The presence of the articulation is somewhat unfortunate because it
complicates the argument. It is unavoidable, however, because the map of planes
almost parallel to the base cannot be made arbitrarily thin independently of the
other conditions.

We say that the cap C is tuned to (P, E) if it is based on the well-grounded
pyramid P and it admits of the estate E. Furthermore, if we consider the shadows
of C, of its children, its grandchildren, etc., it must be the case that no point of
the plane can belong to more than two shadows: this is called the sparsity condition
of a tuned cap. Of course, we would prefer to say “‘one” instead of “two’’: but
having shadows intersect is once again unavoidable.

We show later that tuned caps cannot be cut through too many facets by any
given plane. In the meantime we must concern ourselves with a more fundamental
question: do there exist tuned caps of arbitrarily large order? We continue to
use the notation of the previous section to describe the cap C whose block has
parameters (g, £, &3, 0).
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Let T* be the triangle formed by the transforms via A of the planes supporting
cc,C,, €C>¢3, and ccicy, and let D(e,) be the smallest disk centered at Q that
contains T*. Clearly, every plane supporting a facet of the cap C *“‘above” c,c,c;
maps into a point inside T* < D(¢,). An interesting property of this disk is that
it converges toward () as &, goes to 0. We omit the proof, which is trivial.

Lemma 5.4. The radius of D(e,) tends to 0 as €, goes to 0.

Let A be the transform via A of the set of nonvertical planes containing dod,,.
Since the plane supporting dsd,d,d; contains dyd,, and is parallel to the base of
P, A is a line passing through Q. We now show that regardless of the value of
€;, we can always isolate the shadow of the cap inside an arbitrarily small double
wedge.

Lemma 5.5. Foranye, (0<g,<1) and u (0< u < 7/2) thereexists v (0<v<1)
such that, for any e, (0<e,<v), the shadow of the cap, if defined, lies inside the
double wedge W(Q, A, w).

Proof. Let r(e,) be the common radius of the spheres S, and S,,. We can easily
show that r(e,) goes to 0 with ¢,. Let p be the corner, opposite of dg, of the
screen at a distance 3|e,e,| from dy. Any sphere centered at d, passing through
the intersection of the lines through dgp and the plane supporting cscsdsds must
contain S,. Consequently, we have r(e,) <2v2(A +1)e,, hence our claim. We
must now examine the shape of the shadow of C in some detail (Fig. 5.14). Let
(x4, 1, z;) and (x5, y,, z,) be the coordinates of dy, and d,,, respectively. The
equation of A is

Ar (xi=x)x+(y—y)y+z,—2,=0. (9)

The nonvertical planes that intersect Sy and S, are characterized by an equation
of the form ax+ by + z = a, with

|ax; + by, + z;, — a|
Jai+b2+1

= r(Ez)

for i =1, 2. This implies

la(x, = ;) + b(y; = y2) + 2 — 25| < 2r(ex)Va* + b2 +1. (10)

Fig. 5.14
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0=1(0, vy)

o Q='(“o»0)
* p=(u,v)

Fig. 5.15

Since the shadow decreases (in the set-inclusion sense) with &,, it suffices to
show that there exists some &, >0 such that all points (a, b) satisfying (10) and
lying outside D* also lie inside W(Q, A, u). Let us change the reference system
(Fig. 5.15): the new origin is the orthogonal projection of O on A, with A and
O’'0O providing respectively the axes (O'u, O'v), with O: (0, vy), Q:(u,, 0). Let
(u, v) be the new coordinates of p = (a, b). If the point p satisfies (10) then, from
(9), its distance |v| to A clearly satisfies

o] = la(x,—x;)+b(y,—y,)+2z,— 2,

! =2 HeVwF omw L ()

where d=\/(x,—x2)2+(y,—y2)2. Let p be the radius of D*. Then, any point
(u, v) satisfying |v| <|(u — u,) tan u| certainly lies inside W(Q, A, w). Since every
point of the shadow lies outside D*, the condition

|v] <max(|u — uyf tan u, p sin u) (12)

will force every point (u, v) of the shadow to be in W(, A, u). The proof will
be complete once we have shown that there exists £,>0 such that (11) implies
(12). From our starting observation we know that if &, <wv,<1, then r(e,),
abbreviated here as r, is sufficiently small to have d?/2—4r>>0 and

2

d
64r4v§—4<—2-— 4r2>(1 —4rvd)r<0.

