J. Symbolic Computation (1990) 10, 281-309

An Algorithm for Generalized Point
Location and Its Applications

BERNARD CHAZELLE()) AND MICHA SHARIR(®

(1) Dept. of Computer Science, Princeton University, Princeton, NJ 08544, U.S.A.
(2) School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel.

(Received 20 May 1988)

We show that Collins’ classical quantifier elimination procedure contains most of the
ingredients for an efficient point location algorithm in higher-dimensional space. This
leads to a‘ polynomial-size data structure that allows us to locate, in logarithmic time, a
point among a collection of real algebraic varieties of constant maximum degree, assuming
that the dimension of the ambient space is fixed. This result has theoretical bearings on
a number of optimization problems posed in the literature. It also gives a method for

solving multidimensional searching problems in polynomial space and logarithmic query

time.

1. Introduction

The central theme of multidimensional searching is the organization of a database
to which queries of a chosen type can be made. The term locus approach refers to the
particular strategy that regards a query as a point in higher-dimensional space: the
idea is to subdivide the query space into equivalence classes and thus reduce query-
answering to point location. This approach was followed by Dobkin & Lipton (1976),
who devised an efficient searching algorithm for hyperplanes in E9, for any fixed d. Yao
& Yao (1985) have observed that the constraint manifold can usually be made linear by

throwing in additional variables, if needed. Considering (as will be shown below) that the

0747-7171/90/090281+29 $03.00/0 © 1990 Academic Press Limited

282 B. Chazelle and M. Sharir

preprocessing is doubly exponential in the number of variables, however, the linearization
method may not always be so desirable. We will show here that Dobkin and Lipton’s
method can be generalized directly to handle real arbitrary algebraic varieties. The
generalization is based on Collins’ cylindrical algebraic decomposition (Collins, 1975,
Arnon et al., 1984a,b). The main idea is to transform Collins’ algorithm into a data

structure and add various bells and whistles to support fast searching.

For a precise statement of our results we need to introduce a few notions. Let
F = {P1,...,P,} be a set of n d-variate polynomials with rational coefficients and
norm-length at most £. (The norm-length of a polynomial with integral coefficients is the
number of bits needed to represent the sum of the absolute values of its coefficients. If the
coefficients are rational, the norm-length is that of the integral polynomial obtained by
putting all coeflicients over a common denominator.) We also assume that the maximum
degree of these polynomials is bounded above by a constant. Note that to allow all
polynomials to be distinct, it is necessary to let £ be at least on the order of logn. In

practice one should expect £ to be at most polylogarithmic in n.

The generalized point location problem concerns the fast evaluation of the predicate
[3i 1 <i<n)|P(z) =0],

for any query point z € E4. A simple true/false answer being a little too terse, we
require supplementary information. If the predicate is true then some witness ¢ such
that P;(z) = 0 should be provided (note that requiring the‘ reporting of all such indices
might by itself preclude a fast response). If, on the other hand, the predicate is false,
then z lies in a connected region of the open set C = { z € E¢ | [licicn Pi(z) £ 0}
In that case, the desired output is usually the value f(z) of some function f which is
invariant over each connected region of C. The preprocessing will compute a distinct

algebraic point, a sample, in each region of C and evaluate f at the sample points.

The problem is a direct generalization of the well-known planar point location prob-
lem. Previous work on point location with nonlinear boundaries has been limited to
the case d = 2, culminating in the optimal algorithms of Cole (1986) and Edelsbrunner
et al. (1986) for subdivisions with “monotone” curves, and that of Sarnak and Tarjan

(1986) for more general subdivisions. As will be shown below, a Collins decomposition

Generalized Point Location 283

provides a simple framework for solving the point location problem in full generality. We
will describe a data structure of size O(nzd‘l) which allows us to answer any query in

O(log n) time; the time needed to build the data structure is O (nzd“).

