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_ABSTRACT

We study the difficulty of solving instances of a new family of sliding block puzzles called
SEPARATION™. Each puzzle in the family consists of an arrangement in the plane of n rec-
tilinear wooden blocks, n > 0. The aim is to discover a sequence of rectilinear moves which
when carried out will separate each piece to infinity. If there is such a sequence of moves we say
the puzzle or arrangement is separable and if each piece is moved only once we say it is one-
separable. Furthermore if it is one-separable with all moves being in the same direction we say it
is iso-separable.

We prove:

(1) There is an O(n log n) time algorithm to decide whether or not a puzzle is iso-separable,
where the blocks have a total of n edges.

(2) Thereis an O(n log? n) time algorithm to decide whether or not a puzzle is one-separable.
(3) It is decidable whether or not a puzzle is separable.

(4) Deciding separability is NP-hard.

(5)  There are puzzies which require time exponential in the number of edges to separate them.

1. INTRODUCTION

The Simba puzzle consists of 10 rectangular wooden blocks arranged in a tray one of whose side has a gap.
The purpose of the puzzle is to re-arrange the blocks by sliding them north, south, east, or west so that the largest
block can escape through the gap. In [GY] the translation problem for rectangles is studied. The aim is to translate
the original figure to some new position by moving each rectangle once and only once. Moreover as in Simba the rec-
tangles are not allowed to slide over each other, so it is useful to think of the rectangles as rectangular wooden blocks.

In this paper we consider rectilinear wooden blocks rather than rectangular ones, we restrict movements to be
only in the northerly, southerly, casterly and westerly directions as in Simba, we allow, in general, each block to be
moved many times, and we concentrate on separating the blocks rather than translating the arrangement, configura-
tion, or puzzle. In Simba the separation of one specific block is the purpose of the puzzle, while in [GY] the transla-
tion of a figure yields a sequence of moves, which enable the rectangles to be separated from each other, in the given
order. This intuitive notion of separation can be expressed more precisely as moving each block independently to
infinity without sliding over any other block. This is the definition of a family of puzzles called SEPARATION™.

In Section 2 we consider SEPARATION™ in which each piece is only allowed to move once, that ic iso- and
one-separability. In Section 3 we investigate the decidability status of SEPARATION™ when each piece is allowed a
finite, but unbounded, number of moves. We show, assuming for simplicity the initial arrangement is [oose in a way
which is made more precise later, that separability is decidable (this result can be generalized). In Section 4 we
demonstrate that decidability is NP-hard and that there are separable puzzles which require exponential time to
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separate them. Finally we close with a discussion of seme further problems and results in Section 3.

The original motivation for the problems discussed here was the generalization of the resuits of {GY] to rectil-
inear polygons, and an interest in moving rectilinear objects through rectilinear passages, see [HJW], [LPW], [OSC],
[R], and [SS1-3]. SEPARATION™ can also be viewed as the opposite of two-dimensional bin packing, see [BCR]
or compaction, see [SLW]; we thought, in fact, of calling it BIN UNPACKING!

[}

2. ISO- AND ONE-SEPARABILITY OF SEPARATION™

In this section we sketch the proof of the following theorems.

Theorem 2.1  Given a puzzle consisting of p pieces with a total of n edges, one-separability can be determined
in O(n log? n) time and O(n log n) space.

In one-separability each piece is only allowed to move once, but it may move in any one of the four directions.
To approach an efficient solution to this version of the puzzle we first consider a special case in which the pieces must
move in the same direction, that is iso-separability.

Theorem 2.2 Given a puzzle consisting of p pieces with a total of n edges, iso-separability can be determined in
O(n log n) time and O(n) space.

