Approximation and
Decomposition of Shapes

Bernard Chazelle
Princeton University

ABSTRACT

This paper reviews some of the techniques developed recently for approximating or
decomposing geometric shapes in two and three dimensions. The relevance of these
techniques to robotics is compelling. As is well-known in the area of computer
graphics, replacing complex objects by approximations or decompositions into
simple components can greatly facilitate parts-manipulation (e.g. detection of inter-
ference, hidden-line elimination, shadowing). For this reason, as well as for the
theoretical challenges raised by these problems. considerable work has been de-
voted on this subject in recent years. This paper attempts to survey some of the
major advances in the area of approximation and decomposition of shapes. Meth-
ods of particular interest for their practical significance or their theoretical import
are reviewed in detail.

1. INTRODUCTION

Planning collision-free motion and recognizing shapes are central tasks in
robotics and automated assembly systems, in particular. In both cases, the pro-
cess is complicated by the necessity to operate in real-time and the occasional
presence of fairly complex objects. To cope with the complexity of the geometric
problems at hand, two lines of attack can be contemplated: one involves sim-
plifying the shapes by computing approximations of them; the other calls for
rewriting the objects as combinations of simple parts. Both of these approaches
have met with considerable success in computer graphics and automated design,
and their relevance to robotics as a whole is evident. It is the aim of this paper to

145

146 CHAZELLE

present a brief survey of the various methods and techniques known today in this
area.

2. APPROXIMATION OF SHAPES

The goal is to replace a complex shape S by a simpler figure F that captures
morphological features of S. Since F will often be used to approximate the
clearance of § amidst obstacles, it will be assumed to enclose S, so as to provide
a conservative approximation. We review some of the most common approxima-
tion schemes previously devised.

2.1. Convex Hulls

The convex hull of a set S of n points is the intersection of all convex sets
containing S. We omit the proof that the convex hull of S, denoted C, is a convex
polygon whose vertices (the extreme points) are points of S. A simple charac-
terization of a vertex of the convex hull states that a point is extreme if and only if
it does not lie strictly inside any triangle formed by any three points. This leads to
a trivial O(n*) time algorithm. For each such triangle, eliminate each point lying
inside. The remaining points will be extreme. A number of more efficient al-
gorithms have been (only recently) discovered. We propose here to review some
of the most important, practical, and/or original methods. The honor of discover-
ing the first optimal convex hull algorithm goes to R. Graham (1972).
Graham Scan: The method involves sorting the points in a preliminary stage
and then retrieving the convex hull in linear time via a procedure traditionally
known as a Graham scan. Let {p,, . . . ,p,} be the points of S sorted angularly
clockwise around p,, the point of S with largest y-coordinate (take the one with
largest x-coordinate to break ties, if necessary). Computing the list of p,’s can be
done in O(nlogn) time.

Before proceeding any further, we should make an important observation
concerning the computation of angles in particular and the design of geometric
algorithms in general. Although it is very helpful and intuitive to think in terms
of angles in the design part of a geometric algorithm, computation of angles and
of their natural functions (such as trigonometric functions) tends to be computa-
tionally expensive. There are usually ways around this difficulty, however. Most
often, we find all that is needed is a primitive operation to determine the relative
order of two vectors. This operation can be implemented with only a few multi-
plies and subtracts. Figure 4.1 illustrates this concept. Let § = Z(ab, ac) be the
angle from ab to ac, measured in counterclockwise order. We may assume —
< 6 = . As a matter of terminology, we will often refer to the expression **b,
a, ¢ form a right (resp. left) urn’” to mean that @ > 0 (resp. <0). If p_, p, denote
respectively the x and y coordinates of point p, we easily show that

8>0< (b, —ale, —a) = (c, —a)b. —a)>0.

4. APPROXIMATION AND DECOMPOSITION OF SHAPES 147

c

FIG. 4.1. b

From a programming perspective. this equivalence allows us to compare, merge,
and sort angles without having to compute them explicitly. For example, let a,
ay.a, be p + 1 distinct points in £2. To sort the points a,.a,

angular]y around a (clockwise, starting at a,), one can simply use one’s favonte
sorting routine and re-implement the primitiwes <, =, > used by the algorithm.
Partition the original set of points into L = {a, | Z(aa,, aa,) > 0}, M = {a, |
Z(aa;, aa)) = 0} and H = {a;| Z(aa,, aa,) < 0}, and concatenate L, M, and H,
after having sorted the sets separately. To do so, any comparison of the form A,

< A; in the algorithm should be replaced by £ (aa;, aa;) > 0 and 1mplemented
w1th the formula given above. What we have here is an instance of abstract data
types, a notion of crucial importance in geometric algorithm design. It is often
possible and advantageous to specify geometric algorithms solely in terms of
generic operations and treat the implementation of types separately. The reason
is that many of these algorithms are extensions of well-known combinatorial
algorithms couched in geometric terms. ldentifying and separating their geo-
metric and combinatorial components often simplifies the entire process of de-
sign. analysis, and implementation. With this observation made, we can now
return to the convex hull problem.

Let px designate the horizontal ray emanating from p in the right direction and
assume that Z(p,p,.p,x) has the smallest value of any Z(p,p;, p,x). Imagine that
arubber band is attached to p, at one end. and that the other end is taken to p,.p;,
. ..., inturn (Fig. 4.2). At the end of this process, the rubber band will be
shaped exactly as the convex hull of S. The Graham scan is essentially a comput-
er simulation of this process. Conceptually, it is easiest to describe this process
as a stack manipulation algorithm. Recall that a stack is an abstract data type
(i.e., a set and some operations defined on it). which behaves much like a pile of
trays in a dining-hall. The only operations allowed are: PUSH(e) (add e to the

FIG. 4.2.

148 CHAZELLE

top); POP (remove top of stack); the top of the stack is designated TOP. The
algorithm is based on the notion of left and right turns. At any stage, the stack
contains the edges which should be on the convex hull were the algorithm to
terminate at that instant. If the next vertex encountered witnesses a right turn, a
new edge is added to the stack, otherwise, edges are popped off until the right
turn condition is satisfied. The top of the stack is an edge TOP, whose endpoints
are denoted ¢, and 1,, in clockwise order around the boundary.

begin
PUSH (p\p,)
fori =3,....,n
begin
while (¢, t,. p;) turns left
begin POP end
PUSH (15, p;)
end
end

In an actual implementation, it might be more convenient (although concep-
tually more complicated) to simulate the stack with an array where each record
holds a vertex and not an edge. The problem with representing edges is that in-
formation is essentially duplicated. See Sedgewick (1983, pp. 329) for an exam-
ple of working code. A simple examination of the pseudo-code shows that the
algorithm runs in linear time (the stack is PUSHed at most once per point in S).
A Lower Bound: We easily see why Graham’s O(nlogn) time algorithm is
optimal. We can sort n numbers a,, . . . ,a, by computing the convex hull of the
n points {(a,, a}), . . . (a,. a2)} and reading off the vertices of the hull in
clockwise order. Of course, this reduction assumes that by *‘computing the
convex hull”” we mean determining the order of the extreme points around the
boundary. What if we only require the extreme points without reference to their
order? Using a fairly technical argument, which we will not develop here, Yao
has proven that even in this relaxed instance the convex hull problem requires
(nlogn) operations (Yao, 1981). Yao's model of computation is limited to
decision trees with quadratic polynomial evaluations at the nodes. This assump-
tion is actually quite realistic since all known methods seem to fall squarely in
this model of computation. At any rate, calling upon deep results of algebraic
geometry, Ben-Or has generalized Yao's lower bound to any decision tree with
fixed-degree polynomial evaluation at the nodes (Ben-Or, 1983).
Gift-Wrapping: One drawback of the Graham scan is that it has the same
complexity regardless of the size of the output. For example, if the convex hull
happens to have only a small number of vertices, it is conceivable that a faster
algorithm could be used. The gift-wrapping method, also known as the Jarvis
march (Jarvis, 1973), provides a (partial) response to this concern. Once again,
the algorithm is the simulation of a very simple physical process. Let p, be as

4. APPROXIMATION AND DECOMPOSITION OF SHAPES 149

usual the point of § with largest y-coordinate. Attach a long rope to p; and wrap it
around S one step at a time. A step is the discovery of a new contact with the rope
(i.e.. a new extreme point). A simple angle “'calculation’” (see remark above
concerning angles) allows us to implement every step in linear time. This leads to
an O(nh) time algorithm, where 4 is the number of extreme points. How will this
method fare against the Graham scan on the average? Let i*(n) be the expected
number of extreme points in a set of »n points chosen uniformly and independent-
ly inside a bounded region R. It has been shown by Renyi and Sulanke (1963)
that if R is a square or any convex k-gon for a fixed k, h*(n) = O(logn), and that
if R is a circle, h*(n) = O(n'3) (Shamos, 1978). This shows that for the case of a
uniform distribution in a k-gon the Jarvis march will asymptotically match the
Graham scan in the average case.

Divide-and-Conquer: A very good algorithm in the sense of expected behavior
was developed by Bentley and Shamos (1978). Assume that the points of S are
stored in an array A[1, n]. Recursively, the algorithm computes the convex hull P
of A[1, [n/2]] and the convex hull Q of A[|n/2] + 1, n]]; then in time propor-
tional to the added size of P and Q it computes the convex hull of S. The
expected running time of the algorithm T(n) follows the recurrence relation, T(n)
= 2T(n/2) + O(h*(n)). It follows that T(n) = Of(n) in the case of a uniform
distribution inside a k-gon or a circle. Two important facts to observe:

1. The recursive calls involve passing indices or pointers and not the entire arrays.
The latter solution would always entail an O(nlogn) run time;

The uniformity of the distribution is preserved through recursive calls since the
subsets handled are defined independently of the value of their elements.

(3%

To complete the demonstration of the efficiency of Bentley and Shamos™ meth-
od. we must describe a linear method for *‘merging’’ two convex polygons. Let
P and Q be two convex polygons with respectively p and g vertices. We describe
a method for computing the convex hull of P U Q in O(p + ¢) operations. Let
v,vp} and {w,, . .. ,wq} be a clockwise vertex-list of P and Q, respec-
tively. Since P is convex the sequence of vertices {v,,v} is angularly
sorted around v,. Is this also true of Q” If v, happens to lie inside Q, it is
certainly so. Otherwise, the sequence of angles is bimodal, i.e. unimodal up to a
circular permutation. By checking each vertex of Q. compute the two segments
of support v,w; and v w . these segments are such that v,. w, w; , and v, w,
w, ,; form right turns, and v,, w,, w;_ | and v, w;, w;, form left turns (Fig.
4.3) — arithmetic on indices is done mod ¢. Note that these two conditions will
be satisfied if and only if v, ¢ O, so whether v, € Q orv, ¢ O need not be decided
beforehand. Every vertex from w; . ; to w; _; clockwise (if any) can be discarded
and Q can be redefined as {w;, w,, ., ... ,w} In all cases, Q now forms a
monotone sequence of angles with respect to v,, so we can merge the vertices of
P and Q together in linear time, and then apply the Graham scan on the resulting

150 CHAZELLE

FIG. 4.3.

list of vertices. This will provide us with the convex hull of PUQ in O(p + ¢)
time, which completes the description of Bentley and Shamos’ algorithm. De-
spite the linear expected running time of the algorithm. one will notice the
similarity between this method and mergesort (Aho, Hopcroft, & Ullman, 1974;
Knuth, 1973; Sedgewick, 1983).

Divide-and-Conquer with Sorting: If we apply the Bentley-Shamos algorithm
after having sorted the points of § by x-coordinate, the merge part can be easily
implemented without resorting to a Graham scan (Preparata & Hong, 1977) (of
course, by doing so we forsake any hope of breaking the O(nlogn) barrier, as it is
well known that sorting takes on the order of nlogn operations, even on the
average). Let P and Q be, as above, the two convex polygons to be merged. We
assume that P lies totally to the left of Q. The convex hull of P U Q is obtained
by computing the upper and lower bridges of P and Q, i.c., the two unique
segments joining a vertex of P and a vertex of Q with both polygons lying
entirely on the same side of the infinite lines passing through the bridges (Fig.
4.4). Whether a segment is a bridge can be checked locally in constant time since
P and Q are convex. For example, the upper bridge v,w, is such that all four turns
Ve Wi wy) wwy) (Vo vew))s (v, v, w)) are right. To compute
the bridges of P and Q. pick the leftmost vertex of P, say, v,. and compute the
segments of support, v;w; and v,w;, as described earlier. Then proceed to roll the
line U (resp. L) passing through v,w, (resp. vyw)) clockwise (resp. counterclock-
wise) around Q, until the line contains the upper (resp. lower) bridge (Fig. 4.5).