These bounds hold in the traditional unit-cost RAM model (Aho et al. 1974). One
will notice, for example, that the norm-length £ does not even appear in the bounds.
The reason is that in the unit-cost model any integer operation takes constant time,
regardless of the length of the integers involved. Of course, this may sometimes hide the
true cost of a computation if the integers become very large. Traditionally, algorithms in
computational geometry have tended to ignore the true cost of precise rational arithmetic,
although this issue has recently started to gain importance (see Dobkin and Silver, 1988,
Hoffmann et al., 1988). In the case of our data structure, however, this cost must be
taken into account. The algorithm involves iterated computations of polynomial greatest
common divisors, subresultants, Sturm sequences, etc., all of which tend to inflate the

size of the coefficients of the polynomials.

The complexity analysis of our data structure follows (Collins, 1975) without the
added burden of storing cylindrical algebraic samples (though such samples might be
computed, used in preprocessing, and thrown away). If we start out with d-variate
polynomials of constant degree and norm-length £, the preprocessing will only generate
k-variate polynomials (k < d) of constant maximum degree and norm-length O(¢). More-
over, as follows from (Collins, 1975), all operations on the coefficients of the polynomials
can be carried out in a number of bit operations at most cubic in their norm-length. This
means that in order to obtain upper bounds on the bit complexity of the algorithm it
suffices to multiply the unit-cost bounds given above by £3. This would give us a query
time of O(£3log n) and a preprocessing time of O (£3n2‘+6) . As long as a computer word
can store up to £ bits the storage requirement is (asymptotically) the same in both mod-
els of computation. Although our underlying assumption will be the unit-cost model,
we will also mention the bit complexity of an algorithm whenever there is a discrepancy
between the two models. A final word concerning the dependency of the algorithm on
the degree of the polynomials. We caution that our algorithm, like Collins’, produces
auxiliary polynomials whose maximum degrees can be truly enormous. This can add
a large multiplicative factor, albeit constant, to the complexity of the algorithms: say,

around b"‘, where b the maximum degree of the input polynomials. We will ignore this

284 B. Chazelle and M. Sharir

dependency in the subsequent analysis.

Interestingly, our data structure matches Dobkin and Lipton’s (1976) in terms of
storage requirements, both being O(nzd'l). Although the size of our data structure is
polynomial in n, the magnitude of the exponent puts a severe limitation on its prac-
ticality. From a theoretical standpoint, however, this result has direct application to
multidimensional searching: we will discuss this relationship in some detail later. The
algorithm also has somewhat unexpected ramifications. We will use it as a tool in the
solution of several problems. Two of them, posed by McKenna (1986), seek (i) the
longest line segment fully contained within a given n-gon and (ii) the minimum “verti-
cal” distance between two collections of red and blue segments in 3-space (see section 5
for details). Another one, due to Atallah (1985), asks at which time the convex hull of
n points moving in the plane will first enter its final, steady configuration. Using our
point location algorithm, combined with a batching technique originally proposed by Yao
(1982), we are able to solve these problems, as well as other related ones, in subquadratic
(albeit ever so close to quadratic) time.

These are a few concrete exemplifications of a more general principle, which is one
of the main consequences of this paper. Many optimization problems in computational
geometry have trivial quadratic solutions. Typically these problems involve two sets
A, B of n objects each, and ask for the pair (a,b) € A x B that minimizes some cost
function, or satisfies some predicate; think, for example, of the diameter or closest-
pair problem (Preparata and Shamos, 1985). A considerable amount of recent work in
computational geometry can be regarded as attempts to beat this trivial quadratic bound
by building clever data structures which reduce the number of pairs a € A,b € B that
need testing (e.g., the Voronoi diagram for the closest-pair problem). Our results imply
that if the interaction of a single pair a € A,b € B can be stated as an algebraic expression
(possibly involving Boolean algebraic predicates) in the real parameters specifying a, b,
then the data structure that we develop can be used to reduce the problem complexity

to subquadratic.

In section 2 we review the algebraic backdrop behind the algorithms, and in section 3
we describe the point location data structure in detail. Section 4 discusses the relevance of
the algorithm to multidimensional searching in general. In section 5 we tackle McKenna’s

problems by reducing them to a more general optimization question of the sort just

Generalized Point Location 285

mentioned. We attack Atallah’s problem in section 6, and give a more general discussion

of the underlying technique in section 7.