This implies that for all values of v we have

2

71)2—r<d2 2—4r¥(v—1y)> (13)

From (11) and (13) we find that

2
vz<;1—2(1+4(1+u2)r), (14)
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hence |v| <|u — ug| tan w, for r sufficiently small and |u|> u,> 0. Thus (11) implies
(12) for any &, and u such that &, <v,<v, and |u|> u,. For any u (|u| = u,), we
still have (14) if £, < v,, therefore

2
v <1+ udr) < (psin p)?,

with the right-hand side inequality holding for any r small enough, that is, for
any £, <v;=v,. From Lemma 5.2, it follows that choosing v = min(t(s,), v,, v;)
will complete the proof. O

Lemma 5.6. As 0 varies in [0,27) from O to 2w, the line A rotates entirely
around ().

Proof. Recall that A is obtained by mapping via A all the nonvertical planes
passing through dy and d,,. If L is the line containing d, and d,,, then A is the
intersection of (z=1) with the plane normal to L passing through O. All the
lines A are obtained by rotating this plane around Of). Ensuring that the base
of the pyramid is not vertical, which is true from the well-groundedness of P,
guarantees the existence of {) and establishes the lemma. O

Lemma 5.7. Let E be a bow with A for axis and a disk D centered at ) for
articulation. Let D, designate the disk centered at ) of radius r. Then there exist
two positive reals r and . such that a bow F can be found with articulation D,,
satisfying F< E and FA(W(Q, A, u)\D)=0.

Proof. For convenience, let us place ) at the origin and A collinear with the
x-axis. Let y be the (angular) slope of the edge of E extending into the northeast
quadrant, and let y,=iy/5 and u =vy,. Also, let y(r) be the slope of the-line
tangent to the boundary of D, passing through the intersection of the boundary
of D with the line through Q of slope vy, (of the two candidate lines, we pick
the one with the larger slope). As r varies from the radius of D to 0, y(r) decreases
monotonically from a value greater than #/2 to y,. Choose r so that y(r) = vy;.
Taking another line tangent to the boundary of D, with slope y, completes the
construction of the bow F. We leave it as an exercise to check that F< E and
that F does not intersect W(Q, A, n) outside of D (Fig. 5.16). O

The last four lemmas were in preparation for the next result, which is the
centerpiece of the overall argument.

Lemma 5.8. Let P be an arbitrary well-grounded pyramid and let k be any
nonnegative integer. Then, for any bow E whose articulation contains the dual base
of P, there exists a cap of order k based on P with estate E.
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Fig. 5.16

Proof. We prove the lemma by induction on k. The case k =0 is obvious, so let
us assume that k> 0. First, we shrink E (if necessary) so that the dual base of
P precisely coincides with the articulation of E (we omit the proof that this is
always possible). Referring now to Lemma 5.7, we identify D with D* and D,
with D(e,). By virtue of Lemma 5.4, we can choose &, small enough so that the
radius of D(e,) is smaller than r, yet strictly positive. Because of Lemma 5.6, we
know that we can choose 6 such that A coincides with the axis of E. Also, from
Lemma 5.5, we can choose ¢, such that the shadow of the cap C lies inside
W(Q, A, n), with u specified as in Lemma 5.7. The same lemma then shows the
existence of a bow F whose articulation contains D(¢,) and which avoids entirely
thé shadow of the cap C. Note that these specifications are realizable because
of Lemma 5.2. Every joint of C has its dual base inside T*, hence inside D(¢,)
(recall that T* is the triangle formed by the transforms via A of the planes
supporting cc,c,, cc,¢;3, and ccsc;). Consequently, by induction hypothesis, each
joint of C can be replaced by a cap of order k—1 based on it, with estate F.
This establishes the lemma. O