Without loss of generality assume that easterly movement is only allowed. Then an arrangement such as Figure
2.1 is not easterly-separable, although it is iso-separable, while that of Figure 2.2 is not even separable.
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Returning to Figure 2.1 a viewer in the far east when looking over the puzzie can see that a leading edge of B (out-
lined in bold-face) is trapped between a leading and trailing edge of C , whereas when it is viewed from the south,
see Figure 2.3, the leading edges of B and C are free. We say that B traps C , and is trapped by C , with
respect to the east-west direction. Similarly A4 , in Figure 2.1, which is trapped neither by B nor C,is blocked by
B and C. In other words 4 cannot be moved east until both B and C have been so moved. We say a piece
is free if it is neither trapped nor blocked with respect to the given direction. Note that the relation traps is sym-
metric, whereas blocks is not. The relation traps is captured by:

A piece A traps a piece B, in a given puzzle with respect to the east-west direction. if and only if the
EW-convex hulls of 4 and B have a non-empty intersection.

We say a piece is EW-convex if its intersection with a straight line, in the east-west direction, is either empty
or a line segment. The EW-convex hull of a piece is the smallest EW-convex piece containing the given piece, see
Figure 2.4 for an example. Note that the EW-convex hull does not affect the leading and trailing edges (or portions
thereof). These simple observations are the key to the decidability of iso- and one-separability. An efficient
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algorithm is based on the segment tree, see [BW]. Without more ado we give a high-level algorithm.

Algorithm EASTERLY-SEPARABILITY;

Step 1:  Replace each piece with its EW-convex hull.
Step 2:  Sort the leading and trailing edges of the pieces in ascending order according to their x-projection.

Step 3. Construct a skeletal segment tree based on the y-fragments determined by the y-projections of the leading
and trailing edges.

Step 4:  Insert the leading and trailing edges into the segment tree in x-sorted order.

Step 5. Attempt to peel the segment tree.

end EASTERLY-SEPARABILITY.

Step 4 ensures that each nodelist (of the edges which cover or mark a node) is sorted from east-to-west. Therefore, in
Step 5, a necessary condition for the separation of a piece is that all appearances of its leading and trailing edges are
in the first and possibly, second positions of its associated nodelists. This is because two leading edges of different
pieces having the same x-projection must have disjoint y-projections {since they cannot overlap).

In order to begin to peel the segment tree (Step 5) we have to find a piece which is free, that is none of its
edges are trapped or blocked. For this purpose we add further information to each node of the segment tree. Let
" cover(u) denote the set of edges which mark or cover the node u . This is usually implemented as a doubly-iinked
list called the nodelist. Now let easternmost(u) denote the set of first appearances in cover(v), for all proper des-
cendants v of u '. We say an edge of a piece is blocked if it lies to the west o the edge of some piece and their
y-projections overlap, otherwise it is free. As pointed out above, an edge e which appears in the first position in its
nodelist is a candidate for freedom. It might not be free because either there is a larger or smaller blocking edge to
its east. If the blocking edge is larger it will appear in the cover set of some proper ancestor of the nodes covered by
e , while if it is smaller it will appear in the cover set of some proper descendant. Let e appear in cover(u) for
some node u . Then the first case can be determined by examining the cover sets of the root-to-u path. A larger
blocking edge will appear in the first position of one of these nodelists. The second case involves the use of
easternmost{u) , since a smaller blocking edge must appear in it, since it too must appear first in some nodelist of a
descendant of u . Indeed e is blocked by a smaller edge if and only if the most easterly of the edges in

\ Actuslly since & leading and trailing edge of the same picce may both cover the same node this should really be the set of first, and

possibly second, appearances.



easternmost (u) is to the east of e . This uses the maxeast operation, that is the easternmost sets can be organized
as priority queues.