2. The Algebraic Machinery

Most of the algebraic notions involved in this work can be found exposed in great
detail in (Collins, 1975) and (Schwartz and Sharir, 1983). We have tried to adhere to
the terminology used in these papers as much as possible. The fundamental algebraic
concepts can be found in van der Waerden’s classic text (van der Waerden, 1953), while
for the specialized treatment of resultants and subresultants used in the paper the reader

should turn to (Brown and Traub, 1971).

I) Collins’ Decidability Theorem: In 1948 Tarski proved that every statement in elemen-
tary algebra (which is, the elementary theory of real-closed fields) is decidable (Tarski,
1948). The non-elementary procedure given by Tarski was subsequently improved (com-
putationally) in a number of different ways by several researchers (e.g., Seidenberg, 1954,
Cohen, 1969, Collins, 1975, Monk and Solovay, 1974, Ben-Or et al., 1984). For the pur-
pose of the present work, we shall use Collins’ decision procedure as a guiding framework.

Let a standard prenez formula be any logical sentence of the form

(Qeze)(Qr+1Zk41) - - - (Qaza) é(z1, - - -, 2a),

where each Q; is a universal or existential quantifier and ¢(z,,...,z4) is a quantifier-
free formula made of Boolean connectives, standard comparators, and polynomials with
rational coefficients in the real variables 2;,...,24. A logical sentence is called an atomic

formula if it is free of quantifiers and logical connectives.

Theorem 1. (Collins, 1975) — Let & be an arbitrary standard prenez formula with d
variables, ¢ atomic formulas, m polynomials of degree at most b in any single variable,
with all integral coefficients of length at most £. Whether ® is irue or false can be

decided in at most c£3(2b)2****m2*** bit operations.

II) The Cylindrical Algebraic Decomposition: This section reviews the essential compo-
nénts of Collins’ decomposition needed for the point location algorithm. We include this
discussion to make our exposition self-contained. The reader fully familiar with Collins’

work may skip the next paragraphs.

286 B. Chazelle and M. Sharir

A Collins decomposition of the d-dimensional Euclidean space E9 is a refinement of
the decomposition of E% induced by a finite collection of real algebraic varieties. (Each
polynomial defining a variety is sign-invariant over each region of the decomposition.)
The key concept is that of a cylindrical algebraic decomposition (or cad, for short). A

d-dimensional cad is a partitioning of E¢ defined inductively as follows.

(i) Ford =1, a cad is a finite set of disjoint open intervals and singletons whose union
forms El. Each singleton contains an algebraic number: see a discussion later in

this section on how to store algebraic numbers.

(i) For d > 1, a cad K is defined in terms of a cad K’ of E4~! and a d-variate
polynomial P(zy,...,24-1,y) with rational coefficients. Let K’ = {¢1,...,¢,}; for
each ¢; € K’ there exists an integer v; such that for each z = (z1,...,24-1) € ¢,
P(z,y), regarded as a polynomial in y, has »; real roots fi1(z) < .-+ < fi,,(2),
each of which is a continuous function in = over ¢;. If v; =0,8et ¢;; = ¢; x E1. If
vi > 0,86t ¢; 2 = { (2, fij(z)) | z €ci} for 1 <j < wi, and set cipj41 = {(2,9) |
z€c and fij(z) <y< f;,,-+1(z)} for 1 < j < w. Also, put ¢;1 = {(z,y) |z €
ciand y < fi1(z) } and ¢; 2,41 = {(2,9) | z € ¢c; and f;,.(z) < y}. Finally K is

defined as the set of cells {c1,1,..-,¢1,30, 41, ;€415 > €20, 41}

Following (Schwartz and Sharir, 1983) we call P the base polynomial of the cad. Infor-
mally, the cells of K can be formed by considering the cylinders based at each ¢ € K’
and chopping them off with the real hypersurface P(z;,...,z4) = 0. Since K is defined
in terms of a unique cad of lesser dimension, by induction, it defines an induced cad for
each E* (1 < k < d). Incidentally, one should note that each cell of K is “well-behaved,”
in the sense that it is topologically equivalent to a relatively open ball of dimension at

most d.

