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ABSTRACT
Given an array A with n entries in an additive semigroup, and m intervals of the
forin 7;=li,5], where 0<i<j<n, we show that the computation of 4[]+ +Al] for all
I; requires Q(n-é—mn{m,n)} semigroup additions. Here, a is the functional inverse of
Ackermann’s function. A maiching upper bound has already been demonstrated,

Keywords: Partial-surns, lower-bounds, orthogonal range searching.

1. Introduction

The central theme of this paper is the complexity of the partial-sum probdlem:
Given a d-dimensional array A with n entries in an additive semigroup and a d-
rectangle ¢ = [ag, b1 X - -+ X [ay, bg}, compute the sum

O’iﬂ,g} = Z Aikly“'akd]'

(k;,---,ka)éq

This problem comes in two distinct flavors. In guery mode, preprocessing is allowed
and ¢ is a query to be answered on-line. In off-line mode, we are given the array
A and a set of d-rectangles q1, - .., ¢m, and we must compute the m sums {4, q).
Partial-sum is a special case of the classical orthogonal range searching problem:
Given n weighted points in d-space and a query d-rectangle g, compute the cumu-
lative weight of the points in g, see for exampleb 2 3 4,5 6,7, 8 9,10, 11, 12, 18, 14, 15

*A preliminary version of this work has appeared in The Fifth Annual ACM Symposivm on
Comautational Geornetry, Saarbrucken, West Germany, June 1989, pages131-139.
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34 Bernard Chazelle € Burton Rosenberg

The dynamic version of partial-sumn in query-mode was studied by Fredman?, who
showed that a mixed sequence of n insertions, deletions, and queries may require
Q(nlog?n) time, which is optimal, Willard and Lueker'®. This result was ex-
tended to groups by Willardi? under some fairly restrictive assumptions. For the
case where only insertions and queries are allowed, Yaol® showad a lower bound
of Q(nlogn/loglogn) in the one-dimensional case. This was later extended by
Chazeile to £2{n{logn/ loglog n}?4), for any fixed dimension 4'®. These bounds are
very strong because they hold in the arithretic model of computation? 1% 15 18
which counts only the number of arithmetic operations and not the cost of accessing
memary. Regarding static one-dimensional partial-sums, Yao proved that if m uniis
of storage arc uscd then any query can be answered in time O{a{m, n}), which is
optimal in the arithmetic modell®. The function a{m,n) is the functional inverse of
Ackermann’s funciion defined by Tarjan!”. See alsc Alon and Schieber'® for zelated
upper and lower bounds.

Our main result is a nonlinear lower bound for one-dimensional partial-sums
in off-line mode. More precisely, we prove that for any n and m, there exist m
partial sums whose evaluations require Q(n + maim,@z):ﬁ time, and this result is
tight. This is a rare case where the function « arises. Noticeable instances are the
complexity of union-find'”, and the length of Davenpori-Schinzel sequences'® 20,
Interestingly, the proof fechnique we use does not involve reductions from these
problems. It is patterned after Yao’s lower bound proof'4, but ihe ofl-line nature of
the problem, that the querics are known ahcad of sime, frusirates this approach and
mandates the iniroduction of more complicated machinery. Qur result implies that,
given a sequence of n numbers, computing partial sums over a well-chosen set of n
intervals requires a nonlinear number of additions. This might come as a surprise
in light of the faci that there is a trivial linear-time algorithm as soon as we allow
subtraction. Simply form and maintain the partial sums P[i] = A[0] + --- + Ald]
for i =0,1,...,7n — 1 and express any interval A[{] + ...+ A[j] as P[j] — P[i - 1],
where P[—1] = 0. The lower bound can be regarded as a generalization of a result
of Tarian!? concerning the off-line evaluation of functions defined over the paths
of a tree. As in Tarjan?! our result also leads to an improved lower bound on the
minimum size of a monotone circuit for computing conjunctions.