Now to prepare for peeling the segment tree we keep with each piece not only the number of its nodelist
appearances, but also the number of free appearances. Initially, that is after Step 4, no appearances are free, hence a
traversal of the tree is made and for each node u , the first appearance in cover(u) e ,say, is tested for freedom.
This involves examining Of(log n) nodes. Since the easternmost sets are also constructed during Step 4, this traver-
sal requires O(n log? n) time. If, after the traversal, no piece has its free count equal to its appearance count, then
no piece can be separated from the others in an easterly direction. However if there is a free piece, each of its
appearances is deleted and the cover and easternmost sets updated at all affected nodes. Removing an edge e from
cover(u) for some node u is straightforward, as is its removal from easternmost(v) for all proper ancestors v of
u . It is more difficult, however, to update freedom information for the remaining pieces. The edge e may block
either smaller edges at descendants of u , or larger edges at ancestors of u . The latter situation is the more
straightforward one - simply re-consider the freedom of the first appearances in cover(v) for all ancestors v of u .
Indeed unless the edge furthest east in easternmost(v) belongs to the deleted piece, freedom cannot be affected. In
the former situation the edges in easternmost(v) , for all ancestors of u and u itself are the only ones which may
be affected. It appears that the freedom of all of them needs to re-considered. To aveid this we modify the defini-
tion of easternmost(u) by not including appearances in it which are already blocked below u, thus
easternmost(root) is the set of appearances which are blocked, at worst, by cover(root) . Let Au and pu denote
the left and right child of node u , and for a node u , define left and right sets L and R , respectively, by:

maxeast (cover(Au)) , if cover(u) # @ and maxeast (cover (Au))
L = is east of maxeast(easternmost (hu)) ,and
easternmost (Au) , otherwise .

R is defined similarly. Now let:
easternmost(u) be L U R .

Recall that an edge e at a node u ‘only directly blocks appearances of edges at nodes below it if they appear in
easternmost(u) . Now easternmost(u) after removal of e requires no further updating. Therefore consider
easternmost (nu) , that is the parent of u . We need to add to easternmost(nu) those appearances from
easternmost (u) which were blocked by e but are no longer blocked at u . These appearances can be found by a
range query of easternmost(u) using the x-coordinates of e and e’ = maxeast(cover(u) — {e}). Note that if
this query has a non-empty result then e’ is blocked from below and otherwise e’ is the only new addition to
easternmost (tu) . Now consider 7nu , the newly added appearances in easternmost(nu) must be divided into
those which should be added to easternmost(mnu) , and those which are blocked at =mu . But this is similar to the
previous reduction. The newly-freed appearances are those added to easternmost (root) which are to the east of
maxeast(cover{root)) .

Observe that an appearance can be added to at most O(log n) easternmost sets and each addition requires
O(log n) time. Thus each appearance contributes at most O(log? n) time during updating.

Fortuitiously this modified easternmost set is sufficient for the earlier stages of the algorithm, hence there are
no major changes to be considered.

’

Now Theorem 2.1 follows because deletion and insertion of an edge can affect O(log n) nodes and, thus,
require the updating of O(log n) priority queues each of size O(n) . Although we have only discussed the deletion
of an appearance when it is in the first position of a nodelist, it is straightforward to modify this to deal with an
appearance at any position (the segment tree has a dictionary of appearances for each edge, providing access, in con-
stant time, to each appearance). We keep four segment trees, one for each direction, at any stage we check if there is
a piece having all its edges free with respect to one of the directions. If there is we delete its edges from all four
trees, and repeat the process until there are either no free pieces or no pieces at all.

Clearly we can apply Theorem 2.1 to solve the iso-separability problem as well, but we can improve the solution
by way of:

Theorem 2.3 A puzzle is easterly-separable if and only if the EW-convex hulls of its pieces are disjoint.

Proof:  Straightforward. O

Clearly a puzzle is easterly-separable if and only if it is westerly-separable. Now it can be determined in
O(n log n) time and O(n) space whether or not two pieces intersect, by way of a simple extension to the algo-
rithm in [E] for rectangle intersections. Thus Theorem 2.2 follows.



3. THE DECIDABILITY OF SEPARATION™

In this section we sketch the proof that separability is decidable - as one should expect. First observe that the
number of moves can be independent of the size of the puzzle. Consider the puzzle consisting of four pieces in Fig-
ure 3.1. The only way that 4 and B can be separated is by moving the two U-shaped pieces out of 4 . The two

U-shaped pieces can only be moved alternately a distance dependent on the narrowness of the U s. This distance
can be made smaller than any & > 0, hence the total number of moves to achieve separation is independent of the
number of edges. ‘
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Figure 3.1

We now introduce the notion of an EW-obstacle. Define the adjacency graph Ggw of a puzzle as follows.
The pieces in the puzzle are the nodes of Gy , and the directed edges of Gpy are determined by:

For all pieces p and g in the puzzle, there is an edge (p,q) in Ggwy ,if and onlyif p and ¢ have a
common segment e that is they abutt, and p is to the west, locally, of e and g is to the east, locally,
of e.