For our purposes the base polynomial P will always be of the form Hlsisn P;, where
F ={Py,...,P,} is a collection of d-variate polynomials with rational coefficients. The
key feature of a cad is that for each ¢ € K and each P; € F, the value of Pi(z) is
either zero over the entire cell ¢, or it keeps the same sign over the cell: a cad which
satisfies this property is said to be F-invariant. Besides introducing the concept itself,
the main contribution of (Collins, 1975) was to prove that any collection F admits of an

F-invariant cad and that it can be constructed fairly efficiently (all things considered).

Generalized Point Location 287

To simplify the computations (as well as carry the analysis further to determine
the adjacencies between the cells of a cad) Schwartz and Sharir introduce the useful
concept of a well-based decomposition: K is said to be well-based if, when regarded as
a univariate polynomial in y, the base polynomial P(z,y) is not identically zero for any
given value of z in E4-! (Schwartz and Sharir, 1983). They show that in that case each
root function f; ; (defined over ¢; € K') can be extended continuously over the closure
of ¢;. Informally, this means that every line (zy,...,z4-1) x E! intersects the algebraic
variety P(z,y) = 0 only in a finite number of points. These intersections will form the
basis of the binary search underlying the point location algorithm to be presented in
the next section. How can we ensure that a decomposition is well-based? Since point
location is defined independently of a coordinate system, we can always modify the frame
of reference to ensure this condition. As a matter of fact, it is suggested in (Schwartz and
Sharir, 1983) that a few random perturbations of the original coordinate system might
be the best strategy in practice. (They also give a method for checking if a cad is well-
based.) For our purposes, a well-based decomposition is convenient but not necessary.
Therefore another solution is, of course, not to worry about it and simply ensure that

the search procedure is robust enough to handle this type of degeneracy.

Following Collins’ terminology, we define an algebraic sample of K as a set of points
with algebraic coordinates, one in each cell of K (recall that a real number is algebraic if
it is a root of a polynomial with integer coefficients). An algebraic sample is cylindrical
(abbreviated cas) if either d = 1 or the set of d — 1 first coordinates of each point forms
acasof K'. If {¢;1,...,¢iav,+1} is the set of cells of K associated with the cell ¢; of K’,

the sample points in each ¢; j (1 < j < 213 + 1) all share the same first d — 1 coordinates.

IIT) The Collins Construction: We begin with a short review of Collins’ algorithm. Let
Q be a d-variate polynomial of degree p with real rational coefficients. We can write
Q(z1,...,24) as a polynomial EOS‘SP Q.-(:cl,...,zd_l)zi, of a single variable z4, with
coefficients in the ring of (d — 1)-variate polynomials with rational c::>eﬂicients. Let
deg(Q) = p be the degree of Q in x4 and let Wdcf(Q) = Qp(z1,...,z4-1) denote the
leading nonzero coefficient of . We define the reductum of Q, denoted red(Q), as the
polynomial EOSiSp—l Qi(zy,... ,zd_l)zfi. We also introduce redo(Q) = @, and for each
k>0, red*+! @)= red(redk(Q)). Finally we let der(Q) denote the z4-derivative of Q.

288 B. Chazelle and M. Sharir

Let A(z) = Yo<ica a;z' and B(z) = 20<i<h Biz' be two polynomials in the real
variable £ with deg(A) = a and deg(B) = b. The Sylvester matriz of A and B is
the (a + b) x (a + b) matrix M obtained by placing the coefficients of the polynomials
-1 A(2),...,zA(x), A(z),z* "' B(z),...,zB(z), B(z) in consecutive rows of M, with

the coefficients of z* appearing in column a + b — i:

a; Qg- e«
(aal Qa1 . .0. o w
Qg Qg1 ... g
By Po-r ... Po
B B-1 ... Bo
\ . ﬂl; ﬂb—.l .30)

The determinant of M is the resultant of A and B. For 0 < j < min(a,b), M;
is the matrix obtained by deleting the last j rows of A coefficients, the last j row; of
B coefficients, and all the last 2j columns. We can then define psc’(A, B) (the j**
principal subresultant coefficient of A and B) as the determinant of M; (see Collins,
1975, for details). As is shown in (Brown and Traub, 1971), the unique factorization
theorem for polynomials implies that A and B have exactly j common roots (i.e., j is
the degree of their greatest common divisor) if and only if j is the least index k for which

psc*(A, B) # 0. This result is at the basis of the recursive construction of a cad.