M veper b'-Jgt Wy

o

Lower . dge FIG. 4.4.

4. APPROXIMATION AND DECOMPOSITION OF SHAPES 151

FIG. 4.5.

Rolling the line U passing through v,w; can be done by maintaining the two
current contact-points, v, and w,, and deciding whether v, , , or w,, , , should be
the next one. Once again, this procedure can be understood as a two-way merge
(i.e., merge of two sorted lists), with the primitives <<, = , > re-implemented as
left turn, no turn, right turn conditions. The only major difference with merging
is in the way the algorithm terminates. Rather than scanning the two lists through
the end, the algorithm must keep on checking whether the bridge has been found,
and stop as soon as it has. Unlike the previous one, the running time of this
method is inherently O(nlogn) because of the preliminary sorting. Why then did
we bother mentioning it at all? The truth is that the algorithm serves as the ideal
stepping-stone for the next method, the first one known to be optimal in both
input and output size.

Marriage-Before-Conquest: Aside from the fact that the method we last de-
scribed entails a sort on » numbers, a simple look at Fig. 4.4 reveals its main
shortcoming. Once the bridges have been found. many edges of P and Q are
bound to become irrelevant, therefore all the work done to obtain these edges
will turn out to be useless. It would be nice in some sense to be able to run the
algorithm backwards. We would first compute the bridges and then discard all
the points lying directly below or above them, at which stage we would simply
iterate recursively on the two sets of remaining points. The advantage of such a
scheme would be to guarantee that every bridge computation is effective; in other
words, no bridge computed would ever be thrown away. The bottleneck caused
by the preliminary sorting can in turn be alleviated by resorting to a linear-time
median algorithm (Aho et al., 1974; Knuth, 1973). This will allow us to partition
the input set into two roughly equal-sized sets at a linear cost. This approach was
taken by Kirkpatrick and Seidel and led to the first optimal algorithm in the sense
of input and output size. More specifically, if 7 denotes as usual the number of
extreme points in S, Kirkpatrick and Seidel’s method runs in time O(nlogh).
Optimality follows from an information-theoretic argument given in Kirkpatrick
and Seidel (1983).

We briefly review the main facets of the algorithm, referring the reader to
Kirkpatrick and Seidel (1983) for further details. To begin with, we may restrict
ourselves to the upper hull, i.e., the chain of the convex hull that runs clockwise
from the leftmost to the rightmost point. The lower hull will be computed in a

152 CHAZELLE

similar fashion, from which the convex hull will follow directly. Let {p,,

. ,p,,} be the points of S in arbitrary order, with x(p;) denoting the x-coordinate
of p,. Let a be a real number and P (resp. Q) be the convex hull of {p € §| x(p) <
a} (resp. {p € S| x(p) > a}). The expression *‘upper bridge over a’’ refers to the
upper bridge of P and Q. Let’s assume for the time being that we know how to
compute the upper bridge over a in a linear number of steps. The upper hull of §
is computed by calling HULL(1,n.S).

HULL(k,1.5)

Find median a of x-coordinates in S

Find upper bridge p,p; of S over a, with x(p,) = x(p))
5, —{p €S| x(p) = x(py}

S, —{p € S| x(p) = x(p)}

“note that p; € S, and p; € S,"

ifi =k

then print (4)

else HULL(k, i,5,)
ifj=1

then print (j)

else HULL(, I, S-)

It is not difficult to see that in the worst case, one bridge computation will
require O(n) steps, two will require O(n/2) steps each . . ., and more generally
2/ bridge computations will require O(n/2/) steps each. In other words, there is
some integer k such that 2, 2'= h and the running time is O(Z,. , 2/(n/29).
This leads to the optimal O(nlogh) time complexity announced earlier. To com-
plete the demonstration, we need to describe a linear time algorithm for comput-
ing the upper bridge of P and Q. In a linear number of operations, we wish to be
able to discard at least a fixed fraction of the points of S. Let « be an arbitrary
slope € (—x=, +=)and let L_ be the line of the form ¥ = oX + B, with largest B
such that there exists at least one index ¢ with p; € L_- Assume that x(p,) < a.
The key observation is that for any pair (p,. p,) such that x(p,) < x(p) one may
discard the point p,, provided that the slope of p p. exceeds « (Fig. 4.6). Indeed,
because of the relative positions of p, and p,, the point p,, cannot be an endpoint
of the upper bridge. Symmetrically, if we have x(p,) > a, we will be able to
discard p,. every time slope(p,p,) << . In order to balance the odds, we will pair
up (p,, p»), (P53, p4), etc. and compute the median slope « of the {#/2] segments
Paj P2 Letp; € L ; once we have identified whether x(p,) <« or not, as many
as [n/4] points will immediately fall out of contention. Iterating on this process
will eventually produce the upper bridge. The time T(#) taken by the algorithm
satisfies the recurrence relation T(n) = T(n — |n/4]) + O(n), which gives T(n) =
O(n). Our exposition has left 1 number of special cases conveniently hidden (e.g.

4. APPROXIMATION AND DECOMPOSITION OF SHAPES 153

FIG. 4.6. o

segments with infinite slopes, several segments with slope o, several points with
x-coordinate a, etc.). All these difficulties can be easily handled with extra care,
however, so we simply refer the reader to Kirkpatrick and Seidel (1983) for
details.

Quickhull: Eddy and Floyd independently developed a convex hull algorithm,
which although quadratic in the worst case, behaves remarkably well in practice
(Eddy, 1977). This is not without resembling the case of quicksort, a sorting
method which fares better than almost any other in practice albeit vulnerable to
extremely poor behavior in the worst case (Aho et al., 1974; Knuth, 1973;
Sedgewick, 1983). For the reader familiar with guicksort the resemblance will
shortly appear much deeper than this, which is the reason why we christened the
algorithm quickhull. Let A and B denote respectively the highest and lowest point
in S. Compute the two points C, D of S on the leftmost and rightmost lines
parallel to AB. Eliminate the points inside the quadrilateral ABCD. Sweep lines
parallel to AC, CB, BD, DA, in turn, outward from the quadrilateral, and elimi-
nate the points from inside the four triangles thus created (Fig. 4.7). Each of
these triangles is formed by the segment from which the sweep starts and the last
point swept. The algorithm iterates on this process. Under some reasonable
assumptions concerning the distribution of the points in S, it is possible to show
that the algorithm will run in linear expected time. In practice, this algorithm
could be used as a preprocessor to Graham'’s algorithm, for example. The idea is
that after a small number of passes, only very few points should be left, so a sort

FIG. 4.7.

154 CHAZELLE

is unlikely to be time-consuming. Similar to quicksort, quickhull is a prime
candidate for a simple, practical, and efficient implementation.
Approximation Method: On the practical side, it is worthwhile to mention a
very fast convex hull algorithm due to Bentley, Faust, and Preparata (1982). The
algorithm produces an approximation of the convex hull, that is to say, it might
fail to report the exact convex hull, but can always be guaranteed to produce a
convex hull arbitrarily close to the exact one (for some realistic measure). This
might often be acceptable in situations where only a rough approximation of the
morphology of the point-set is desired.

Higher Dimensions: In three dimensions, the situation is (ironically) much
““clearer’’ than in E? because of the paucity of efficient algorithms. Preparata
and Hong (1977) have devised an optimal O(nlogn) time method which con-
stitutes an extension of the divide-and-conquer method with sorting given for £2.
For higher dimensions (¢ > 3), algorithms are given in Chand and Kapur (1970),
and Seidel (1981). Chand and Kapur (1970) extend the gift-wrapping method to
arbitrary dimensions, while Seidel (1981) gives a general algorithm which is
optimal when d is even. The running time of his algorithm is O(nlogn +
nlLEL).

Dynamic Convex Hulls and Convex Layers: Preparata (1979) has described an
optimal algorithm for inserting new points into a two-dimensional convex hull. If
the convex hull has n vertices. any new point can be added to it in O(logn) time.
One drawback of this method is that points which either fail to be on the convex
hull, or stop being on the hull as a result of an insertion. are lost. thereby making
deletions impossible. Overmars and van Leeuwen (1981) have shown that by
sacrificing a little in time it is possible to accommodate deletions (see chapter by
Dobkin and Souvaine in this volume). Their algorithm handles any update of this
nature (insertion or deletion) in O(log>n) time. Chazelle has shown. on the other
hand, that if only deletions from the convex hull are allowed. then optimal
(amortized) time can be achieved (Chazelle, 1985). This, in particular, allows
for the computation of the convex layers of an n-point set in Q(nlogn) time.
These are the various polygons obtained by computing the convex hull of the
point set, and then removing all the vertices from the set and iterating on this
process until all the points are gone. This collection of polygons turns out to be
very useful in statistical analysis (Shamos, 1978). It also allows for efficient
range searching, as has been shown in Chazelle, Guibas, and Lee, 1983.
Convex Hull of Polygon: An important class of convex hull applications in-
volves a set of points joined together by a simple curve. Recall that a curve is
simple if it is not self-intersecting. Let P be a simple polygon with n vertices.
This exist several algorithms for computing the convex hull of P in O(n) time
(Bhattacharya & El Gindy. 1984; Graham & Yao. 1983; Guibas, Ramshaw, &
Stolfi, 1983; Lee. 1983; McCallum & Avis, 1979). Most of these algorithms can
be viewed as generalizations of the Graham scan. A pointer scans the boundary
of the polygon, while one or two stacks keep track of the “*current’” convex hull.

4. APPROXIMATION AND DECOMPOSITION OF SHAPES 155

y

2.2. Rotating Calipers

A simple, albeit rough, method for approximating the shape of an object is to
place it in a bounding box. In Fig. 4.8, object P has been tightly enclosed by a
rectangle B whose sides are parallel to the axes. The term axes refers here to the
two directions of an orthogonal system of coordinates (Ox, Ov). This method is
very popular in computer graphics (Newman & Sproull. 1979). because it greatly
simplifies the task of removing hidden parts from a scene, testing intersection
between several objects, etc. In raster graphics. the horizontal and vertical direc-
tions are privileged, so it is natural to orient bounding boxes along them. Assume
that P is represented as a polygon with vertices p;,p, in clockwise order.
We easily compute B in O(n) time by determining the maximum and minimum x
and v coordinates among the p.’s.

Sometimes, insisting on a specific orientation of the bounding box can cause
considerable degradation in the quality of the approximation. Figure 4.9 suggests
that the proper measure of the qualiry of the bounding box should be the area that
it occupies. regardless of its orientation. By rotating the box B counterclockwise
by approximately 45 degrees. one reaches another enclosing box of much higher
quality by this measure. The question that leaps to mind is then:

What is the complexity of computing the smallest-area rectangle enclosing the
polvgon P?

If P is highly symmetric, it is easy to see that its smallest-area enclosing
rectangle may not be necessarily unique. For this reason, we limit our search to
any such rectangle, which we generically denote (P). Toussaint (1983) has

FIG. 4.9. T

156 CHAZELLE

shown that finding #(P) can be done in O(n) time. His method relies on a
number of geometric observations. To begin with, since A(P) contains the
convex hull C of P, we can advantageously drop P from consideration and
restrict our investigation to C. As has been mentioned earlier, C can be computed
in O(n) time. The next crucial fact is a theorem by Freeman and Shapira (see
Toussaint, 1983) which states that «(P) always has one side containing an edge
of C. This suggests an O(n?) time algorithm based on the previous bounding box
method. Make the x-axis parallel to each edge of C in turn, and for each
orientation obtained solve the bounding box problem in O(n) time. Toussaint
observed that there is no need to repeat each computation from scratch for every
position of the x axis. Instead. one should try to batch computations together by
trying to derive the next answer directly from the previous one.