'The paper is organized as follows: in Section 2 we define the model of compu-
tation and discuss some useful reductions. Section 3 is devoted to the construction
of hard problem instances, while Section 4 gives the proof of the lower bound. We
discuss applications and open problems in Section 5.

2. Definitions

We review the basic notation and state precisely our goals in this section. Leb
[2, 7] denote the set of all integers between { and 7 inclusive. Let X be a finite
set whose n elements are denoted zg,Z:,...,Zp_1. Any subset of X of the form
{zy |k €li j]} is called an intervel and is {abusively) denoted [«;, «;]. Intervals of
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The Complexity of Compuiing Partial Sums OF-Line 35

] ate called ¢rivial. The empty set, by convention, is a trivial interval.
The one-dimensional off-line partial-sum problem is specified by a set X of n

the form [z;, z;

variables g, 21, ..., -1, a weight funection w from X to an additive commutative
sernigroup S, and a set @ of m intervals, @ & {[es,2;110<i< j<n}. Wemust
form, for each interval ¢ in ¢, the sum,

Zw(z).
rEq

The set  is called the fask and its elements are called queries.

Intuitively, a fast solution to the problem might begin by computing and placing
in memory useful partial sums, which can be shared by many queries. Then each
query is quickly answered by combining & small numnber of these partial sums. The
lower bound we prove implies that no allocation of partial sums can give solutions
using only a constant amortized number of arithmetic operations per query. Note
that, for a group, a solution using a constant number of operations per query can
be achieved by precomputing all prefix sums and, for any query, subtracting the
appropriate two among them.

The arithmetic model of computation™ 1% 1% 16 charges one unit of computation
for every semigroup operation performed. All other computation is free. We can
store resuits in memory cells, access the cells by address, using whatever address
arithmetic we desire. In other words, a solution is a straight-line program with
instructions of the form z; = w(e;) or z; = a2z + bz;, a and b integrai, where
zg, 21, .. . form an unbounded set of variables. AL the end of the computation we
require that the m partial sums specified by the task should be givenby 25, ..., Zm-1-

In the arithmetic model of computation the cost of a solution is simply the
number of instructions of the form z; = azz + bz This cost is referred to as the
time for the solution. To make our lower bounds more general, we require that a
solution should work regardless of the particular assignment of weights to the z;’s.
Also, we must assume that the semigroup is not trivial, unlike, say, the semigroup
({0}, +). Following Yao'® we define a semigroup (S, +) to be faithful if the identity
of two linear forms implies the equality of their seis of variables. That is to say,
given two sets of indices I and J, and non-zero integers ¢, by, the relation,

Zaiy:' = ijyj

iel jed

cannot be an identity unless I = J. Note that we do not even require tha$ the sets
{a;) and {b; } should be the same. Lxamples of faithful semigroups are {4, max),
({0,1},A), ({0,1},V) and (Z,+). But note that ({0},+) and Z/27Z are not
faithful.

Given a set X, its power set is denoted P(X) — it is the set of all subsets
of X. The algebraic structure (P(X),U) is a commutative semigroup. It has the
additional properties of being idempotent, alUa = a for all a in P{X), and possessing
an identity element, e U9 = a for all @ in P{X). As long as X is not itself emmpty,
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38 Bernard Chezelle & Burton Rosenberg

(P(X),U) is faithful. We are interested in this semigroup for the following reason.
Any solution to a task Q with weight function w into a faithful semigroup can be
interpreted as a solution to the same task @ with weight function into the semigroup
(P(X),U) defined by,
w*: X — (P(X),V)
z — {z}

simply by replacing w in the solution with w*. We make the following definition:

Definition 1. A scheme S is a sequence sy, ..., 8,1 of subsets of X such that
foralli e [0,r—1], s; = sU s, where s = s; for some j < i or s = {z } for some
z € X or s = f, and likewise for 5.

We say that a scheme S solves task 7' if all partial sums in T with weight function
w* occur as elements in S.