Now any (directed) cycle in Ggp is called an EW-obstacle. Clearly NS-obstacles can be defined similarly
from the corresponding graph Gps . Figure 3.2(a) illustrates an EW-obstacle and Ggy while Figure 3.2(b) gives a
similar situation which is not an EW-obstacle. Informally an EW-obstacle represents a cluster of pieces none of
which can be moved in the EW-direction at all. Moreover there is no hope that they can be moved in the EW-
direction unless some movement in the NS-direction is first made. Clearly an EW-obstacle which is also a NS-
obstacle, called an obstacle, can never be moved. In Figure 3.3 {4,B} and {D,E} are obstacles.
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Figure 3.2
For the sake of simplicity, we introduce the notion of /oose puzzle.

Definition A puzzle is /oose if it has neither EW- nor NS-obstacles.

To show that separability is decidable for loose puzzles we make a number of preliminary observations.

First, observe that a puzzle is separable if and only if it can be transformed by a sequence of moves into 2
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Figure 3.3

puzzle in which all pieces are no closer than some distance d in the EW- or NS-direction, where d is greater
than the maximum height and length of the pieces.

Second it is useful to form an abstraction of a puzzle called a scheme, as follows. A scheme is a pair
(Lgw,Lns) of lists giving the EW and NS order, respectively, of the vertices in the puzzle, where each vertex is
specified as a pair (i,j) to designate the j-th vertex of the i-th piece. Conversely we may say that a scheme is a
pair (Lgw,Lys) of permutations of the vertices of some pieces, which can be realized by some puzzle formed from
them. We say two puzzles P, and P, formed from the same pieces are connected if they have the same scheme
and there exists a move sequence taking P; to P, (and, hence, vice versa). Similarly we say that a set of puzzles
P is connected if all Py, P, in P are connected.

We first prove:

Lemma 3.1  Let (Lgw, Lys) be a scheme for a given set of pieces, which is realized by a ioose puzzle. Then P,
the set of all puzzles which realize (Lgw, Lns) . is connected.

Proof Sketch: We say P, and P, are x-similar (y-similar) if they both realize the same scheme and all
corresponding vertices have the same x-coordinates (y-coordinates).

(A) To show that P is connected we demonstrate that for two arbitrarily-chosen puzzles P, and P> in P. P
and P, are connected. To prove this we show that there is a puzzle P, whichisin P, is x-similar to P.,is
y-similar to P, , and there is a move sequence taking P, to P . Showing there is a move sequence taking
P to P, is a similar step. Note that P is indeed in P, since if it contained overlapping pieces this wouid
contradict the orders Lgy and Lys .

(B) To show that there is a move sequence taking P, to P, we further subdivide the problem. Let H be a hor-
izontal line below both P; and P . We define a new puzzle Q which lies above H , has at least one piece
of Q abutting H , has been allowed to “drop” as far as possible without crossing H , and is x-similar to
both P, and P . Thinking of the pieces having weight and of them dropping under gravity is what is meant
here.

If we show that Q can be obtained from P, , then, clearly, P can be obtained from Q .




(C) To show that there is a move sequence taking P, to @ we carry out the following algorithm.

For each piece py,...,px in turn:

Move p; downwards as far as possible, without crossing H . This destroys edges of the kind (p;,g) and pos-
sibly creates a new edge of the form (gq,p;) . Moreover it preserves x-similarity. If p;, reaches H then it is
frozen at H , and is never moved again. Moreover freezing propagates - if p, abutts a frozen p; then p; is
also frozen.