This intuition is materialized in the notion of rotating calipers. Let c¢,,

- +¢, (p = n) be the vertices of C given in clockwise order. Consider the
bounding box anchored at ¢; ¢, i.e., the smallest-area enclosing rectangle with
one side containing ¢, _¢;. This rectangle is formed by four infinite straight lines
L, L, L. L, (Fig. 4.10). Let ¢, ¢, ¢. ¢, be the vertices in contact with the
boundary of the rectangle. with ¢, € L,, GEL, ¢ €L, ¢, € L (whenever a
whole edge is in contact with the rectangle. we choose its last vertex clockwise
as its representative). We look at L,, L, L, L, as calipers rotating clockwise
around C in such a way that they preserve the integrity of the rectangle they
form. Because of Freeman and Shapira’s result, we may restrict our attention to
the positions of the calipers for which one line contains an edge of C. To
compute the next position from the current one, it suffices to compare the four
angles. o, o, o, o, formed respectively by L, and ¢;, ¢, . ,. Liandc, ¢, L,
and ¢, ¢;. . and L, and ¢, ¢,, ;. The smallest of them («, in Fig. 4.10)
determines the next position of the calipers. The rotation will continue until the
calipers are back to their initial position. Because of the obvious symmetry of the
calipers, the rotation can be limited to 90 degrees.

FIG. 4.10.

4. APPROXIMATION AND DECOMPOSITION OF SHAPES 157

FIG. 4.11.

The algorithm is implemented by maintaining four pointers to keep track of ¢;,
¢» ¢4 and ¢,. It strongly resembles the traditional method for merging four sorted
lists into one, the so-called 4-way merge (Knuth, 1973). In particular, its com-
plexity is clearly O(n) in both time and space. The similarity with merging can be
better seen if we map the polygon C into a different space. We resort to a
technique of very common use in computational geometry: a dual transform.

The idea is (in this case) to put points and lines in one-to-one correspondence
so as to be able to rephrase problems on lines as problems on points and vice-
versa. Point p = (a.b) # (0.,0) is (bijectively) mapped to the line D, : aX + bY +
1 =0, and conversely D, is mapped to p. Intuitively. this mapping is effected by
considering the line L passing through both p and the origin O, and determining
the point ¢ of L at a distance 1/|Op| from p. with O on the segment pg (Fig.
4.11). The line D, is obtained by taking the normal to L passing through g. It is
easy to see that the transformation D preserves incidence relations. For this
reason, it is tempting to consider each of the lines bounding C and map them via
the dual transform D. Let L, be the line containing the edge c,; . , and let v; =
D, denote its dual point (1 < i = p; index arithmetic taken mod p). Assume that
the origin has been chosen to be inside the polygon C. It is easy to see that the
sequence {L,.L,} is mapped into a sequence of points {v,, . . . v }. which
form a clockwise vertex-list of a convex polygon V.

A mechanical analogy of this correspondence is to roll a line (a caliper)
around C clockwise and follow the motion of its dual point. The trajectory of this
point will be precisely the convex polygon V. Define a cross to be a set of two
lines passing through O normal to each other. A cross intersects V in four points,
called cross-points. Our original set of four calipers is mapped into a set of four
cross-points. The analogy is now complete: rotating the calipers corresponds to
moving the cross clockwise. If L is a list of numbers, let L + x be the list
obtained by adding the number x to each element in L, and let 6, be the slope of
Ov, (1 =i = p). Let L be the sorted list of angles {6,,0,}. The 4-way
merge of lists to which we evasively referred as the backbone of the rotating
algorithm is now taking shape. A moment’s reflection shows that the algorithm
for computing the smallest-area rectangle all but boils down to merging together
the four lists L, L + 90, L + 180, and L + 270.

This example and the little excursion into dual space which followed tell us
something. First. a fairly specific geometric problem is solved in a very simple

158 CHAZELLE

way by use of a general, unifying technique: the rotating calipers. Second. this
technique is nothing but a geometric instantiation of a fundamental programming
concept: k-way merging (Knuth, 1973). Put in this light, it is no surprise that the
rotating calipers should find many other applications in computational geometry.
For example, it is possible to find the diameter of a set of n points in £2 in
O(nlogn) time, i.e., the largest distance between any two points (Shamos &
Hoey, 1975; Toussaint, 1983). We can do so by first computing the convex hull
of the point-set in O(nlogn) time, and then rotating two parallel calipers around
the hull in O(n) steps. The two points realizing the maximum distance must
appear as contact-points of the calipers in some position. Of more direct rele-
vance to the subject of shape-approximation, we pose the following problem.

What is the complexity of computing the smallest-area triangle enclosing a convex
polvgon?

Note that solving this problem will also allow us to compute the smallest-area
triangle enclosing an arbitrary set of points. We do so by taking the convex hull
of the points as a preprocessing step, and thus reduce the problem to the one
posed. Klee and Laskowski (1985) have proposed an O(nlog2n) time algorithm
for computing the smallest-area triangle of a convex polygon with n vertices (or
any of them if there are several). Their algorithm was recently improved to
optimal O(n) time in O’Rourke, Aggarwal, Maddila, and Baldwin (1984). To
quote O’Rourke et al., “*the strength of their (Klee and Laskowski's) paper lies
in establishing an elegant geometric characterization of these (local) minima.,
which permits them to avoid brute-force optimization.”” The strength of O’Rou-
rke et al.’s paper, on the other hand, is to prove an interspersing lemma, which
enables them to use rotating calipers as a guiding hand. Three calipers are used to
represent tentative enclosing triangles: the only conceptual difference with the
rectangular case is that (1) angles between calipers are not fixed; (2) the three
calipers do not have a uniform behavior. Nevertheless, the algorithm decides on
the basis of a constant-time test which caliper should be moved next and by how
much. Since calipers move in the same direction, the running time is trivially
linear. Once again, we can interpret the basic method as a k-way merge (k = 3),
although the non-uniformity of the ranking criterion makes the analogy slightly
less compelling.

2.3. Circle and Ellipse Enclosure

We leave aside polygonal shapes temporarily and turn our attention to smoother
curves like circles and ellipses. Conic sections or for that matter any polynomial
curves of reasonably small degree have the advantage of being space-effective:
Just a few coefficients are necessary to represent them. Also being smoother than
polygons, these curves will often provide finer approximations than, say, tri-

4. APPROXIMATION AND DECOMPOSITION OF SHAPES 159

angles, rectangles, or more generally polygons with a small number of vertices.
To begin with, we ask the following question:

What is the complexity of computing the smallest-area circle enclosing a set of
points?

2.3.1. Circle Enclosure. The case of circles is particularly interesting from
an algorithmic standpoint. The problem can be traced as far back as Sylvester
(1857) and has gone through numerous developments (see Shamos, 1978;
Megiddo, 1983 for a short bibliography). Until recently the best solution known
was due to Shamos and Hoey (1975) and was based on a geometric construction,
called the Voronoi diagram. Its complexity of O(nlogn) was subsequently im-
proved to optimal O(n) by Megiddo (1983) in a seminal paper on linear program-
ming in M3. The two methods are radically different and deserve separate
treatments.

Shamos and Hoey’s method: This is the simpler of the two. It rests crucially on
a geometric construction, called the farthest-point Voronoi diagram. Let § =
{Pi.p,} be asetof n points in the Euclidean plane. Partition the plane into
regions with common farthest neighbors. More precisely, for any point p, let
fip) be the index i such that for each j # i, the distance |pp,| exceeds the distance
[pp,.l. Whenever more than one index i can be found, f(p) stands for the set of
such indices. The function f partitions EZ into faces, edges, and vertices. Let V,
denote the face associated with p,. V, is the intersection of each half-plane that is
delimited by the bisector of (p;, p)) (1 = j # i = n) and contains p,. For this
reason, either V, is empty or it is a convex polygon (in the latter case. it is easy to
show that V, is unbounded). Furthermore, V, is not empty if and only if p, is a
vertex of the convex hull of S. This leads to the fact that the faces V; can be
ordered cyclically around the boundary of the convex hull (Fig. 4.12). Since the
set of edges forms a free tree (connected acyclic graph) it immediately follows
that the subdivision contains at most F — 2 vertices, where F is the number of
faces. Since F = n, we conclude that the farthest-point Voronoi diagram of n
points in the plane has at most n — 2 vertices. Shamos and Hoey (1975) have

10
A

FIG. 4.12.

160 CHAZELLE

FIG. 4.13.

described how to compute this diagram in O(nlogn) time, using a divide-and-
conquer strategy.

We next show how to compute the smallest circle using this diagram. Let C be

the smallest-area enclosing circle of S. To see that C is uniquely defined, assume
the existence of two such circles C and C’, and let A, B be their two intersection-
points (note that the two circles must intersect). Every point of S lies in the
shaded area in Fig. 4.13, therefore the circle of diameter AB contains S and is
smaller than C and C’, a contradiction. Let p,, p; be the pair of points in § whose
distance to each other is maximum. This distance, called the diameter of S, can
be obtained in O(n) time using the farthest-point Voronoi diagram. To do so,
determine the farthest neighbor of each point in S. Once the diameter is avail-
able, check whether every point of S lies inside the circle with diameter pip; It
yes, this circle is clearly C, otherwise, C passes through at least three points P
p,. p,, of S. Obviously the center of C is then the vertex at the intersection of Ve
V.. V... Trying out all vertices of the farthest-point diagram and keeping the one
whose associated circle has maximum radius will give us C. To conclude. we
have described an O(nlogn) time method for computing the smallest-area circle
enclosing n points.
Megiddo’s Method: Recently. Megiddo proved the surprising result that C can
actually be computed in only a linear number of operations. His method is based
on a general technique used primarily in the context of linear programming. It is
this technique which inspired Kirkpatrick and Seidel to design their ingenious
marriage-before-conquest convex hull algorithm (see section 2.1). Since the
entire algorithm can be explained reasonably simply in a self-contained manner.
we cannot resist the temptation of trying. As the reader will undoubtedly realize,
the method contains a treasure of algorithmic insights. In the following, the pair
(a;, b)) will denote the coordinates of p, (1 < i = n). To begin with, we solve a
simpler problem. Let L be an arbitrary line; a circle is said to be centered at L if
its center lies on L. The question we pose is the following:

I. What is the smallest-area enclosing circle centered at L?
The same argument used above shows that this circle, denoted C, . is uniquely

defined. For the sake of convenience, we think of L as the x-axis, so we can
represent the center of C, by its x-coordinate, x*. Megiddo’s approach is similar

4. APPROXIMATION AND DECOMPOSITION OF SHAPES 161

in spirit to the well-known linear-time median algorithm (Aho et al., 1974;
Knuth,1973). The idea is to identify and discard points that are irrelevant to the
problem. A point p is irrelevant if it can be determined that C, is the smallest-
area circle enclosing § — {p} centered at L. We will show a method for discarding
at least a fraction a of the input set in linear time. This will allow us to zoom in
on the solution in time O(n + (1 —o)n + (1 — a)?>n + . . .) = O(n). To do so,
we need to describe a number of primitive operations.

1. To begin with, it would be nice to be able to determine quickly whether x*
= x for an arbitrary value x. We can answer this question in linear time by
computing the maximum distance d from (x, 0) to any point in S. Let / be the set
of points that realize this distance, i.e. I = {p, | (a, — x)* + b> = d?}. If every
point in / is to the left (right) of x, so must be x*. More specifically, we have the
following implications: if for each p; € I, a; > x then x* > x; if foreach p, € I,
a; < x then x* << x. Otherwise, we have x = x*.

2. Secondly, given two points p,, p, (a; < a;), we would like to decide
whether p; or p; can be discarded for good. Let - be the x-coordinate of the
intersection of L with the bisector of (p,, p,) (we leave it to the reader to see what
to do should this intersection be undefined). If it is known that z < x* (resp. x*
< z), then clearly p; (resp. p;) can be discarded.

Next we will see that with these two primitives it is possible to discard a
fraction of the points in O(n) operations. For each even value of i (2 =i = n),
compute z;, the x-coordinate of the intersection of L with the bisector of the pair
(p; \.p).-Ifa;, | = a,, itislegitimate to discard whichever of p, orp, _, is closer
to L, we then leave z; undefined. Next, compute the median element z,, of the list
of z;’s thus obtained in O(m) steps, where m is the number of remaining points.
Using Primitive 1, determine in O(m) time whether x* lies strictly to the left or
strictly to the right of z,. If neither is the case, we have x* = z, and we are
finished. Otherwise, Primitive 2 allows us to immediately discard at least one
point for each pair z, falling on one side of z,. This leaves us with roughly =
3m/4 = 3n/4 points, which leads to an O(n) running time for computing x*.
Next we ask a slightly different type of question.