Lemma 1. Let 7" be a task over n variables and S a scheme of minimum length
solving it. Then, for any faithful semigroup, a solution to 7' with weight in the
semigroup takes time at least r — n, where r is the length of the scheme.

Proof. Recall that in the arithmetic model of computation a solution to T is
a straight-line program. FEach line of the program gives rise to a subset of X by
replacing w with w*, and + by U; hence, the entire program gives rise to a sequence
of subsets sg, 81, ..., which obviously satisfy the definition of a scheme. Since the
program is a solution to 77, for every £ € 7" there is an i such that the ¢-th line in
the program computes the sum,

z€1

By faithfulness, and the fact that the solution works regardless of the weight as-
signment, s; is {z € ¢ }. Since this set is w*(¢), we conclude that S solves T'. The
length of the scheme is the number of lines in the program. We need no more than
n of these to be of the form z; = w(x;). The result follows. U

In the proofs that follow, we will define mappings between schemes. These are
often simply maps between sets f : X — Y extended {0 maps belween powersets
F:P(X) — P(Y) in the usual way: requiring that f(AU B) = f{A U f{B). Other
times, we intend that the map be between intervals. We denote by Z{X) the set of
all intervals in P(X),

HX)={les ] S X i< J}

Amap f: X — Y extends to [ : I(X) — Z(Y) by f{lzi,z;])= f{z:), f(=)].
It is often convenient to define a map by defining its inverse first. A section of a
map F: X —- Y isamap ¢g:Y — X such that fog = Idr. For example, 2 map
from X ={z¢,...,Ztn-1}1 t0 Y ={ya,...,%u—1 } which takes z; to ¥;moan has k
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sections which look like y; v ingj with 7 € 0,k — 1], fixing a different 7 for each
section.

3. Constructing Hard Tasks

We will construct a family 7n(Z, &) of hard tasks parametrized by two inte-
gers 1 > 1 and & > 0, respectively called time and densily; the subscript n in-
dicates the number of variables and is not a parameter. Task 7, (t, k), defined over
{&g,...,Tn_1 }, will contain between kr/2 and kn queries, and any scheme solving
it must be of length at least tkn/6. That such a family exists at all puts a lower
bound on the cost of computing partial sums. Define the function R{!, k), for all
integers ¢+ > 1 and & > O:

R(1,k) = 2k, k>0,
E{é,QE = 35 g > E-!
R(t,k) = R@,k—-DRE-1,R(Ek-1), £>0,1>1

This function gives the n needed to construct the hard task Tn{¢, k).

Lemma 2. For all integers ¢ > 1 and & > 0, there is & task T.(t, &) over the n
element set X = {zo,...,on—1} satisfying the three requirements:

(D) [Ta(t, k)| > kn/2, where n = R(t, k),
G [{[lzs, 2] e Tu(t, &) 1= 1} <k for any l € [0,n— 1].
(iii) If S = {50,81,...,5r—1} 18 a scheme solving Tn(t, k),
then » > 1| Ta(t, k) | /3.

All intervals in 7T, (¢, k) are nontrivial.

The second requirement is called the uniform right-degree condition. Aside from
implying that 7,,(¢, &) contains no more than kn intervals, it is an induction invariant
crucial to the inner workings of the construction.

The proof of this lemma is split over the remainder of this section and the next.
In this section the construction is delineated and the first two requirements verified.
The next section deals with the last requirement. The lemma easily leads to the
lower bound theorem stated and proved in the final half of the next seclion.

The construction is by double induction on t and k. We present directly tasks
fort=1and k> 0and for k= 0andt > 1. Thisis the basis of the induction. The
task Tn{l, k) is constructed from Tn (¢, k — 1} and Zyn (t — 1,n"), for the inductive
step.