We have now arrived at one of the most delicate phases of our discussion:
proving that Lemma 5.8 still holds if we add the sparsity condition of a tuned
cap. To this end we introduce a few notions. Points of the plane are colored
black or white. Let E be a bow centered at v. We say that E is hollow if, for any
line L completely in the interior of E and any disk 2 centered at v, there exists
a white disk centered on L in E\9" (a region is white if all of its points are
white). We now go back to the proof of Lemma 5.8 and refine some of the steps.
We start with the same hypotheses, except for E which we now assume to be
hollow. Once we have the bow F, we must proceed with a more elaborate
construction in order to avoid having too many overlapping estates.

Let v,,..., v, be the centers of the dual bases of the child caps of C. Since
no two bases of these caps are parallel the centers are all distinct. Obviously,
since E is hollow, so is F. Therefore there exists a white disk & with the following
characteristics: 9 is centered outside the articulation of F, but on its axis;
furthermore, for each i (1=i=<A) and every point p in 9, there exists a double
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Fig. 5.17

wedge W(v,, pv,, a,) lying entirely inside F, for «,>0 (Fig. 5.17). This can be
achieved by choosing a small disk whose center lies sufficiently far from the
points v,. Let 2’ be a disk strictly inside &, and let L,,..., L, be the lines passing
through v,, ..., v, and tangent to the boundary of 2’ (pick only one of the two
tangents for each v,). We omit the proof that with a careful choice of @' it is
always possible to ensure that:

1. The tangent points are all distinct.

A
2. The (2) intersections of the form L, n L, are all distinct and lie inside 2.

With these conditions, there exist double wedges W(v,, L,, 8,) (for B, small
enough, but positive) such that the intersection of any two is white and the
intersection of any three is empty. By translating slightly the boundaries of the
double wedges, it is possible to prove the same result with bows centered at the
v,’s (instead of double wedges). Since making &, arbitrarily small will make the
dual bases of the child caps tend toward their centers, we can find estates for
these child caps such that: (i) the intersection of any two lies in the white disk;
(ii) the intersection of any three is empty. At this stage we color black each
pairwise intersection of estates, and we pursue this process recursively with
respect to the child caps (it is clear that each estate remains hollow). The purpose
of this modification is the following.

Lemma 5.9. For any k=0 there exists a tuned cap of order k.

Proof. The process described above can be modeled by a A-ary tree, with each
node corresponding to the creation and coloring of A estates. It is important to
recall that estates inherit the coloring applied at higher nodes. Let E(v) denote
the estate associated with node v. To begin we show that if v,, v,, and v, are
three nodes of the tree, no two of which are in an ancestor-descendant relation-
ship, then

E(v))nE(v))nE(v3)=(.
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Assume that this is not true and that there exists a point g in all three estates.
We will see that g must then be colored black twice, which is impossible. Let v,
be the nearest common ancestor of the three nodes. By construction, v, cannot
be the parent of three distinct ancestors of the nodes (where it is understood that
a node includes itself among its ancestors). Therefore there must exist two of
them, say v, and v,, whose nearest common ancestor vs is a proper descendant
of v,. Let v, (resp. v;) be the child of v, which is an ancestor of vs (resp. v3),
and let vg (resp. vy) be the child of vs which is an ancestor of v, (resp. v,). Since
the estate of a node lies in the estate of any of its ancestors, E(v,) N E(v,) # O,
therefore q is colored black at node v,. Similarly, E(vg) n E(vy) # ), so q is
colored black a second time at node vs, which establishes our claim. One
immediate consequence is that if the shadows associated with three nodes
v,, U,, V3 have a common intersection, then one node, say v,, must be the
descendant of another, say v,. But this is ruled out by the definition of an estate.
The sparsity condition is therefore satisfied and the proof is complete. O