IL. Given a line L, does the center of the smallest-area enclosing circle lie on L: if
ves, where? If not, on which side of L does it lie?

Using our solution to Problem 1, it suffices to determine the sign of v, the y-
coordinate of the center of C. Without invoking convexity results explicitly, we
will show by a simple geometric argument how to determine the sign of y.. Let r
be the radius of C, and let J be the set of points of § at a distance r from (x*, 0),
i.e.J = {p,|(a, — x*)2 + b2= r?}. If J has a unique element, J = {p }, then a, =
x* and v.- has the sign of b, (always assuming that L is the x-axis). If J has at least

162 CHAZELLE

two elements, one of them must be to the left of x* and the other to its right,
otherwise it would be possible to **improve™ x*. Let p; and p;be such thatp,, p;
€ J, q; = x* = a, and let D; (resp. D)) be the disk centered at p; (resp. p;) of
radius r. The cemer of x of C must lie i m the intersection D;N D,. It is immediate
to see that K = D, N D, is free of any point of L besides (x 0) therefore K lies
totally on one side ofL. Which one it lies on can be determined in constant time
once p, and p; are available. This directly solves our problem since x lies in K.

In some instances. it is possible to determine x immediately. To identify these
cases, we will compute K* = MNp €JD, instead of simply K. To do so, we
consider each p; € J in turn (in any order) and update the current intersection.
Since all the disks have a common point, the intersection either is a single point
or consists of two circular arcs, so it can be computed in constant time per disk,
i.e. in O(n) time. If K* happens to be reduced to a single point then x = (x*, 0)
and we are finished. Otherwise, K* lies entirely on one side of L, since we have
(in particular) K* C K. Next we solve the last subproblem of our series. from
which we will be able to conclude directly.

HL. Eliminate a fraction of the points in S on the grounds that they are irrelevant to
the definition of the smallest-area circle enclosing S.

Using our algorithm for problem II. we can carry out a binary search over the
Euclidean plane and thus zoom arbitrarily close towards the center x. Unfortu-
nately, this will not indicate the points contributing the center, however close we
get to . Following a pattern by now familiar, we carry out the binary search not
over E£2 but over a discrete set, namely S itself. To realize this objective, we must
supplement our set of primitives with the following one: given a convex polygon
(not necessarily bounded) in which x is known to lie, and given the bisector of
the pair (p,, p;), discard either p; or p;- This can be easily done as long as the
bisector does not intersect the convex polygon. Indeed, in that case, one of the
points, say p;, lies on the same side of the bisector as every point in the polygon.
This implies in particular that x is closer to p, than to p, and so p; can be
discarded. We are now in a position to present the algorithm in its entirety.

To begin with, pair up the points of S in an arbitrary fashion, e.g. (p,, p,),
(3 ps), . . ., and let L, be the bisector of (p,, p,), L, the bisector of (p,, p,),
etc. Consider the slopes (in [—%, +x)) of the |n/2] bisectors N S
and in O(n) time, compute the median slope, a. Next, pair up each bisector L,
with slope(L;) = a along with a distinct bisector L, with slope (L) = «. This
gives us |n/4] pairs of the form (L, L,). For convemence let’s re-orient the x-
axis along the direction «; a line with slope o becomes a line with slope 0. For
each pair (L, L)), define the quantity y;; as follows: if L, and L, have distinct
slopes, let (x, \)be their intersection. Otherwnc let\ be the mcan v-coordi-
nate of L, and L . the y-coordinate of the midpoint bctween {X = 0}NL, and
X = O}OL By convention, we let y;; = +x if both L, and L, are parallel to the

4. APPROXIMATION AND DECOMPQOSITION OF SHAPES 163

v-axis. At any rate, compute the median y of the [n/4] values of the form y;; in
O(n) time. Using our solution to Problem II, we can decide in linear time
whether x lies on the line ¥ = y (in which case we are finished), or lies above or
below. Assume wlog that x lies strictly below.

Next, consider all the [1/8] pairs (L,, L;) such that v, .If L; and L; are
parallel, the intersection with X = 0 of one of them, say L must lie stnct]y
above (0, v). Since L, is then parallel to the x-axis, one of the two points defining
the line can be discarded, namely, the one lying below L,. Let n, be the number
of points dropped this way and n, the number of remaining pairs (n, + n, =
{n/8]). Consider now the set of remaining pairs (with v,; = v) and compute the
median x of the x,;’s. Test on which side of the line X “' x the center x must lie.
Once again if ¥ hes on the line, we are able to solve the problem directly.
Assume wlog that x lies to strictly to the left of the line (Fig. 4.14). For each of
the [n,/2] pairs (L;, L,) to the right of X = x, one of the four points involved can
be dropped from funher consideration. Indeed. for each pair (L;, L)), one of the
lines, say L,, is oriented in such a way that it is possible to 1dent1fy wnth certainty
on which slde of L, the center lies. To see this, L, can always be chosen with
negative slope (by construction, either L, or L; satisfies this property). Let p, and
p, be the two points of which L; is the bisector, with p, (resp. p,) below (resp.
above) L,. Since x must lie in the quadrant delineated in Fig. 4.14, whatever the
exact location it will always be closer to p, than p,, therefore p, can be discarded.
This leads to the dismissal to n, + |n,/2] = |n/16] points from S, hence the
linear running time of the overall algorithm.

Megiddo’s method, however appealing, cannot be recommended for practical
applications. For one thing, its reliance on linear-time median computation may
critically hamper its performance when applied to problems of modest size. But
since the algorithm does not need the exact median but any value close enough,
computing the median out of a small sample of the input might perform just as
well, and give a ‘‘somewhat’” simpler algorithm.

2.3.2. Ellipse Enclosure. After dealing with circles, the natural question is:
how about ellipses? An ellipse is defined by five parameters whereas a circle

T >< s

~

FIG.414. ©

164 CHAZELLE

needs only three. These two additional degrees of freedom should in general
allow for wrappings that fit more tightly around the set of points (Post, 1981;
Silverman & Titterington, 1980).

What is the complexity of computing the smallest-area ellipse enclosing a set of
points?

As is well-known, any ellipse in the plane centered at u,, = (x4, ¥o) can be
analytically represented by an equation of the form (1 — uYA(u — ugy) = 1,
where A is a 2 X 2 positive-definite matrix. Since A is symmetric, five numbers
suffice to define any ellipse and, as one should expect, at most five points
uniquely define an ellipse. A simple algorithm consists of computing all candi-
date ellipses enclosing S. To so. we consider all ellipses passing through five
points, and all smallest-area ellipses passing through four and three points re-
spectively. In each case, we check whether the candidate ellipse contains every
point of S, and throw it away if it does not. Elementary analysis shows that this
algorithm will be extremely time-consuming, as it will require O(n%) operations.

Post (1981) has shown that it is possible to reduce the computation time to
0O(n?). The key to Post’s method is to be able to throw away at least one point
after a linear number of operations. The algorithm starts off with a spanning
ellipse, checks whether it is the smailest, and if not, throws away at least one
point and then shrinks the ellipse. Iteration takes over at this point after making
sure that the new ellipse does enclose all the points of S. Additional work is
necessary if this condition is not satisfied. The quadratic performance of the
algorithm follows from the linearity of each pass.

2.4. Other Enclosure Problems

A large number of enclosure problems have been studied lately. We review some
of the main results.

1. Given a set S of n points in the plane, consider all k-gons which can be
formed with the points in S. Boyce, Dobkin, Drysdale, and Guibas (1982) have
given an algorithm for finding the maximum perimeter triangle in O(nlogn) time
and the largest perimeter or area k-gon in O(knlogn + nlog2n) time for any k.

2. Given a simple n-gon P, find the largest-area convex polygon contained in
P. This potato-peeling problem, as it is often called, has a number of variants.
one of which calls for the maximum-perimeter enclosed polygon. Chang and
Yap (1984) have proposed polynomial algorithms for all these problems.

3. Given a convex n-gon P, find a minimum-area convex k-gon enclosing P.
Besides the aforementioned work of Klee and Laskowski (1985) and O"Rourke
at al. (1984) for the case ¥ = 3, a number of interesting results have been
obtained. Using dynamic programming, Chang and Yap (1984) have described

4. APPROXIMATION AND DECOMPOSITION OF SHAPES 165

an O(n’logk) time algorithm for the general problem. This bound has been
improved to O(n?lognlogk) (See Aggarwal, Chang, & Yap, 1985). De Pano and
Aggarwal (1984) have considered special cases of this problem: they give an
O(nlogk) (resp. O(nk2)) time algorithm for the case where the enclosing polygon
is equi-angular (resp. regular). See also O'Rourke (1984) for extensions of the
smallest enclosing box in three dimensions.

Some problems in location theory are very similar in spirit to the type of
questions we’ve been asking so far. Given a set of points and disks in the plane,
is it possible to arrange the disks so as to cover all the points? Megiddo and
Supowit (1984) have shown that the problem is NP-hard. However, the problem:
Given a set of n points in the plane, what is the smallest disk that covers at least k
points? can be solved in O(k?nlogn) time, as demonstrated by Lee (1982). Also,
the question: Given n points in the plane, what is the largest number of points
that can be covered by a single disk? has been shown to be solvable in O(n?) time
in Chazelle and Lee (1986).

A useful primitive to have in applications involving enclosure problems
checks whether a polygon can fit into another. Given two polygons P and Q,
determine whether Q can contain P, if rotations and translations are allowed.
Chazelle (1983b) has given a general O(pig>(p+¢)) time algorithm for deciding
on this question, where p (resp. ¢) denotes the number of vertices in P (resp. ().
If Q is convex, the complexity can be reduced to O(pg?). The algorithm essen-
tially involves finding “*all’” possible locations where P could fit. The difficulty
is to establish an upper bound on the number of locations. Despite its high
complexity, the algorithm is optimal with respect to that measure, if p is a
constant. This still leaves open the question of whether the decision problem can
be solved more efficiently.

A few results are known in the special case where only translations are
allowed. Letting n = p + g, the problem can be solved in O(n) time if both
polygons are convex (Chazelle (1983b). For the case where either the inside
polygon is convex or both polygons are rectilinearly convex, Baker, Fortune,
and Mahaney (1984) have given an O(n*logn) time algorithm.

3. DECOMPOSITION OF SHAPES

3.1. Triangulations

Let P be a simple n-gon, ie., a simple polygon with n vertices. A triangulation of
P is any partition of the polygon into disjoint triangles, all of whose vertices are
vertices of the polygon. It is often useful to have a triangulation of P. For one
thing, triangles are easy to handle, so a partition of this nature simplifies tasks
such as testing for intersection, inclusion, etc. The idea is to perform computa-

166 CHAZELLE

tions iteratively on each part; for example, one can use this ‘*decomposition’”
approach to detect interference or collision between a number of moving objects
(see Ahuja, Chien, Yen, & Birdwell (1980) for example). Another benefit to
gain from a triangulation is valuable information concerning topological proper-
ties of the polygon (Chazelle, 1982).

Triangulation problems are many and varied. In numerical analysis, for in-
stance, a triangulation is often used to evaluate a function of two variables by
interpolation or to integrate a function by the finite-element method. In these
applications, the shape of the triangulation can be of great importance. In the
context of the finite-element method. for example, it is likely that long, skinny
triangles should be avoided because of the errors they tend to generate (see, for
example, Baker, Gross. & Rafferty. 1985). We will not concern ourselves with
such matters, however, since their relevance is relatively small if a triangulation
is viewed solely as a tool for facilitating geometric computations. This is most
often the case in robotics, computer graphics, computer animation, CAD/CAM,
etc. As a starter, we pose the following problem:

What is the complexity of computing a triangulation of a simple n-gon?

Unfortunately, despite the large amount of work devoted to this problem, a
definite answer still eludes us. There have been solid advances on the subject,
however, both on the practical and theoretical sides. Garey, Johnson, Preparata,
and Tarjan proposed the first O(nlogn) time algorithm for triangulating P (Garey
etal., 1978). Their algorithm works in two phases: to begin with, a regulariza-
tion procedure is applied to P, which in O(nlogn) time produces a partition of the
polygon into L-monotone pieces. for some line L. A polygon is said to be L-
monotone if any normal to L intersects the polygon in no more than one segment.
With this decomposition in hand, Garey et al.’s algorithm completes the tri-
angulation by cutting each monotone piece into triangles. This second (and last)
pass takes linear time.