Let 73{¢,0) = 0 for all ¢ > 2. Since & = 0, | 7a(t,0) | is large enough; since
| 75(¢,0) | = 0, any scheme solving Ts{{, 0) is long enough; and 73(¢, 0) satisfies the
uniform right-degree condition for ¥ = J. Now we define 7, (1, k) with 2 > 0. Let
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n = 2k and over variable set {zg,...,z,_1 } define:
—-k-1 &
T (1, k) = U [2i, 2igs].

it is easily verified that 7,(1, k) satisfies the uniform righi-degree condition and has
size | Ta{1, %) | = kn/2. Since all the queries in 7,,(1, k) must appear in any scheme
solving it, the size of 7,{(1,%) is a lower bound for the scheme’s length. Hence
T.(1, k) satisfies the three requirements of the lemma.

We now assume that ¥ > 0 and { > 1. By induction hypothesis, we have tasks
A=T.(tk—1)and B =T — 1,a) where a = R{t, bk — 1) and b = R{t — 1,a).
Since R(%, k) = ab, we intend to construct task @ = 7,{¢, %) over n = ab variables.
For clarity, we give different names to all these different variable sets. Name the
variablesin ¢J by X = {zo,...,2n_1},those in Aby ¥ = {yo,..., %1}, those in
BbyZ={zq...,2p-1 }.

Divide X into b blocks each containing a consecutive variables. Into each block,
we place a copy of the task A. To state this formally, we define the map:

w: PX) — PY)
Ti Yimoda
and take these sections:
ei: I(Y) — I(X)
U = Tig+i,
where j = 0,...,5 — 1. Each section gives a copy of A placed in X, it is the image
of A by ;. Though ¢ is a map between subseis of sets, it is defined as if it were a
map of sets. Likewise, @; is claimed to be a map of intervals, even though we have
only given its values on elements. It is good to reflect on these distinctions, but
burdensome to reflect these distinctions in the notation. In any case, o w; = Idy,
as ii should be for a section.
To guide what remains to be done for our construction, we mark some of the z;.
Let the leftmost variable in each block be marked, that is, z;, for i = 0,1,...,0— 1.
Now alter the marking by removing the mark on 2z and placing it on z,_1.

0000 0000 @DO0CQ0 ... 0009

A copy of task 8 is placed over variables X guided by these marked variables:
variable 2; goes to the i-th marked variable in X. The complete map follows from
two desires: that the map be a map of intervals, that no $wo intervals from B have
left ends over the same variable in X. This second requirement means that we have
to stretch leftwards by different amounts intervals coming from B. This stretching
step is very important since 1§ causes the composite task to be more difficult to
solve than the sum difficulty of its components.

If we were to take each interval [z;, z;] in B to an interval [z, 2;.] in Q by the
rule “z is the i-th marked variable in Q,” at most ¢ intervals from B would have
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The Complexity of Compuling Partial Sums Qff-Line 39

their left ends over a given marked z in @. Further stretch each interval leftward,
by a different amount, so that they end over ®ij_1, Zi—2, €iC. Partition B into a
subsets By, ..., Ba_1 so that the partition obeys the following restriciions:

Q) [{[z,z:] € Bilj=c}|<1foralli€[0,a—1}and € (0,61}
{3‘} Ezb—Qs zb—i] é Bg.

It is possible to construct this partition thanks to the uniform right-degree condition
on B and that fact that there is only one nontrivial interval euding over zy_z.
For i € [0,a — 1] define the map,
G T(Z) — X
?‘U(j+1)a—é,w(3:+1)a] for j € [0,b— 2]
i 1

[z] = lzore ] = b—

We must define a map of intervals. To this end we shall ensure that 1¥;{[zj, 2x]) is
the smallest interval containing all of {bi(z53, i(2s) 1. Each of these 15 a section
of the map,
v P(X) — P(Z)
jz,— ifi=ea(j+ 1),
T — 4oz fi=ab-=1,

Lo otherwise.
An image of each B; is placed over X using ;. Remark that any such interval over
X spans blocks. For this to be true, the restriction thal {z3—2, zs—1) BOL De in By s
crucial.