5.2.4. The Upper Bound. It now remains to show that caps, indeed, have small
cross-section spans. Let C be a cap of order k. We define the construction tree T
of C as follows. If k=0 then T is a tree consisting of a single node, which we
conceptually associate with the three nonbase facets of a cap of order 0. If k>0
then T is a A-ary tree, whose root is associated with the facets of C that do not
belong to any child cap. The A subtrees below the root of T are defined recursively
with respect to each of the child caps of C. In this manner each facet of C is
associated with a distinct node of T; conversely, with each node v is associated
acap C(v). Let 7 be an arbitrary plane of E*: we mark each node of T associated
with at least one facet which = intersects. Let G be the minimal Steiner tree of
the marked nodes of T.

Lemma 5.10. Every node of G is marked.

Proof. Let 3C be the boundary of the cap C and let p be a point of §C. Since
dC\{p} is homotopic to E?, we can define the notion of a simple closed curve,
to which we can then apply the Jordan Curve Theorem. In particular, because
of convexity, any plane intersecting C (not tangent to it) intersects dC in a simple
closed curve. Let B denote the base of the pyramid asseciated with a node v
distinct from the root, and let w be the parent of v. We have the obvious
implication: “If v is marked but w is not, then mndC lies entirely on one
side of BnaC.” It follows from it that only v and its descendants can be
marked. O

We say that = splits a node if it intersects the base of its corresponding pyramid.
If 7 intersects a facet at node v but does not split v, we say that 7 scratches the
node.

Lemma 5.11. At most one node can be scratched: the root of G.

Proof. Let v be a scratched node distinct from the root of T and let w be its
parent. The proof of Lemma 5.10 shows that 77 cannot intersect any facet at node
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w, so this node is not marked, hence not in G. Since G is a tree the proof is
complete. O

Lemma 5.12. Suppose that m splits node v. If 7 intersects either more than 100
facets at node v or at least two child caps, then A() lies in the shadow of C(v).

Proof. Assume that 7 intersects 100 facets at node v (there is nothing magic in
this figure; we just need a large enough integer). Consider the screens passing
through ey, ..., e,.,. Then 7 intersects at least two of them, so it intersects both
spheres Sy and S),. If now 7 intersects two child caps, a similar reasoning will
lead to the same conclusion. We should now use the screens passing through the
2A points of the form h, or h,. In both cases, by convexity, it is clear that since
7 intersects the base a,a,a; it must also intersect b,b,b;. This shows that
A(r) lies outside the dual base of C(v). Consequently, A(7) lies in the shadow
of C(u). O

Lemma 5.13. In G no node has more than three children, and at most three nodes
have each more than one child.

Proof. The enclosure of child caps in spheres that are in general position
guarantees that no more than three child caps can be intersected by a given
plane. Suppose that three nodes of G distinct from the root of G have each
at least two children in G. By Lemma 5.11 these nodes are split by . But,
by Lemma 5.12, A(7) must then lie in their respective shadows. This contradicts
the sparsity condition which stipulates that no three shadows can intersect at the
same point. O

\emma 5.14. Any plane intersects O(k+ \) facets of a tuned cap of order k.

Proof. By Lemma 5.3, no plane can intersect more than 10A +17 facets at any
given node of T. Because of the sparsity condition and Lemmas 5.11 and 5.12,
a plane will intersect fewer than 100 facets in all but at most three nodes: one
scratched node and two split ones (why?). From Lemma 5.13 we know that G
has O(k) nodes, so a total of O(k+A) facets can be intersected by a single
plane. O

Lemma 5.15. For all d =3, we have c,(n)= O(log,n+log n/loglog n).