Chazelle (1982) has established a polvgon-cutting theorem, which is useful
for triangulation as well as other problems (e.g., visibility, internal distance).
Assign a positive weight to each vertex of P in an arbitrary fashion, with the total
weight not exceeding 1. Roughly speaking, the polygon-cutting theorem states
that there exists two vertices a, b such that the segment ab lies entirely inside the
polygon P and partitions it into two polygons, neither of whose weights exceeds
2/3.

If we allow additional vertices to be introduced, then a successful approach to
the triangulation problem is the line-sweep paradigm (Bentley & Ottmann, 1979
Shamos, 1978). Imagine a vertical line L sweeping the plane from left to right;
the segments of the intersection LNP are kept dynamically in a balanced search
structure (e.g., AVL, Knuth, 1973), red-black. Sedgewick. 1983, trees). An
event takes place every time the line encounters a new vertex. At that point, the
search structure is updated to record the fact that a segment is about to vanish. to

4. APPROXIMATION AND DECOMPOSITION OF SHAPES 167

g 7

be created, or to have one of its endpoints switch to a different edge of P (Fig.
4.15). The net result of this line-sweep process is the so-called vertical decom-
position of P, a set of vertical segments obtained by connecting every vertex of P
to the edge immediately above or below it, in such a way that the segment
created lies inside P (dashed lines in Fig. 4.15). It is easy to derive a triangula-
tion of P from its vertical decomposition (note that the triangulation is not
uniquely defined. but the vertical decomposition is). In a nutshell, the idea is to
identify the cusps of P, i.e., the vertices that are locally in leftmost or rightmost
position. For each trapezoid generated by the line-sweep procedure, connect
each cusp to a vertex of the other vertical side (solid interior lines in Fig. 4.15).
Removing all vertical segments produces a decomposition of P into monotone
polygons (with respect to the horizontal direction). The linear time postprocess-
ing of Garey et al.’s algorithm can then be applied to complete the triangulation.

Using a fairly similar method. Hertel and Mehlhorn (1983) succeeded in
lowering the O(nlogn) running time to O(n + rlogr). where r is the number of
reflex angles in P. Their method differs from the previous one in two important
aspects. First, it performs the triangulation on the fly, i.e.. it computes the
triangles during the line-sweep process. Second, it skips over vertices that do not
display reflex angles. The import of Hertel and Mehlhorn’s result is to express
the running time of the algorithm not only as a function of the input size but also
as a function of a parameter which reflects a morphological property of the
polygon.

In the same spirit, Chazelle and Incerpi (1984) developed a radically different
algorithm based on divide-and-conquer. Their method requires O(nlogs) time,
with s < n. The quantity s measures the sinuosity of the polygon, that is, the
number of times the boundary alternates between complete spirals of opposite
orientation. The value of s is in practice a very small constant (e.g., s = 2 in the
case of Fig. 4.15), even for extremely winding polygons. The running time of
the algorithm depends primarily on the shape-complexity of the polygon. Infor-
mally, this notion of shape-complexity measures how entangled a polygon is,
and is thus highly independent of the number of vertices. Aside from the notion
of sinuosity, Chazelle and Incerpi have also characterized a large class of poly-
gons for which the algorithm can be proven to run in O(nloglogn) time. Imple-
mentation of the algorithm has confirmed its theoretical claim to efficiency.

FIG. 4.15.

168 CHAZELLE

-\X

Y

FIG. 4.16.

Briefly. the algorithm starts with the observation that vertical decompositions
can be defined with respect to the boundary of P as opposed to the polyg-
onal region P. This distinction enables a divide-and-conquer strategy involving
(1) the computation of the vertical decompositions of {p,, . . . , p | } and

i [i—:l] s pi}; (2) the merge of these decompositions into the vertical

decomposition of {p,, . . ., p;}. The key to efficiency is to take shortcuts in the
execution of the merge. Figure 4.16 illustrates this notion of shortcuts. L, and L,
are the two polygonal lines whose vertical decompositions are being merged.
The algorithm traverses the trapezoids of both decompositions, but visits only
those that will be modified by the merge. For example. the trapezoids on the left-
hand side of Fig. 4.16 will not be examined. The dashed line traces the steps of
the merge (see Chazelle and Incerpi, 1985, for details).

3.2. Decompositions into Special Shapes

Among primitive shapes of particular interest, we also have quadrilaterals and
convex or star-shaped polygons. We say that a polygon P is star-shaped if it
contains at least one point p such that for every point ¢ inside P the segment Pq
lies inside P. Sack and Toussaint (1981) have shown that any isothetic polygon
with n vertices which is star-shaped can be partitioned into convex quadrilaterals
in O(n) time. Recall that a polygon is isothetic (also sometimes referred to as
rectilinear) if its sides are parallel to two orthogonal axes. See Chazelle (1980,
1982), Chazelle and Dobkin (1985), Greene (1983). Hertel and Mehlhorn (1983)
for examples of algorithms for decomposing a polygon into a number of convex
polygons within a constant factor from the minimum number.

Kahn, Klawe, and Kleitman (1980) have shown that any isothetic polygon
can always be partitioned into convex quadrilaterals. Building on this result,
Sack (1982) has given an O(nlogn) time algorithm for computing the decomposi-
tion. In a nutshell, the algorithm involves decomposing the polygon into mono-
tone polygons, and then decomposing each of these polygons into quadrilaterals.

4. APPROXIMATION AND DECOMPOSITION OF SHAPES 169

Avis and Toussaint (1981) have obtained similar results concerning star-
shaped polygons. They have shown that any n-gon can be partitioned into star-
shaped polygons in O(nlogn) time.

3.3. Minimum Decompositions

Problem OCD (Optimal Convex Decomposition): Given a simple polvgon
P, which is the minimum number of convex polvgons which form a partition
of P?

Let’s briefly review the main results relating to this problem. Pioneering work
appears in Feng and Pavlidis (1975) and Schachter (1978). with the design of
heuristics for computing decompositions of shapes into a number (not necessarily
minimum) of convex pieces.

Minimum Partitioning: One of the earliest results concerning the OCD problem
per se was obtained by Chazelle and Dobkin (1979), who showed that the OCD
problem was solvable in polynomial time (see an example of optimal decomposi-
tion in Fig. 4.18). Interestingly enough. this finding was followed by a stream of
NP-hardness results for similar problems. For example, it was shown by Lingas
(1982) that the presence of holes in the polygon P was sufficient to make the
OCD problem NP-hard. Lingas also showed that a minimum decomposition into
triangles was NP-hard. Other variants have been shown to be (most likely)
intractable: Once again, assuming that P may have holes. Asano and Asano
(1983) proved that decomposing P into a minimum number of trapezoids with
two vertical sides is NP-hard. If holes are disallowed, however, they showed that
the problem could be solved in O(n?) time, an upper bound later improved by
Asano, Asano, and Imai (1984) to O(n?).

Minimum Covering: If now instead of partitioning the polygon. one would
rather cover it with possibly overlapping convex pieces, it might be possible to
save a few pieces. For example, a cross can be covered with two rectangles but
cannot be partitioned into fewer than three convex polygons. Unfortunately,
minimum coverings seem very difficult to compute. O’Rourke and Supowit
(1983) have shown that this problem and a large number of its variants are NP-
hard. A decision procedure for this problem is given in O’Rourke (1982). If the
polygon is isothetic and the covering is made of rectangles, then a quadratic
algorithm can be used (Franzblau & Kleitman, 1984).

No Steiner Points: Another class of decomposition problems stipulates that no
new vertices should be introduced in the decomposition. These new vertices,
called Steiner points are often useful—as we will shortly see—in reducing the
number of pieces. Steiner points are sometimes undesirable, however. Once
again, the presence of holes makes most of the problems NP-hard (see Keil,
1983; Lingas, 1982; O’Rourke & Supowit, 1983). If holes are disallowed, how-
ever, the situation is much brighter. Let ¢ be the number of reflex angles in P;
Greene (1983) has given an O(n?c¢?) algorithm for decomposing P into a mini-

170 CHAZELLE

mum number of convex pieces (not allowing Steiner points), and Keil (1983) has
described an O(c2nlogn) algorithm for the same problem.
Partitioning into Special Shapes: A decomposition problem of practical interest
concerns the partition of an isothetic polygon into a minimum number of rec-
tangles. Lipski (1983) and Imai and Asano (1983a, 1983b), have shown that the
problem can be solved in O(n*lognloglogn) and O(n*'2logn) time, respectively,
by using a reduction to maximum matching of a particular bipartite intersection
graph. In both cases, O(nlogn) storage is required. Keil (1983) has shown that it
is possible to partition any simple polygon into a minimum number of star-
shaped polygons in O(rn’¢2logn) time, where ¢ once again is the number of reflex
angles in P. For other work, consult Ferrari, Sankar, Sklansky (1981), Keil and
Sack (1985), Toussaint (1980b).
Minimum-Length Partitioning: Other objective functions besides the car-
dinality of the decomposition have been examined. Lingas (1981) and Lingas,
Pinter, Rivest, and Shamir (1982) consider decomposition problems where the
amount of *ink’’ used, i.e., the total length of the added edges is to be
minimized.
Higher Dimensions: In three dimensions, the OCD problem becomes NP-hard
(Lingas, 1982). A decision procedure based on a combinatorial description of the
complex formed by a convex decomposition is given in Chazelle (1983a).
Chazelle (1984) has established an (2(n?) lower bound on the time complexity of
the problem. If n is the number of vertices in the polyhedron and ¢ is the number
of edges displaying reflex angles. in O(nc?) time it is possible to decompose the
polyhedron into a number of pieces which, in the worst case, is minimal up to
within a constant factor.
The OCD Problem: We now return to the original OCD problem: Given a
simple n-gon P compute a minimum partition of P into convex pieces, using
Steiner points if necessary. The remaining of this section is devoted to giving the
technical basis of the polynomial time algorithms given in Chazelle (1980),
Chazelle and Dobkin (1985). For details, we again refer the reader to the appro-
priate sources. In the following, a noich refers to a vertex of P with a reflex
interior angle (e.g.. a convex polygon has no notch). We let {p,, . . . ,p,} be a
vertex-list of P in clockwise order, and we assume that ¢ of these n vertices are
notches of the polygon. Chazelle and Dobkin have given several algorithms for
computing an OCD (optimal convex decomposition) of P, the most efficient of
which runs in O(n + ¢*) time (Chazelle, 1980; Chazelle & Dobkin, 1985). All
the algorithms use two simple observations. First, each notch can be removed by
the addition of a polygon to the decomposition. Second, ar most two notches can
be removed through the addition of a single polygon. It follows that the mini-
mum number of convex parts always lies between [¢/2] + | and ¢ + 1.
Below, we introduce the notion of X-pattern, the essential tool for generating
minimum decompositions. An X, -pattern is a particular interconnection of k
notches which removes all reflex angles at the k notches and creates no new

4. APPROXIMATION AND DECOMPOSITION OF SHAPES 171

FIG. 4.17.

notches. A decomposition obtained by applying p patterns of type X; X
along with straight-line segments to remove the remaining notches can be shown
to yield ¢ + 1 — p convex parts. It follows that the decompositions using the
most X-patterns will at the same time minimize the number of convex pieces.

The next question to tackle is whether a given set of notches can be intercon-
nected via an X-pattern. One solution around the multiplicity of combinatorially
distinct X-patterns is to constrain the patterns in such a way that their detection
becomes tractable. This leads to the introduction of Y-patterns. which we regard
as X-patterns endowed with some structural property. A key property of mini-
mum decompositions is that with the exception of X,-patterns any X-pattern can
be advantageously replaced by a Y-pattern. Since, as we will sketch out shortly,
Y-patterns can be constructed in polynomial time via dynamic programming. we
can prove in this way that thg OCD problem is in the polynomial class. Further
geometric analysis leads to substantial gains in the efficiency of the algorithm,
but we will not elaborate on these improvements which are fairly intricate.

As a starter, we define the notion of naive decomposition. This is the decom-
position obtained by removing each notch in turn by means of a simple line
segment naively drawn from the notch. Figure 4.17 shows a naive decomposition
of a nonconvex polygon next to an improved decomposition. To obtain a naive
decomposition of P is easy: consider each notchv,.. . . v inturn, and extend a
line segment from v, in order to remove the retlex angle at the notch. Stop the
line as soon as it hits another line already in the decomposition. Trivially. the
naive decomposition of P produces exactly ¢ + 1 convex parts. Next, we define
a nice class of decompositions to which we may restrict our attention from then
on. We say that a polygon is interior to P if it lies inside P and at most a finite
number of its points lie on the boundary of P. An X-decomposition is then
defined as any convex decomposition containing no interior polygons and such
that no vertex is of degree greater than 3, except for the notches, which may be of
degree at most 4. An important result. whose proof we will omit, states that the
class of X-decompositions always contains an OCD.