The task @ is defined as,

/o= a-t
Q:(meﬂu U w8
=9

Vi i=3J

We investigate the properties of this task.

By construction, ¢ is a collection of nontrivial intervals in X. In fact, each map
@; and ; is one-to-one. The distinet character of each of these maps assures that
each component that went into making Q) is disjoint with every other. This implies

thai

il

Q] ST les @+ >0 (B9
jefob—11 i€{0,a—1j
= b|A|+|B|>bk—1)a/2+ab/2= kab[2,

and

{[zi,z;1€ Qli=c}] = [{lwwl€Ali=cmodal]
+ !{[Zﬁﬁzj] € B(—c}moda]é: %.(c_ })!15_! }l
{i?c—})-%—“;.—_?'c

1A
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for all ¢ € {0,ad — 1]. Therelore J is a task ol the correct density and obeys the
uniform right-degree condition.

4. The Lower Dound

“We now derive a lower bound on the cost of any scheme S which solves . Each
of the s; in scheme S falls into one of b+ 1 categories. Either, for some i € [0,5 1],
s; lies fully inside bliock i, s; C {zig, Z(it 1)4—1]7 or s; ccmbines elements from dil-
ferent blocks. We pariition § into b+ 1 sublists according to this categorization.
If s; lies inside block i, place s; in S, else place s; in S§*. If s; is the empty set,
place it in the subsequence S*. Maintain the original ordering, but renumber, to

obtain sublists { sh,s%,...,5%,_; } wherei=0,...,%, each 55 is an element of P{X),
and the r; are the lengih of these lists, noting r = ro + - - - -+ 5. It will be shown
that each of the subsequences S* for i = 0,...,5— 1 is, essentially, a solution to A.

Immediately, we have lower bounds for all »; with ¢ in this range. The subsequence
S® is essentially a solution to B, but it is a very inefficient solution. We can quantify
this inefficiency and, in doing so, derive a lower bound on 7.

Lemma 3. For i = 0,...,b— L, the sequences (S?), defined by ©(S%); = cp(s.‘;-},
are schemes solving A.

Proof. Let s, be any member of ©(S*). Then s, is the image of some elernent
s; in S. Perhaps s; = s U s with &,1 < j. Clearly, s; and s fall into §* with
images sg and s, in ¢(S*), where 8,7 < @. But

sa = @(s;) = (s Ust) = plsk) Uplsr) = 85 U sy

The other possible precursors of s; are argued similarly, proving that ¢(S?) is a
scheme. We know that ; is a section of ¢ and that S solves (7. This implies
S D pilTult, k — 1)), giving

@(Séé 2@o So,'{?;(t, k— }» = fira{ta‘}c - 1)

So ‘P{Sé} solves ’!a(g’ L })_ U

Lemma 4. The sequence %{S?), defined by

(1) P(SY)iv1 = P(s),
(i) Y(8%)0 = [28-2, 25-1],

is a scheme solving B. It is not minimal: there is a subsequence of ¥(S?), resulting

from the removal of | B | —| By | elements from %(S*), which is also a scheme solving

3.

Proof. Consider any so in 1¥(S%). It is an element of S, say s;. Assume that
s; results from the union of sp and s; with 4,1 < 4. If both s; and s; span blocks,
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then they are both found in S?, and their images sp and s in P(S*) together form
5. Suppose that s; lies within one block. If that block is not the rightmost, then
¥{si) is either the empty interval or a singleton. 50 84 = P(si ) UP(s;) satisfies the
definition of a scheme. If s lies inside the rightmost block, then it is pessible that
W(se) is larger than a singleion, 1t could be that ¥(sg} = [zb—2, 25—1]. However,
then sq = 5o U(s1), and again the definition of a scheme is satisfied. Arguing the
other cases sirnilarly shows ¥{S?) is a scherne. As in the previous lernma, the facls
that S solves ¥ and that ¢ o ¢); = Idz combine to show that »{5%} solves B.