Proof. 1t is clear that beyond a small constant d,, there exist tuned caps of order
k and arbitrary degree =d,. For values below d,, we can very simply ensure
degree three by placing one point close to each facet with too many edges and
taking the convex hull of the result. If the points are sufficiently close to, say,
the mass center of the vertices of the facet in question, Lemma 5.14 will still be
satisfied (Fig. 5.18). What should be done now if the number of desired facets
cannot be achieved precisely by any cap? During the top-down construction of
the cap of smallest order with at least n facets we will stop as soon as replacing
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Fig. 5.18

a joint by a cap of order 1 would cause the number of facets to exceed n. At that
point, only O(A) facets will be missing. These can be added by either introducing
new vertices as before or by truncating vertices: Lemma 5.14 will still hold. Note,
however, that not all values of d and n can be achieved simultaneously. For
example, simplicial polytopes (d =3) always have an even number of facets.
By Lemma 5.3, a cap of order k has 10A*+23[(A¥~1)/(A —=1)] =6 facets,
therefore we have k<log, n for A > 1. Since the degree of a cap is given by the
size of its two flaps, which is @(A), we have A = ®(d) and k = O(log, n), therefore
any plane intersects O(d +log, n) facets. If 3=d <log n/loglog n then, for n
large enough, d <log, n, therefore c,(n) = O(log, n). Otherwise, we consider
caps of degree max(3, [logn/loglogn]), from which we find c¢,(n)=
O(log n/loglog n). O

5.3. Cross-Sections and Silhouettes

In this section we demonstrate that the cross-section problem for a given polytope
P is the same as the silhouette problem for its dual polytope, Q. Intuitively, the
silhouette of Q from a point g outside the polytope is the contour of Q as seen
from g—we give a more formal definition of a sithouette below. The correspon-
dence between the two problems is interesting for several reasons. For one thing
it shows that Theorem 3—which summarizes our results on the cross-section
problem—can be reinterpreted to solve the silhouette problem. Also, it seems
that from an expository point of view silhouettes are preferable to cross-sections
because the equivalence classes of points (from where we look at a polytope)
are easier to visualize than the equivalence classes of planes (cutting a given
polytope). Section 5.4 takes advantage of this fact and describes an algorithm
that computes the cross-section span of a polytope in terms of silhouettes in dual
space.

Let Q be a convex polytope and g be a point outside the polytope. We assume
in the following that the origin O belongs to the interior of the polytope. The
silhouette of Q with respect to g is defined as the collection of faces f of Q that
allow a supporting plane h of Q such that q lies in h and f is the relative interior
of Q n.h. Note that the silhouette is a set of edges and vertices of Q, unless g is
coplanar with a facet of Q. The size of the silhouette is its number of vertices,
and we define the silhouette span of Q, denoted s(Q), as the size of the largest
silhouette of Q. We might observe that whether or not we allow silhouettes to
be defined with respect to points at infinity is of no consequence since there are
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always small perturbations of the point of observation that do not decrease the
size of the silhouette. Let d =3 be an integer; we define s,(n) as the minimum
value of s(Q) over all polytopes Q of n vertices and vertex degrees at most d
(note that vertex degree dualizes the notion of face degree). When no restriction
is placed on the degree we simply write s(n). Note that s(n)=s,_,(n).

To establish the equivalence of the cross-section and silhouette problems we
introduce a geometric transform, D, that maps points to planes and vice versa.
Let p=(m,, m, m) be a point distinct from the origin. We define a plane h
normal to Op: if x is the point of coordinates x = (¢, &,, &), we have

h = {x|(x, py=&m+é&mtEm=1}

The transform D maps p to h and vice versa: by abuse of notation we write
h=D(p) and p= D(h). Notice that D is not defined if either p = O or h contains
O; this is assumed not to be the case in our discussion below. Given a plane
h={x|{x,v)=1}, we define two half-spaces h" ={x|{x,v)<1} and h =
{x|(x, v)> 1}. Clearly, h" is the side of h that contains the origin, while h~ denotes
the other side of h. It is elementary to prove that D preserves both incidence
and order relationships.

Lemma 5.16. We have the following incidence and order invariants: (i) a point p
belongs to a plane h if and only if the point D(h) lies in the plane D(p); (ii) a
point p belongs to h* if and only if D(h)e D(p)*, and p belongs to h™ if and only
if D(h)e D(p) .