We are now ready to introduce the notion of X-partern. Consider the planar
graph formed by the added edges of an X-decomposition. This graph is a forest of
trees, where each node is of degree 1 or 3, except for notches which may be of
degree 1 or 2. Note that it is a forest because we disallow interior polygons in the
decompositions. A straightline embedding of a tree lying inside P (i.e., with no
self-intersections) is called an X-pattern if

1. all vertices are of degree 1, 2 or 3.

172 CHAZELLE

FIG. 4.18.

2. any vertex of degree 1 or 2 coincides with a notch of P, and its (1 or 2)
adjacent edges remove its reflex angle.
3. none of the 3 angles around any vertex of degree 3 exceeds 180 degrees.

An X-pattern with k vertices of degree 1 or 2 is called an X,-pattern. Infor-
mally, an X;-pattern is an interconnection of & notches used to remove them
while introducing k& — 1 additional polygons into the decomposition. Figure 4.18
gives an example of an X-decomposition with one X-pattern and one X,-pattern.
Note that the leftmost tree is not an X-pattern because one of its vertices of degree
1 does not coincide with a notch of the polygon. In the following. the vertices of
an X-pattern (regarded as tree vertices) of degree | (resp. 2,3) will be called N1-
nodes (resp. N2, N3-nodes). We justify the introduction of X-patterns with the
following observation. An X-decomposition with p X-patterns has at least ¢ + 1
— p convex parts. This suggests that using p X-patterns saves at most p polygons
over the naive decomposition. This leads to the definition of compatible X-
patterns. A set of X-patterns is said to be compatible, if no pair of edges taken
from two distinct patterns intersect. It is not hard to show that any compatible set
of p X-patterns can be used to produce an X-decomposition with exactly ¢ + 1 —
p convex parts. The OCD problem can now be expressed as a generalized
matching problem.

Let p be the maximum number of compatible X-patterns. An OCD can be
obtained by first applying the p X-patterns and then applying the naive decom-
position to any remaining non-convex polygon. Unfortunately the complexity of
this approach is prohibitive, given the excessive number of candidates we might
have to consider in the process. X-patterns allow Steiner points (i.¢., vertices not
on the boundary of P) to be adjacent. Looking at any X-pattern as a mechanical
system of extendible arms and joints, it appears to be greatly underconstrained.
We can show that X-patterns can be in general reduced to maximally constrained
X-patterns, called Y-patterns. The next step is then to prove that Y-patterns can be
computed in polynomial time. Roughly speaking, a ¥,-pattern is an X,-pattern
such that no edge joins two Steiner points. For example, the X ,-pattern of Fig.
4.18 violates this restriction. The utility of Y-patterns comes from the fact (which
we will not prove) that all X ~patterns (k ¥ 4) can be transformed into Y-
patterns. This allows us to limit attention to X-decompositions with only Y and
Xy-patterns. The transformations, called reductions, involve the stretching,

4. APPROXIMATION AND DECOMPOSITION OF SHAPES 173

shrinking, and rotating of lines in the original pattern. The next question which
we must be able to answer efficiently is:

Given k noitches, does there exist an X-pattern connecting them?

Let v be an N3-node of a Y-pattern. Removing the three edges vv;, vv,, vv,
adjacent to v disconnects the Y-pattern into three subtrees. Note that the removed
edges play the role of an X;-pattern with respect to the three subtrees. This leads
us to introduce the notion of extended X-pattern. An extended X -pattern (I = 2,
3) is either an X,-pattern by itself or an X -pattern formed by a subgraph of an X, -
pattern (m > [). It is clear that an algorithm for testing the possibility of an X -
pattern between a given set of notches can also be used to determine the pos-
sibility of an extended X ,-pattern, as long as the angles formed at the notches by
the subtrees of the X, -pattern are known in advance.

To see this, we must define the notion of extended notch. Let v; be a notch of
the extended X-pattern, and let W be any wedge centered at v,. The extended
notch at v; with respect to W refers to v; along with the angular specifications
given by W. This means that the X-pattern edge emanating from the extended
notch v; must lie in the intersection of W with the visibility-polygon at v; (El
Gindy & Avis, 1981). In general the wedge W will be taken as the locus of rays
(i.e., half-lines) which emanate from v; and remove the reflex angle at v;, When
dealing with ordinary X-patterns, the wedge W is simply determined by the edges
of P adjacent to v;. In the case of extended patterns, however. the wedge W will
take into account the other edges already adjacent to v;, and will thus be wider
than in the previous case. Sometimes, we will also consider cases where the
wedge W is taken as the entire plane. This is done if we do not wish to remove a
reflex angle at a particular notch. We can show that in all cases it is possible to
check for the existence of an (extended) X -pattern between / given notches in
polynomial time (for / = 4).

We can now turn to the decomposition algorithm, which as we mentioned
earlier is based on dynamic programming. We rely on the observation that if a
certain X, -pattern belongs to an OCD of P, it decomposes P into k subpolygons,
Po.o.... P,. so that finding an OCD for each P; yields an OCD for P. We
compute maximal compatible sets of patterns for each P;. Since the notches of P,
are also notches of P, any X-pattern of P, is also an X-pattern of P. Conversely.
we want to show that any X-pattern of P involving only notches in P, is also an X-
pattern of P,. This is crucial since dynamic programming proceeds bottom-up.
Indeed. the algorithm will always compute maximal sets of compatible patterns
involving notches of P, before it even knows the shape of P, i.e. it will rely
solely on the notches of P, and not on its boundary.

To check this point, we define V (i, j) as the set of notches between v; and v; in
clockwise order. We have V(i, j) = {v;, v, ,,v}, with index arithmetic

174 CHAZELLE

taken modulo ¢. Let z;, . . . ,z, be the notches of an X-pattern, T, given in
clockwise order around the boundary of P, and let V(i, j) be the notches of P
between z, and z,,, | in clockwise order (z, = v, |, z,,, = v,). Itis possible
to prove that no X-pattern with its notches in V(i, j) can intersect 7. This
independence result can be understood in combinatorial terms. It states that two
X-patterns are intersection-free if and only if their notch sequences are not
intermixed, i.e. one sequence falls completely between two consecutive ele-
ments of the other sequence.

Next, we define S(i, j), for every pair of notches v, Vv, as a maximum
compatible set of X, or Y-patterns in V{(i, j). The goal is to evaluate S(1, ¢). which
we achieve by computing all values S(i, j) from {s(k, /) | V(k. l) C V(i, j)}. This
can be done directly if v; and v; are not to be connected to the same pattern. For
this case, we test all combinations {S(, k), Sk + 1, j)}, foreach v, € V(i j — 1.
In the event where v, and v; should be connected together, we consider the
possibility of an X, or a Y-pattern between the two notches.

To handle the latter case. we compute all candidate Y-patterns via dynamic
programming. We compute Y-subtrees (i.e., subtrees of Y-patterns) as well as Y-
patterns by patching Y-subtrees together. A Y-subtree is considered not to be a
candidate if at the time it is computed we are ensured of the existence of at least
one OCD which does not use this Y-subtree and satisfies previous constraints. As
a shorthand we say that a pattern or a Y-subtree lies in V(i, j) if all its notches do.
We next give a brief description of the polynomial time algorithm.

Consider a Y-pattern of an OCD with at least one N2-node, v,. This node splits
the Y-pattern into two Y-subtrees, so there exists an index j such that

1. One of the Y-subtrees lies in V(i, j) whereas the other lies in Vg + 1, 0.
2. All the other patterns in the OCD lie totally either in V(i, j) or in V(j + 1,
i).

The idea is to examine the candidacy of the Y-subtree in V(i, j) immediately after
S, j) has been computed. Let v,, Vips - - - o v, be a clockwise-order list of the
notches in the Y-subtree. The candidacy of this subtree may be rejected if the
following equality is not satisfied:

ISGHI=1SG + 1y = DI+ ... +[SG, |+ 1.0, — D] +SG, +

m

Ll (1)

|S(k,)| represents the number of patterns in S(k, /), and the last term of the right-
hand side is to be ignored if i,, = j. If Relation (1) is not satisfied, it is clear that
the right-hand side is strictly smaller than [S(i, j)|. Since we only consider the
presence of a single pattern connecting notches in both V(i, j) and V(j + 1, i), we
can dismiss any Y-subtree that does not satisfy (1). Indeed, using the patterns of
S(i, j) would yield a smaller decomposition.

4. APPROXIMATION AND DECOMPOSITION OF SHAPES 175

FIG. 4.19.

Another crucial fact will allow us to reduce the number of candidates to keep
around. Let L, (resp. R;) denote the edge of P adjacent to v, and preceding (resp.
following) v, in clockwise order. Both L; and R, are understood as directed
outwards with respect to v,. Let 7 be the edge adjacent to v, in the Y-subtree lying
in V(i, j). We refer to 1 as the arm of the Y-subtree. When the arm of a Y-subtree
enters the expression of an angle, we assume that it is directed towards the notch
{here 1 is directed towards v;). Among all the Y-subtrees in V(i, j) for which v, is
an N2-node, (1) is true and u = 2(L;, t) < 180. we may keep the Y-subtree T
which minimizes the angle u as the only candidate with respect to V(i, j) (Fig.
4.19a). We then define B(/, j) as a pointer to the arm of T If no such subtree can
be found, B(i, j) is set to 0. The same reasoning applied counterclockwise with
respect to V(i. j) (v, is now an N2-node), leads to F(i, j). defined in a similar
fashion (Fig. 4.19b).

We are now ready to present the decomposition algorithm. We define the
function (ARG) for the purpose of assembling Y-subtrees in the computation of
S(i, j). The argument ARG 1is in general a pair of Y-subtrees in B(u, v) or F(u, v).
If the two subtrees can be patched together and form a Y-pattern T, the function ()
returns (C, T), where C is the maximum number of compatible patterns which
can be applied in V(i, j) including T. We discuss the implementation of this
function after describing the main algorithm.

Initialization of the data structures is performed in STEP 1. followed by two
nested loops setting up the framework for the dynamic programming scheme.
Each stage corresponds to the computation of S(i, j) for a given value of i and j.
STEP 2 computes the best Y-pattern which connects v; and v;, by patching
together precomputed candidate Y-subtrees. STEP 3 computes a maximum set of
compatible patterns in V(i. j), denoted L, assuming that v, and v; do not belong to
the same pattern. It computes M. defined similarly. with the only difference that
the presence of an X -pattern connecting v; and v; is now allowed. Finally the Y-
pattern of STEP 2 (if any) is used to compute N, and the maximal set among L,
M. N is chosen as S(i, j). STEP 4 computes the Y-subtrees which lie in V(i, j) and
are considered candidates. These subtrees are to be used in further iterations
through STEP 2. Once a maximum compatible set of patterns for P has been
found, STEP 5 is able to complete the OCD with the naive decomposition.
NOTE: The following pieces of pseudo-code are reproduced from Chazelle and
Dobkin (1985) with the permission of the authors.

176 CHAZELLE

Procedure ConvDec(P)

beginprocedure
STEP 1:

The preprocessing involves checking that P is simple and nonconvex. We
make a list of the notches v,, . . . ,v_, and we initialize all B(i, i) and F(i, i) to 0.

ford=1,....c—1
fori=1 ..., ¢
j=1+ d[mod c]

do STEPS 2, 3, 4

STEP 2:

Compute the best Y-pattern connecting v; and v; as follows:

For each k; v, € V(i + 1,j — 1), compute the set @ = U, ..., O, where

Q, = {(F, k). Bk, j»} /* N2-node on path */

Q, = {(BU. k — 1), Flk,)ULBG. j — 1), FG,)} /* no N2 or N3 nodes on
path */

Q, = {(B(i, k = 1), Bk, j — 1)} /* N3-node on path */

0, ={Fu+ 1.k, Ftk + 1,)} /* N3-node on path*/

The elements of Q are pairs of the form (C, T). Let T be the Y-pattern which has the
maximum C value in Q.