Let ¢ be an inlerval in the task @ of the form (z), but 1 # 0. That is, ¢ is in
the image of B, but not of that poriion of B placed in the partition Hg. Let i(g) be
the index of the leftmost ¢; in ¢. Let W(4) be the index of the first element in S?
which contains ¢; but contains no ¢; with j < i. Since 5 solves Q, W{i) is defined.
‘We consider the eguation s%,(’.} — s/ Us"”. At least one of s/ and s contains ¢;.
two sets, at least one contains g;, let us say s’. DBy selection of Wi{i), &' is itself
contained in the block containing g;. Because ¢ is not divisible by a, the image of
this set under < must be the empty set. (It cannct be that this set contains z,_1.)
Hence sfz(siv(i}} either appeared before in %(S?) or, because ¥(S?) is a scheme, it is
a singleton. In either case, we can remove this element from the sequence ¥{5?%) and
it still will be a scheme. Aftcr removal, it still will solve B since that set contains

no singletons. U

We now derive a lower bound on the length of S. Because ¢(S*) solves A,

ri >t1A|/3, i=0,...,b— 1. Taking the indicated subsequence of ¥(S?), we Lave
a scheme of size Py +1— | B |+ | Bo | solving B. Therefore, that sum is bound below
by {t = 1)| B|/3. Recall that each interval in By ends over one of zo, ..., 23, and
conversely, each zg,...,2p—3 has at most one interval in B ending over it. Hence

| Bo| < b—2. Since |Q|=b|A|+ {8,

-

{

ro+ -+ Te—:r+ T
BIALB+(-1)|B|/3+|B]—|Be]—-1
BIAN/B+(E+2)|BI/3-(0—2)—1
1iQ1/3+(2/3) Bl —b+ 1.
Because B = T3(t — 1,a) we have | B> ab/2. Since a > 3,
r>t|Q/3+ab/3-b+1>1|Q|/3

We have completed the verification of the three properties of T,{¢, &} enunciated in
the lemma, and the induction step is complele.

Armed with Lemnma 2, we state and prove the lower bound theorem. First we
define a(m,n), the inverse Ackermann function. We follow Tarjan'” in defining
A(i,jyforall i > 1 and j > 0 as:

(AVANAY

AQL5) = ¥, >0
Al,0) = 2, P> 1
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The first row grows expounentially. The second row has at index j a power of 2’s
7+ 1 high. That is, A(2,0) = 2 and increases by A(2,j + 1) = 2424}, Eacl row
is a primitive recursive function growing faster than the previous one. But the real
interest is in the growth of the columms. Each column past the first one grows
roughly as fast as every other column, and all grow faster than any row. No column
other than the first is primitive recursive, because it grows too fast. Tarjan defined
a functional inverse of A(%,j). For all m > n:

a{m,n) = min{i| A(i, [m/n]) > logn ;.
We need to compare the funciions A(7, ) and R(4, J).
Lemma 5. Foralli,j =1,2,..., we have R(: + 1,7) > A({, 7).

We omit the proof which is by double induction. Combined with the following
p Yy 3
lemma 1t shows that A1, j) and R(4, j) are essentially the same function.

Lemmma 6. Foralli,j =1,2,..., we have A{i + 2,7} > B({, 7).

Proof. We begin by showing that A(f+1,7+1) > R(z,7)+2, withi=1,2...071
4 = 0,1,.... Direct calculation shows this for 1 = 1 and j = §. The induction step
assumes A({' + 1,7+ 1) > R(#, ;) +2if¢ <iorif =iand j’ < j, and concludes
with the inequality for A(i+ 1,7 -+ 1). The following series of inequalities:

A+ 1,5+ 1

Al AL+ 1, 7))

> A(GR(,j—1)+2)

> Al R(i,§ — 1)+ 1)?