Next, we extend the domain of D to include polytopes. Let P be a polytope
in E* whose interior contains the origin. We define the dual polytope of P as

Q=D(P)= () closure (D(p)").
pe P
We prove below that there is a one-to-one correspondence between the facets of
P and the vertices of Q [G]: a plane h intersects a facet of P if and only if its
corresponding vertex v belongs to the silhouette of Q with respect to D(h). This
allows us to conclude with the following result.

Lemma 5.17. The cross-section span of P is equal to the silhouette span of Q.

Proof. Let f be a facet of P and let v = y(f) be the vertex of Q that belongs to
all planes D(p), p € f. By definition of Q, v is a bijective function mapping facets
of P to vertices of Q. If h is a plane that intersects f, then there is a pointpe hn f.
The plane D(p) intersects Q in a unique vertex, namely v. Furthermore, from
Lemma 5.16(i), the plane D(p) contains the point D(h). Thus, v belongs to the
silhouette of Q with respect to point D(h). The argument can be reversed to
prove that if v belongs to the silhouette of Q with respectto D(h), then f = vy (v)
intersects the plane h. Incidentally, note that the spans of P and Q are unaffected
if we discount all planes through the origin as well as parallel views of Q. The
reason is that faces are defined as relatively open sets, so we can perturb a plane
slightly without decreasing the span of the cross-section. O
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5.4. Computing the Cross-Section Span

This section describes a cubic algorithm for computing the silhouette span of a
convex polytope Q. By the results of Section 5.3, this algorithm can be interpreted
as computing the cross-section span of Q’s dual polytope, P. In fact, we develop
the algorithm using arguments in both spaces.

Let P be an n-facet convex polytope which contains the origin and let Q be
its dual polytope. Our method can be viewed as a search through all silhouettes
of Q. Note, however, that we need not consider degenerate silhouettes, that is,
silhouettes that contain facets of Q. In a first stage we describe the equivalence
classes of points that define the same silhouette. Secondly, we indicate in which
order these equivalence classes will be searched and we explain what this means
in dual space. Finally, we map the problem to several instances of a two-
dimensional line segment problem for which the best known method takes
quadratic time and linear storage.

Let H be the set of planes that contain a facet of Q each. By Euler’s formula,
the cardinality of H, denoted m, is at most 2n —4. The set H dissects E*into a
cell complex called the arrangement «{(H) of H. We are concerned here with
the cells of s/(H), defined as the connected components of

E*\ U h

heH

For example, the interior of Q is one of the cells of «/(H). We refer to [E] and
[Z] for a proof that &/( H) contains at most (?) +(’;) + m+1 cells. This upper

bound is tight if &/(H) is simple, that is, if every three planes intersect in one
point and no point belongs to more than three planes. For convenience, we
henceforth assume that &/(H) is simple. A procedure known as simulation of
simplicity (see Chapter 9 of [E]) can be invoked to treat nonsimple arrangements
just as though they were simple. The cells of &/ ( H) constitute the aforementioned
equivalence classes of points. More specifically, we have the following result.

Lemma 5.18. If p and q are points of the same cell then the silhouettes of Q with
respect to p and q are the same. Similarly, if p and q are points of different cells
then the silhouettes of Q with respect to p and q are different, unless every plane in
H separates point p from point q.

The second part of Lemma 5.18 states that the silhouettes are the same when
p and q belong to opposite unbounded cells. This relates to the fact that two
parallel views of Q generate the same silhouette if they are taken from opposite
sides. To avoid computational difficulties, we treat opposite unbounded cells
separately. This will not affect the asymptotic time complexity of the algorithm.

Our algorithm visits the cells of #/(H) in m steps. At each step we pick a
plane h in H and visit all cells that have a facet in h and lie on the other side
of h than Q. These are exactly the cells intersecting the plane h, that is obtained
by moving h by a distance &£ away from Q, for ¢ sufficiently small. In dual space,
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h corresponds to a vertex v= D(h) of P, the dual polytope of Q, and h,
corresponds to a point v, = D(h,) close to v and inside P. Figure 5.19 illustrates
this argument using two dimensions as the embedding space. Figure 5.19(a)
shows Q as a convex polygon and the planes h and h, as lines. Figure 5.19(b)
depicts P, the dual polygon of Q, as well as the points v and v,. A point g in h,
corresponds to a plane D(q) that contains v,, and the silhouette defined by g
corresponds to the cross-section defined by D(q).