STEP 3:
Let $(i, j) be the maximum of L, M, N with respect to cardinality. where (max
is taken with respect to cardinality)

L =maxyey, ; - 1, 1SG, HUSK + 1.)}

/* corresponds to a patching together of Y-patterns */

M = max {{x, ,, JUSG + I,a = DHUSa + 1.b— DU SH + 1. j— 1)}
for all X -patterns X b, COMDECHNE v, v, vy v, with v, v, € VUL).
/*corresponds to the use of an X ,-pattern */

N = {the Y-pattern T of STEP 2JUS(+ I, i, — DHU ... UsG, . + 1,4,
=DUSG, + 1./ = 1)

where v, v, . . ., v,, v, are the notches of T in clockwise order.

/* corresponds to the use of the Y-pattern T */

ar

STEP 4.
Compute B(i, j) and F(i, j).
STEP 5:

Finish off the decomposition using the naive decomposition. i.e. adding one poly-
gon for each remaining notch.

4. APPROXIMATION AND DECOMPOSITION OF SHAPES 177

¢ Q

d)

FIG. 4.20.

endprocedure

In the following we explore some of the primitive operations used by the
algorithm in greater detail.

1. Patching Y-subtrees (STEP 2)

The function (ARG) takes two Y-subtrees and constructs a Y-pattern if these
two subtrees can be patched together. ARG is any argument of the form: (F(i, k),
B(k, j), (B(i, k — 1), F(k, j)), (B(i, k = 1), Bk, j— 1))or (F(i + 1, k), F (k + 1,
M. with v, v, v, occurring in clockwise order.

Case 1. (F(i, k), B(k, j)) (Fig. 4.20a).
Let F(i, k) = T and B(k, j) = V, with r and s their respective arms. If Z(r, 5)
<180 and T # 0 and V # 0. then set (F(i, k). Bk, j)) = (S, k)| + |Stk,)l +
1, Y-pattern: TUV), else (F(i, k). Bk, j)) = 0.

Case 2. (B(i, k — 1), F(k, j)) (Fig. 4.20b).
Let B(i, k — 1) = T and F(k, j) = V. If an extended X,-pattern is possible
between v, and v, then set (B, k — 1), F(k.))) = (SG, k= D]+ |Stk,) + 1,
Y-pattern: {v JUTUV). else (BU, k = 1). Fik, j» = 0.

Case 3. (B(i, k — 1), Bk, j — 1)) (Fig. 4.20c).

Let B(i, k — 1) = T and B(k, j — 1) = V. If an extended X,-pattern W is
possible between v, v, v,, then
BG, k= 1). Bk, j— 1) =(StU, k — 1)] + |Stk, j = D + 1, TUVUW). else (B(,
k— 1. Bk, j— 1) =0.

178 CHAZELLE

Case 4. (F(i + 1. k). F(k + 1, j)) (Fig. 4.20d).
Let F(i + 1. k) = T and F(k + 1., j) = V. If an extended X ;-pattern W is
possible between v, v, v,, then
(FU+ 1k FGe+ 1) = (SG + 1.k | + Stk + 1.)] + 1. TUVUW), else
(FU + 1, k), Ftk + 1.j» = 0.

Because of Relation (1). it is clear that STEP 2 computes the Y-pattern
connecting v, and v; (if any is to be found) such that the number of compatible
patterns which can be applied in V(i, j) is maximum. All we have to check is that
all cases are indeed handled in STEP 2. Consider the path from v, to v; in any
such Y-pattern. If it contains an N2-node. it will be detected in Q. Otherwise
one N3-node may appear on this path and all these candidates will be reported in
0, and Q,. The final case. handled by Q,, assumes that the path from v, to v; is
free of N2 and N3-nodes.

2. Computing S(i, j) (STEP 3)

Assume by induction that S(k, /) has been computed for all v,, v, € V(i j)

(except for S(i, j)). The algorithm investigates the three following cases in turn:

1. Disallow the presence of any pattern having both v; and v, as vertices.
2. Consider the possibility of an X ,-pattern connecting v; and v,.
3. Consider the possibility of a Y-pattern connecting v, and v,

3. Constructing Y-subtrees (STEP 4)

We compute B(i, j) and F(i, j) by iteratively patching Y-subtrees together via
two functions. Y(i, ARG) and Y'(i, ARG). ARG is an argument of the form B(a,
b) or (B(a, b). B(c, d)) (or the same with F). We describe these functions with
respect to B’s only, all other cases being similar.

Case 1. Y(i, B(a, b)) (Fig. 4.21a)

The vertices v, v, v; occur in clockwise order. Let T = B(a, b). Extend the
notch at v, to take into account the arm of 7. Extend the notch at v, by making its
associated wedge be the entire plane. If an extended X,-pattern is possible
between v, v, and if w = Z(R,, vp,) < 180, set Y(i, Bla. b)) = (Y-subtree:
{vv JUD, else Y(i, Bla, b)) = 0.

Case 2. Y(i, (B(a, b), B(c, d)) (Fig. 4.21b)

The vertices v, v, v.. v, v, occur in clockwise order. Let T= B(a, b) and
V= B(c. d). Extend the notch at v, (resp. v,) to take into account the arm of T
(resp. V). Extend the notch at v, by making its associated wedge be the entire
plane. If an extended X ;-pattern is possible between v, v, v,. compute the locus
of its N3-node. Let S be the point in the locus which maximizes the angle w =
Z(R;, v;S).

If w € 180, set Y(i, (Bla. b). B¢, d)) = {Y-subtree:{Sv }U{Sv }U{Sv JUTUV). else
Y(i, (B(a, b). Blc,) = 0.

4. APPROXIMATION AND DECOMPOSITION OF SHAPES 179

FIG. 4.21. ¢) case Y (1,B(a,b)

Case 3. Y'(i, B(a, b)) (Fig. 4.21¢)
We define Y'(i, Bla. b)) in the same way as Y(i, B(a. b)). with Z(R,. vy)
replaced by Z(vyv . L). Y'(i. F(a, b)) is defined similarly. so we omit the details.
We are now ready to implement STEP 4 of the decomposition algorithm. We
will only describe the computation of B(i, j). since the case of F(i, j) is strictly
similar. We begin by computing the four sets B, B,. By. B,. Let C be the value of
IS(i, j)| computed in Step 3.

{ Y-subtree of B(i, k)}, for all v, € V(i, j — 1) such that ISG.)l + Stk + 1.)]

*Hm
SO

is not a notch of the Y-subtree */
Bzz{)’ (i. Bk,). forall v, € V(i + 1,j — 1) such that [SG + 1.k = 1)} + |S(k,
=
/* v,'s ncnghbor is an N2-node *
“{Y (i, Fii + 1, jn}, 1t‘Sz+] =c
/*», s neighbor is an N2-node */
B, = {Y'G.(F(i + 1. k), Ftk + 1,)p}, forall vy € Vi + 1.7 — 1)
such that [S(i + 1. k)| + IStk + 1.) = C.
/* v.s neighbor is an N3-node */

Let T be the Y-subtree of B,UB,UB,UB, which maximizes the angle u =
(1, L;), where 1 is understood here as the arm of T directed outward from v;
(Fig. 4 22). We define B(i, j) as a pointer to the arm of 7 (now understood to be
directed towards v,).

180 CHAZELLE

a) Bl b) B2

TUUE (LK)
NN

)B4 FIG. 4.22.

c) B3

It follows from previous remarks that B(, j) can be computed in polynomial
time. Y-subtrees can be merged in constant time by linking their respective arms
together. B, through B, evaluate all candidate Y-subtrees adjacent to v, and lying
in V(i, j), and keep a single candidate, i.e.. the subtree which has maximum
angle u. It is easy to show by induction that it is sufficient to consider only the Y-
subtrees in the B’s and F’s. B, considers all subtrees which do not have both v,
and v; as notches (Fig. 4.22a). B, and B, compute the subtrees whose vertex
adjacent to v, is an N2-node. Note that B, and B, may share common subtrees.
The two possible configurations are illustrated in Fig. 4.22 b.c. Finally B,
detects all candidate subtrees such that the vertex adjacent to v, is an N3-node
(Fig. 4.22d).

4. Completing the OCD (Step 5) ,

The last step of procedure ConvDec consists of removing the remaining
notches with the naive decomposition. This can be done in polynomial time,
leading to the main result: an optimal convex decomposition of a simple polygon
can be computed in polynomial time.

A rough analysis of the algorithm’s complexity shows that the exponent in the
polynomial is prohibitively high. Cutting down the complexity to O(n + ¢?)isa
long and complicated process which we will not address here. The reader can
find the basic scheme in Chazelle and Dobkin (1985) and all details in Chazelle
(1980).

4. EPILOGUE

Approximations and decompositions of two and three dimensional shapes are
only beginning to be understood. Powerful algorithmic techniques are available,
and problems once treated in an ad hoc fashion can now be solved with general,

4. APPROXIMATION AND DECOMPOSITION OF SHAPES 181

versatile methods. All of the algorithms reviewed here have been analyzed and
many of them have been implemented. Their relevance to robotics is compelling,
but more work needs to be done to adapt these methods to the context of specific
applications. In particular, relatively little is known regarding problems in three
dimensions.

The aim of this article has been to present state-of-the-art methods for approx-
imating and decomposing geometric shapes. We have given emphasis to tech-
niques with direct practical applications as well as methods of purely theoretical
interest. Our rationale for including the latter has been that these methods often
reveal enough insights to suggest simple. practical methods. For example, our
long development on the OCD problem readily suggests efficient approximation
methods (based on the naive decomposition and, say. X,-patterns only). It is
certainly counterproductive to dismiss complicated theoretical methods solely on
the grounds of impracticality. Many recent advances in theoretical computer
science might never come into practice as such but may very well, as has often
happened in the past, trigger the making of practical breakthroughs. For exam-
ple, the availability of practical methods for planar point location today (a central
operation in many tasks—see chapter by Yap in this volume) owes a great deal to
an earlier algorithm by Lipton and Tarjan. theoretically remarkable, but unfit for
practical use.

The field of computational geometry is blossoming. One of its challenges is to
span the entire spectrum from theory to practice, enabling powerful mathe-
matical constructions to have an impact in practical domains. Robotics along
with statistics, computer graphics, and a number of other applications areas serve
as the prime providers of fascinating problems to researchers in computational
geometry. In return, we believe that robotics is advised to keep an eye on an area
that is blossoming today and is likely to come up with many of the algorithmic
tools that it needs in the years to come.

ACKNOWLEDGMENTS

I wish to thank A. Aggarwal. I. Incerpi, C. K. Yap, and the referee for many helpful
comments and suggestions.

The author was supported in part by NSF grants MCS 83-03925 and the Office of
Naval Rescarch and the Defense Advanced Research Projects Agency under contract
N00014-83-K-0146 and ARPA Order No. 4786.

REFERENCES

Aggarwal, A., Chang, J. S., & Yap, C. K. (1985). Minimum area circumscribing polygons. J. of
Computer Graphics, Vision, and Image Processing.

Aho, A. V., Hopcroft, J. E.. & Ullman, J. D. (1974). The design and analyvsis of computer
algorithms. Reading. MA: Addison-Wesley.

182 CHAZELLE

Ahuja, N., Chien, R. T., Yen, R., & Birdwell, N. (1980). Interference detection and collision
avoidance among three dimensional objects. Proc. Ist Annual Nat. Conf. on Artificial Intel-
ligence, Palo Alto. pp. 44-48.

Asano, T.. & Asano. T. (1983). Minimum partition of polygonal regions into trapezoids. Proc.
24th Annual FOCS Symp.. pp. 233-241.

Asano. T.. Asano, T.. & Imai. H. (1984). Partitioning a polvgonal region into trapezoids. (Res.
Mem. RMI84-03). Dept. Math. Eng. & Instrumentation Physics, Univ. of Tokyo.

Avis, D.. & Toussaint, G. T. (1981). An efficient algorithm for decomposing a polygon into star-
shaped polygons. Pattern Recognition, 13, 395-398.

Baker. B. S.. Fortune. S. J.. & Mahaney. S. R. (1984). Inspection by polygon containment. Proc.
22nd Allerton Conf. on Comm. Control and Computing. pp. 91-100.

Baker, B. S.. Crosse. E., & Rafferty, C. S. (1985). Non-obtuse triangulation of a polvgon. (Tech-
nical Report). Numerical Analysis Manuscript 84—-4, AT&T.