> (R(i,§— 1)+ DA —1,R(E,j - 1)
> R(i,§) +2

ie justified in the remainder of this paragraph. The first inequality is an ap-
plication of the induciion hypothesis; the second uses the little resuli: for i >
2,A(,7 + 1) > A(i,7)%. This can be proven by induction. The next inequal-
ity uses the induction hypothesis and the result, A(,j7) > 7+ 1, this for any
1,5 > 1. An easy induction shows that A(i+1,7) > A{1,7+1), for j > 1, therefore,
Al +2,7) > A(i+ 1,7+ 1) > R(¢, ), and the lemma is proven. U

Suppose we are given m and n with m > n. Set £ = |m/n]| and let ¢ be the least
integer such that R(2, k) > n. We explain why ¢t > 2. A task cannot repeat a query

interval, so m < n{n — 1}/2, and hence,

R(L,Ey=2k<2m/n] <n-1.

Supplied by The British Library - "The world's knowledge"

The ol

Becaus
least
Con

the ex

least {
T, elid
Tmty . .
such &
resulli
inciud
indice

We h £

from
n X

such |
exists

=

whos




The Complecily of Compuiing Pertial Sums Gff-Line 43

Jl

By the lower bound lemma, there exists a task T' = T (t — 1, &) with:

o n’ = R(t — 1, k), and it follows by the definition of t that n/ < n.
o T has size |T'| between kn’/2 and &n'.
» Any solution to 7T has length at least (¢ — 1) |T 1 /3.

Place {n/n'] copics of T" side by side. Add extra variables and queries to correct to
form of this resultant task, that is, it will be over n variables and have m queries.
The size of any solution is bounded from below by:

¢ —Dln/'{T1/3 = (¢ = Din/na'[lm/njn’/6
> mt—1)/24
>  mt/48.
The following chain of inequalities shows that 1 +2 > alm,n),
At +2,k) > R(t, k) > n > logn.

Because ¢ > 2, it follows that § > a(m,n)/2. Therefore the cost of solving 1" is al
least ma(m,n)/96.

Consider now m and n given, where m < n. The previous paragraphs shows
the existence of a task 7' over m variables with m queries which tzkes time at

least (ma(rm, m))/96 to solve. If all the variables zo, ..., Zm—1 do not appear in
T, eliminate the unused variables and renumber as Zo,...,Im'~1. Add variables
Tty .-y Zn—1. Find an interval of the form i,m' —1]in T, a8 Tpr—1 18 used in T

such an interval exists, and replace it with the interval [i, 2 —1]. Any solution to the
resulting task can be made to solve the original task T by a transformation which
includes removing the at least n — 1 computation steps referencing variables with
indices inside the interval [m,n — 1]. So, the time to solve this new task must be,

n — m—+ ma{m,m)/56 (rn —m)/192 4+ ma(m,m)/96
n/192 + m{2a{m,m) — 1)/192

(n + ma(m,m))/192.

v IV IV

We have thercfore established:

Theorem 7. Let X be a set of n variables zg,... ,Zn—1, and w a weight function
frorm X to a faithful semigroup. For any m > n, there exists a set T of 7 intervals
in X

TC{[zi,z}|0i<i<n},
such that the length of any scheme solving 7' is Q('ﬁ?a(m,n}; For m < m there
exists such a T requiring a scheme of length Q{n + ma{m, m)).

By & result of Yao!® (see also Alon!® and Chazelle??), there exists an algorithm
whose performance matches the lower bound.
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5. Concluding Remarks

As in Tarjan®! we can apply our result to derive a lower bound on the size of
a monotone circuit for computing conjunctions. Since the semigroup ({0,1}, A}
is faithful, it follows that any monotone circuit for computing the conjunction of
boolean variables, defined by n intervals over n variables, can be required tc have
size Q(n a(ﬁ,n}}. This assumes that the circuit has fan-in 2, or more generally,
bounded fan-in.

It is tempting to conjecture that our lower bound generalizesto 2 (n+m a{m, n)4)
if the querics arc hyperrectangles in a d-dimensional array. We have proven such
an upper bound?®, but the lower bound remains elusive.
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