Let F = {Py,..., Py} be a set of n real d-variate polynomials (d > 2) with rational
coefficients and norm—lefngth < £. As expected, the construction of an F-invariant K
proceeds recursively. It suffices to specify what arguments should be passed to the
decomposition algorithm at the first recursive call. To do so, we define the projection of

F, denoted G, as the union of Gz, G, and Ga, with
(i) G1 ={red*(P)|P € F and k > 0 and deg(red*(P)) > 1},

(ii) G2 = {1dcf(P)|P €G,},

(iii) Gs = { psc* (P, der(P))|P € G, and 0 < k < deg(der(P)) },

(iii) Ga = {psc*(P,Q)|P,Q € Gy and 0 < k < min(deg(P),deg(Q)) }-

The notion of a projection generalizes the idea of (Dobkin and Lipton, 1976) of

pairing up hyperplanes: the pairing takes place in G4; the set G3 accounts for multiple

Generalized Point Location 289

roots (for polynomials in z4), while G, is included because a change in the number of
roots can be caused by a loss of degree. The following result is proven in (Collins, 1975):

let K’ be a G-invariant cad of E4~! and let ¢; be any cell of K’; the total number of

distinct real roots of the polynomials in z4, Pi(z1,...,%4),..., Pa(21,...,24), remains
constant as (z,...,Z4—1) varies in ¢;. These roots form a well-ordered set of continuous
functions over ¢;: fi1(21,...,%2d-1),-., fipi(%1,...,24-1); in particular, no two such

roots ever coincide over ¢;. As a result, for each ¢; € K', the partition of ¢; x E! induced
by the hypersurfaces z4 = fi1(2),...,za = fiv.(z) (z € E4-!) defines an F-invariant
cad of E9.

This provides a recursive scheme for computing an F-invariant cad K of E4. The
algorithm takes F and d as input and recurses by calling itself with G, the projection of
F, and d—1 as arguments. The output of Collins’ construction includes (i} quantifier-free
formulas defining each cell of K and (ii) a cas of K of the form {8,...,5,}, where for
each i = 1,...,v, each coordinate of B8; € E4 is represented by a quantifier-free formula.
For our application the definitions of the cells are not really needed: instead, we need a
correspondence between sample points and their associated polynomials in F. If d > 1
then K has a base cad K’ = {c1,...,c,} which is G-invariant. Let {3],...,0;} be the
cas of K', computed recursively. For each i = 1,..., 4, let {8;1,...,08i2,,+1} be the
points of the cas of K, ordered in ascending z4-order, whose first d — 1 coordinates form
the point 3;. Each point §; 2; (1 < j < ;) lies on at least one algebraic variety of the
form Pi(z) = 0. Let I;; be any such value of [and let §;5; = (a1,...,@aq); we define
m; ; as the number of distinct real roots of Q(y) that are strictly smaller than a4, where
Q(y) = B, ;(a1,...,a4_1,y) is regarded as a polynomial in y. As part of the output, we
require the sequence {(!;1,m;,1),...,(liv;,miy;)} for each i = 1,..., u. This sequence
will be necessary later on in order to carry out the binary searches underlying the point

location algorithm.

The next step is to show how to derive these sequences from {f;1,...,8 20,41}
(1 < i < p). Recall that the latter sequences are provided directly by i‘.he Collins
construction. Let ¢(z) be the quantifier-free defining formula for B;3; (1 < j < v).
Trivially, we can test the predicate '

[3z € E% | ¢(2) and Py(z) = 0]

290 B. Chazelle and M. Sharir

foreachl=1,...,n, and pick as l; j, say, the first value of | found to satisfy the predicate.
To obtain m; ; it suffices to express with a prenex formula the proposition, denoted Fy,
that z is a root of Q and Q(y) = P, ;(a1,...,a4-1,y) has exactly k distinct roots strictly

smaller than z. In the spirit of (Arnon, 1981) we express Fi with the formula

RE aasi(®) =G0t 3) (V)|
[(Qz(z) +Q*)+ +Q*(w)=0) and (31 <--- < yr < z) and
(Q(z)#0o0rz< zor H (y;—z):O)].