Ben-Or, M. (1983). Lower bounds for algebraic computation trees. Proc. 15th ACM Annual Symp.
on Theory of Computing. pp. 80-86.

Bentley. J. L.. Faust, G. M., & Preparata, F. P. Approximation algorithms for convex hulls. Comm.
ACM. 25, pp. 64-68.

Bentley, J. L., & Ottmann. T. (1979, September). Algorithms for reporting and counting geometric
intersections. [EEE Trans. Comp. C-28. 9, 643-647.

Bentley, J. L., & Shamos, M. L. (1978). Divide and conquer for linear expected time. Info. Proc.
Len., 7, 87-91.

Bhattacharya. B. K.. & El Gindy. H. (1984). A new lincar convex hull algorithm for simple
polygons. IEEE Trans. Infor. Theory, IT-30, pp. 85-88.

Boyce, J. E., Dobkin, D. P., Drysdale. R. L.. & Guibas, L. J. (1982). Finding extremal polygons.
Proc. 14th ACM Annual Symp. on Theory of Computing. pp. 282-289.

Chand. D. R.. & Kapur. S. S. (1970). An algorithm for convex polytopes. J. ACM. 17(1), 78-86.

Chang. J. S.. & Yap. C. K. (1984). A polynomial solution for potato-peeling and other polygon
inclusion and enclosure problems. Proc. 25th Annual FOCS Symp., pp. 408-416.

Chazelle. B. (1980). Computational geometry and convexity. Doctoral thesis. Yale University
(Also available as Technical Report CMU-CS-80-150, Carnegie-Mellon University. Pittsburgh.
PA).

Chazelle, B. (1982). A Theorem on polygon cutting with applications. Proc. 23rd Annual FOCS
Symp., pp. 339-349.

Chazelle, B. (1983a). A decision procedure for optimal polyhedron partitioning. Info. Proc. Lett.,
16(2). 75-78.

Chazelle, B. (1983b). The polygon containment problem. In advances in computing research (pp.
1-33). Greenwich, CT: JAT Press.

Chazelle, B. (1984). Convex partitions of polyhedra: A lower bound and worst-case optimal al-
gorithm. SIAM J. on Comput., 13(3). 488-507.

Chazelle. B. (1985). On the convex layers of a planar set. IEEE Trans. Inform. Theory, 1T-31(4).
509-517.

Chazelle. B.. & Dobkin, D. P. (1979). Decomposing a polygon into its convex parts. Proc. I1th
Annual ACM Svmp. on Theory of Computing. pp. 38—48.

Chazelle, B., & Dobkin. D. P. (1985). Optimal convex decompositions. Computational geometry
(pp. 63-133). North-Holland.

Chazelle. B., Guibas, L. J.. & Lee. D. T. (1983). The power of geometric duality. Proc. 24th
Annual FOCS Symp.. pp. 217-225.

Chazelle, B., & Incerpi. J. (April 1984). Triangulation and shape-complexity. ACM Trans. on
Graphics, 3(2), 135-152.

Chazelle, B., & Lee. D. T. (1986). On a circle placement problem. Computing, 36, 1-16.

DePano, A.. & Aggarwal, A. (1984). Finding restricted k-envelopes for convex polygons. Proc.
22nd Allerton Conf. on Comm. Control, and Computing. pp. 81-90.

4. APPROXIMATION AND DECOMPOSITION OF SHAPES 183

Eddy, W. (1977). A new convex hull algorithm for planar sets. ACM Trans. Math. Software, 3(4).
pp. 398-403.

El Gindy. H.. & Avis. D. (1981). A linear algorithm for computing the visibility polygon from a
point. J. Algorithms, 2, 186-197.

El Gindy. H.. Avis, D.. & Toussaint, G. T. (1983). Applications of a two dimensional hidden line
algorithm to other geometric problems. Computing, 31, 191-202.

Feng. H., & Pavlidis. T. (1975). Decomposition of pollygons into simpler components: Feature
generation for syntactic pattern recognition. /EEE Trans. Comp., C-24, 636-650.

Ferrari. L., Sankar. P. V., & Sklansky. J. (1981, December). Minimal rectangular partitions of
digitized blobs. Proc. 5th International Conference on Pattern Recognition, Miami Beach. pp.
1040-1043.

Franzblau, D. S.. & Kleitman. D. J. (1984). An algorithm for constructing regions with rectangles:
Independence and minimum generating sets for collection of intervals. Proc. 16th Annual ACM
Svmp. on Theory of Computing. pp. 167-174.

Garey, M., Johnson, D. S., Preparata. F. P.. & Tarjan, R. E. (1978). Triangulating a simple
polygon. Info. Proc. Let., 7(4), 175-180.

Graham, R. L. (1972). An efficient algorithm for determining the convex hull of a finite planar set.
Info. Proc. Lent., 1. 132-133.

Graham, R. L.. & Yao, F. F. (1983). Finding the convex hull of a simple polygon. J. Algorithms.
4(4), 324-331.

Greene, D. H. (1983). The decomposition of polvgons into convex parts. In F. Preparata (Ed.),
Advances in computing research (pp. 235-259). Greenwich, CT: JAI Press.

Guibas, L. J., Ramshaw. L.. & Stolfi. J. (1983). A kinetic framework for computational geometry.
Proc. 24th Annual FOCS Symp., pp. 100-111.

Hertel. S.. & Mehlhorn, K. (1983). Fast triangulation of simple polygons. Proc. FCT'83,
Borgholm. LNCS Springer-Verlag, pp. 207-218.

Imai, H., & Asano, T. An efficient algorithm for finding a maximum matching of an intersection
graph of horizontal and vertical line segments. (Papers of IECE Tech. Group on Circuits and
Systems, CAS). 83-143.

Imai, H., & Asano, T. (1983b. October). Efficient algorithms for geometric graph search prob-
lems. (Res. Memo. RMI 83-05). Dept. Math. Eng. & Instrumentation Physics. Univ. of Tokyo.

Jarvis. R AL (1973). On the identification of the convex hull of a finite set of points in the plane.
Info. Proc. Lent., 2, 18-21.

Kahn. J., Klawe. M., & Kleitman. D. (1980). Traditional galleries require fewer watchmen. SIAM
J. Alg. Disc. Method, 4(2), 194-206.

Keil, J. M. (1983). Decomposing polvgons into simpler components. Doctoral thesis. University of
Toronto.

Keil, J. M., & Sack, J. R. (1985). Minimum decompositions of polygonal objects. Computational
Geometry, North-Holland.

Kirkpatrick, D. G.. & Seidel, R. (1983, October). The ultimate planar convex hull algorithm.
(Tech. Rep. No. 83-577). Comnell University. A preliminary version appeared in Proc. 20th
Annual Allerton Conf. on Comm., Control, and Comput., pp. 35-42.

Klee. V., & Laskowski. M. C. (1985). Finding the smallest triangles containing a given convex
polygon. J. Algorithms, 6(3), 359-375.

Knuth, D. E. (1973). The art of computer programming: Sorting and searching, (Vol. 3). Reading,
MA: Addison-Wesley.

Lee, D. T. (1982). On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Comput.,
C-31, No. 6. 478-487.

Lee, D. T. (1983). On finding the convex hull of a simple polygon. Int'l J. Comput. and Infor. Sci.,
12(2), 87-98.

Lingas, A. (1981. November). Heuristics for minimum edge length rectangular decomposition.
Unpub. Manuscript, MIT.

184 CHAZELLE

Lingas, A. (1982). The power of non-rectilinear holes. Proc. 9th Colloguium on Automata, Lan-
guages and Programming, Aarhus, LNCS Springer-Verlag, pp. 369-383.

Lingas, A., Pinter, R., Rivest. R.. & Shamir, A. (1982, October). Minimum edge length partition-
ing of rectilinear polygons. Proc. 20th Annual Allerton Conf. on Comm.. Control and Comput.,
pp. 53-63.

Lipski, W.. Jr. (1983). Finding a Manhattan path and related problems. Networks, 13, pp. 399-
409.

McCallum. D.. & Avis. D. (1979). A linear time algorithm for finding the convex hull of a simple
polygon. Info. Proc. Lett., 9. 201--206.

Megiddo. N. (1983). Linear time algorithm for linear programming in M3 and related problems.
SIAM J. Comput., 12(4). 759-776.

Megiddo, N_, & Supowit, K. J. (1984). On the complexity of some common geometric location
problems. SIAM J. Comput., 13(1), 182-196.

Newman, W. M.. & Sproull. R. F. (1979). Principles of interactive computer graphics. New York:
McGraw-Hill.

O’Rourke, J. (1982). The complexity of computing minimum convex covers for polygons. Proc.
20th Annual Allerton Conf. on Comm. Control and Comput., pp. 75-84.

O'Rourke, J. (1984). Finding minimal enclosing tetrahedra. The Johns Hopkins Univ., Techn.
Report.

O'Rourke, J.. Aggarwal, A.. Maddila. S.. & Baldwin, M. (1984). An optimal algorithm for finding
minimal enclosing triangles. (Tech. Rep. JHU/EECS-84/08). Dept. of EE/CS. Johns Hopkins
Univ.

O’Rourke. J.. & Supowit. K. J. (1983). Some NP-hard polygon decomposition problems. [EEE
Trans. Inform. Theory, IT-29(2). 181-190.

Overmars, M. H.. & van Leeuwen. J. (1981). Maintenance of configurations in the plane. JCSS,
23, 166-204.

Post, M. J. (1982, May). Computing minimum spanning ellipses. (Tech. Rep. No. CS-82-16).
Brown Univ. A preliminary version appeared in Proc. 22nd Annual FOCS Symp... pp. | 15-122.

Preparata, F. P. (1979). An optimal real-time algorithm for planar convex hulls. C. ACM., 22, 402~
405.

Preparata. F. P.. & Hong, S. J. (1977). Convex hulls of finite sets of points in two and three
dimensions. Comm. ACM, 20(2). 87-93.

Roger. C. A. (1964). Packing and covering. Cambridge. England: Cambridge University Press
(1964).

Sack. J. R. (1982). An O(nlogn) algorithm for decomposing simple rectilinear polygons into con-
vex quadrilaterals. Proc. 20th Annual Allerton Conf. on Comm.. Control, and Comput., pp. 63—
74.

Sack, J. R., & Toussaint. G. T. (1981). A linear time algorithm for decomposing rectilinear star-
shaped polygons into convex quadrilaterals. Proc. 19th Annual Allerton Conf. on Comm., Con-
trol, and Comput.. pp. 21-30.

Schachter. B. (1978). Decomposition of polygons into convex sets. JEEE Trans. on Computers,
C-27, 1078—1082.

Schoone, A. A.., & van Lecuwen. J. (1980). Triangulating a star-shaped polvgon. (Tech. Rep. No.
RUV-CS-80-3). Univ. of Utrecht.

Sedgewick. R. (1983). Algorithms. Reading, MA: Addison-Wesley.

Seidel. R. (1981). A convex hull algorithm optimal for poinis in even dimensions. M.S. Thesis.
Tech. Rep. 81-14, Univ. British Columbia, Canada.

Shamos. M. L. (1978) Computational geometry. Doctoral thesis. Yale University.

Shamos, M. L., & Hoey. D. (1975). Closest-point problems. Proc. 16th Annual FOCS Symp.. pp.
151-162.

Silverman, B. W., & Titterington. D. M. (1980). Minimum covering ellipses. SIAM J. Sci. Stat.
Comput., 1(4). 401-409.

4. APPROXIMATION AND DECOMPOSITION OF SHAPES 185

Toussaint, G. T. (1980a). Pattern recognition and geometrical complexity. Proc. Sth Int. Conf. on
pattern recognition, Miami Beach, pp. 1324-1347.

Toussaint. G. T. (1980b. October). Decomposing a simple polygon with the relative neighborhood
graph. Proc. 18th Annual Allerton Conf. on Comm.. Control, and Comput.

Toussaint, G. T. (1983. May). Solving geometric problems with the *‘rotating calipers’. Proc.
IEEE MELECON 83, Athens, Greece.

Toussaint, G. T.. & Avis D. (1982). On a convex hull algorithm for polygons and its application to
triangulation problems. Pattern Recognition, 15(1), 23-29.

Yao, A. C. (1981). A lower bound to finding convex hulls. J. ACM, 28,(4), 780-787.