We are now ready to reduce the problem to a two-dimensional problem
involving line segments and lines. Let g be the plane through the origin normal
to Ov,.. We map each edge of P into g by a central projection about v.. In order
to obtain a plane subdivision of g we do not project the pieces of P’s edges
separated from g by the parallel plane through v,. It is easy to keep track of
how many such edges a plane intersects and to correct the result for this plane
accordingly. The problem is now to find a line in g that intersects the maximum
number of edges of this subdivision. Thus, we arrive at the same problem as in
Section 3.4. This problem can be solved in O(n”) time and O(n) storage using
the topological sweep method given in [ EG]. Since the cross-section span requires
running this algorithm O(n) times, once for each vertex of P, this yields a method
that takes O(n?) time and O(n) storage.
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It is perhaps worthwhile to mention that the techniques above can be used to
find the maximum silhouette in O(n?®) time and O(n) storage, provided that the
locations of the sources of light are restricted to a single plane (even if this plane
is at infinity). If the locations are further restricted to a single line in E*, then a
straightforward O(n log n) algorithm can be given using the same geometric
setting which led to the cubic and the quadratic algorithm.

5.5. Discussion

Theorem 1, Lemma 5.1, and Lemma 5.15 together prove the combinatorial part
of Theorem 3. The computational results are provided in Section 5.4. The
equivalence result of Lemma 5.17 establishes Theorem 4 as a direct corollary of
Theorem 3.

Theorem 3 (Cross-Section Span). The cross-section span of a convex polytope of
n facets can be computed in O(n*) time and O(n) space. The minimum cross-section
span over all n-facet polytopes is @(log n/log log n). If the degree of the polytope
is d or less then the bound is ®(log,n+1log n/loglog n).

Theorem 4 (Silhouette Span). The silhouette span of a convex polvtope of n facets
can be computed in O(n?) time and O(n) space. The minimum silhouette span over
all n-facet polytopes is ®(log n/loglog n). If no vertex of the polytope is incident
to more than d edges then the bound is ®(log, n+log n/loglog n).

6. Max-Min Problems

In this section we provide a proof of Theorem 5, which gives bounds on the line
width and monotone width of convex subdivisions and the cross-section width
of convex polytopes. Recall that the line width of a subdivision is the minimum
number of regions that any line can intersect. The monotone width is the minimum
value over all directions of the maximum length of any contact chain. Finally,
the cross-section width of a convex polytope is the minimum number of facets
that any plane through the origin intersects. Similarly, the silhouette width of a
polytope is the minimum number of edges in any parallel view. Recall that a
parallel view is a silhouette with the source of light at infinity.

Trivially, the line width and the monotone width of a subdivision of size n
are both less than or equal to n. As can be seen from Fig. 6.1(a), there exists a
subdivision of line and monotone width proportional to n. Note that the degree
of this subdivision is 5 and that the edges assume only two distinct slopes.

We prove the only nontrivial statement of Theorem 5 below: the lower bound
on the cross-section width of a convex polytope. We can assume that the polytope
P contains the origin O in its interior and the cutting plane passes through the
origin (else the width vanishes). By the duality result of Section 5, the cross-section
problem for P is equivalent to the silhouette problem for its dual polytope,
denoted Q. To prove that the maximum cross-section width is proportional to n,
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Fig. 6.1

the number of facets, it is thus sufficient to construct a polytope Q of n vertices
such that every parallel view yields a linear silhouette.

Lemma 6.1. There is a convex polytope of n vertices in E* (each adjacent to at
most three other vertices) such that the orthogonal projection onto any plane is a
polygon of Q(n) vertices.