The above process is iterated until a frozen puzzle is obtained, which is @ . We claim it is both unique and
independent of Py, in the sense that any puzzie R in P x-similar to P; would give rise to @ . We must
also show that the process converges and is finite. We omit the details of this proof, simply remarking that it
can be shown that each non-frozen piece can be moved in at most k iterations of the process. Finiteness fol-
lows, essentially, by observing that each piece, when it is moved, is moved at least distance &, where & is the
minimum non-zero y-distance between successive (with respect to Lyg ) vertices in P, . Uniqueness is
straightforward. O

Theorem 3.2  Let P, bea loose puzzle. Then it is decidable whether or not P, is separable.

Proof Sketch:

(A) Let P, be an ordered horizontal placement of the pieces in P, such that there is a north-south line which can

(B)

be drawn between any two pieces p; and pj » with p; wholly to its west and p; wholly to its east or vice
versa. Then P, is separable if and only if there is a move sequence taking F; to P, .

Let (Lfw,Ljs) be the scheme of P;, i =1,2. Now let G be a graph whose nodes are (realizable)
schemes of the set of pieces of P, . For all (realizable) schemes S, and S,, there is an edge (S;, S,) if
and only if there is a puzzie P realizing both S, and S, . This is possible only if P contains two co-linear
edges. Such a P represents the point of change between two schemes. During a move sequence taking P, to
P, (if it exists) there will be time instants when such points of change are crossed, while at all other instants
the current scheme is unchanged. Thus P, can be transformed into P, if and only there is a path in G

from a scheme of P, to a scheme of P,, that is separability has been reduced to reachability in a graph.
Since reachability is easily determined, separability is decidable if and only if G can be constructed. G can
be constructed if it is decidable whether or not a given scheme is realizable. But this corresponds to determin-
ing whether or not the linear system of equalities and inequalities L(S) of a given scheme S has a solution.
The equalities are given by the interdistances between vertices of each piece, whereas the inequalities are given
by the lists (Lgw, Lys) of S . The simplex method can be used to solve L(S), hence separability 1s decid-
able. O

Using fairly similar techniques, it is possible to extend this result to the case where the puzzle is not loose. We

must omit the proof because of space limitations.

4. COMPLEXITY OF SEPARATION™

We sketch the proofs of two results in this section, namely SEPARATION™ is shown to be NP-hard by reduc-

ing the partition problem to it and that there are separable puzzles which require exponential time.

For the first proof sketch note that we only consider the predicate: can the given instance of SEPARATION™

be separated? The partition problem is: given n weighted objects partition them into two equally-weighted subsets.
The reduction is illustrated in Figure 4.1,
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The puzzle is so tightly defined that none of the P; can be separated unless B is moved west as far as A4 , when
B can be moved by sliding it south. However this is possible if and only if the set of P;s can be partitioned and

placed above B . Observe that there is enough working space to the west of B to manipulate the P;s. Thus we
have:

Theorem 4.1 SEPARATION™ is NP-hard.

In Section 2 we demonstrated that there are separable puzzles which require a number of moves independent of
the size of the puzzle. However the moves required to separate the puzzle are seif-evident. We close this section
with one further example which is separable, but non-trivially, see Figure 4.2.

e 3

Figure 4.2

The piece B can be viewed as a bolt, while the pieces T are discs with different sized holes, which form a Towers
of Hanoi. Note that the thickness of m discs, if arranged in sorted order, is m +d units, where each disc has a
thickness of 1 unit and its hole is 4 units deep. In unsorted order they form a tower which is md units high.

Now to release the bolt B all discs in 7 need to be moved. They can only be moved into the two wells and
the connecting passage, but because of the considerable difference in height between sorted and unsorted order, this
forces the discs to be moved almost according to the standard Towers of Hanoi sequence, especially when 4 = m .
Without belabouring the details we have:

Theorem 4.2  The puzzle illustrated in Figure 4.2 requires an exponential number of moves to separate it.

5. DISCUSSION

We have introduced, SEPARATION™, a new family of sliding block puzzles and investigated some aspects of
its complexity and decidability. Clearly much remains to be done. For example in Simba, one designated piece must
be separated first, clearly this requirement and variants of it can be placed in our general framework. Again how
efficiently can two-separability be decided? And. in general. given a k , how efficientlv can k-separabilitv be




determined?
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