Proof. The polytope Q is shown in Fig. 6.1(b). Take a regular tetrahedron J
of side length equal to 1, and replace each edge by a circular arc of sufficiently
large radius, such that the plane that contains the circle cuts the tetrahedron in
two equal-size pieces. Each one of the six arcs contains (n—4)/6 vertices of Q,
not counting the endpoints. We assume that (n—4)/6 is integral, and we place
the vertices uniformly on the arcs (i.e., at regular intervals). Next, we prove that
every parallel view of Q contains all vertices of at least one arc, provided that
the radius of the arcs is larger than some threshold. To demonstrate the existence
of such a threshold we must argue about the area and the angles of a planar
projection of the regular tetrahedron J.

Claim 1. The length of every edge of such a projection is at most 1.
Claim 2. Every projection of J has an area greater than some constant c,4.

Claim 1 is obvious. Claim 2 follows from the fact that the area of the projection
of Q always exceeds the area of the projection of the inscribed sphere of the
initial tetrahedron: this area is equal to 67 /144.

The projection of J is either a triangle or a quadrilateral. If it is a triangle
then its edges belong to the silhouette. The projections of the other edges
decompose the triangle into three smaller triangles (Fig. 6.2(a)). Let A be the
largest of these triangles. Since its area is at least c4/3 and the length of each
edge is at most 1 (Claims 1 and 2), we know that there is a positive lower bound
¢, on the size of each angle of A, as well as a positive lower bound ¢, on the
length of each edge of A. We choose ¢, and ¢ so as to be also lower bounds on
the angles and edges of the largest of the four triangles that we get if the projection
of J is a quadrilateral (Fig. 6.2(b)).
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Fig. 6.2

Now let e be an edge of the parallel view of the triangle A. The only possibility
that not all vertices on the circular arc a of e are vertices of the parallel view of
Q is that the projections of other circular arcs intersect the projection of a. Let
b be such an arc and let B8 be the angle between the projection of b and the
projection of its edge.

First, consider the case where the edge of b projects onto an edge of A. Then
arc b can intersect arc a only if B =c,. Let y be the angle between arc b and its
edge in three dimensions. There is a constant ¢ such that 8 <cy: the reason is
that the length of the projection of the edge is at least ¢;,, which prohibits 8 from
being too large. Thus, we can choose y small enough to prevent 8 from exceeding
¢, which ensures that the projections of arcs a and b cannot intersect. Next, let
the edge of b project onto an edge that does not bound A. The same argument
as for the other edges applies, unless this edge does not even share an endpoint
with e—in this case, the length of this edge can be arbitrarily small. Fortunately,
each of its points is at least a fixed minimum distance away from every point of
e. This fixed distance guarantees that there is no interference if the radii of the
circles are chosen above some threshold.

If the radius of all six arcs is chospn to be the same, and if the distance between
any two consecutive points on any arc is also the same, then Q, the convex hull
of these points, has degree 6. Thus, Lemma 6.1 also holds if we bound the vertex
degrees from above by 6. Note that we can easily achieve maximum degree 3 if
we truncate the polytope at every vertex. O

7. Conclusions

Possible extensions of our work go mostly in the direction of better algorithms
for the problems considered. Beating quadratic time is likely to require a novel
idea, and seems elusive at this time. The combinatorial bounds given in the paper
are by and large optimal, so working out the constant factors appears to be the
next (exciting) task at hand. A few gaps remain in some of the bounds we gave,
in particular regarding monotone spans with restrictions on the number of slopes.
Another interesting question is to inquire about the expected value of spans in
some reasonable probabilistic model. The problem of cross-sections seems the
most natural and worthy of interest in this regard.
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Extensions to higher dimensions are interesting in their own right. Unfortu-
nately, face-counts cease to be linearly related in four dimensions and above, so
the problems lose some of their natural appeal. An interesting question which
we leave as an open problem is as follows: using linear preprocessing, it is
possible to intersect an n-facet convex polytope with an arbitrary plane in time
O(k+log n), where k is the size of the output?
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