1<i<k
The value of m; ; is then given by the unique index k for which RL"‘",'_“M_‘,,C(Z) is true,

with ﬂ.'gj = (ﬂ,’, z).

IV) Complexity Analysis: We assume that only rational symbolic calculations are used
during the course of the computation. The following complexity results are derived from
(Collins, 1975). Let b be the maximum degree of any polynomial in F in any variable.
Recall that all the polynomials in F have norm-length at most £. We assume that d and
b (but not necessarily £) are constants. The F-invariant cad produced by the Collins
construction consists of O((?b)s‘“n?d“l) = O(n"’d‘l) cells. *(Collins’ paper actually
states a slightly larger bound, but the one above easily follows from his derivations.)
The total number of polynomials defined in the various projections introduced in the
decomposition is bounded above by O((?b)sdnzd_l) = O(nzd_l) and the maximum
degree of each polynomial in any variable is at most -;-(2b)2‘_‘ = O(1). The norm-length

of each polynomial is at most (26)2°2 = O(¢).

Consider now the cas of the decomposition. Each algebraic point is represented
by its coordinates. Collins uses two different representations of real algebraic numbers.
One is the traditional root isolation method: the number « is the unique real root of an
integral polynomial falling in some interval I, whose endpoints are rationals of the form
a/2%. In the other representation, a real algebraic number 3 will appear as an element
of the algebraic number field @Q() (i.e., the smallest subfield of ® that contains both Q
and a). In this case, we represent § by a rational polynomial B(z) with # = B(«). The
g2d-=1

degree of each polynomial used in the definition of the cas’s is dominated by (2b)

O(1) and their norm-length is at most £(26)2 " n2**" = O(anul). Implementing the

Generalized Point Location 291

Collins construction proper requires O(Zs(2b)’“+' n2‘+°) = O(£3n2‘+°) bit operations.
Using Theorem 1 and the previous upper bounds, it is easy to see that this running
time asymptotically dominates the overhead of computing the sequences of the form

{1, min), ..., (liw;,mi)} In the unit-cost model, this gives us a total running time

of O (nz‘“) .

3. The Generalized Point Location Algorithm

Most of the ingredients entering the composition of the algorithm have already been

introduced. The data structure D(F) is defined recursively as follows: it includes
(1) D(G), where G is the projection of F;
(ii) a casof K;

(iii) a set of v one-word memory cells Cy,...,C, (which we conveniently associate with

the cells of K).

Let C{,...,C4 be the memory cells associated with D(G) (in one-to-one correspondence
with the cells of K/ = {¢y,...,¢,}). Each cell Cf (1 < i < p) stores a pointér to the
sequence {l;,l,...;l;,,i} previously defined. Recall that the cell CY is associated with
2v; + 1 cells of K (each projecting exactly onto ¢;). Let W; = {C;,l, e ,C",2y‘«+l} be
the corresponding memory cells in ascending z4-order. Consider the sequence S; =
{li1,..., 4} as an ordered set of keys. The possible outcomes of a binary search in
this set form a sequence of 2v; + 1 keys and open intervals, which we put in one-to-one
correspondence with W;. The data structure is now complete, so we can describe the

algorithm.

The input is a family of polynomials F, assumed to be preprocessed as previously
described. The generalized point location problem defined earlier can be reduced to the
following: given a query point z = (z,...,z4) € E%, compute the index i such that
C; corresponds to the unique cell of K that contains x. If z is a zero of one of several
polynomials of F, the index of one of them will be directly available from C;. If, on the
other hand, C; lies in one of the connected regions of C = { z € E¢ | [Ticica Pi(z) #0 },
access to the sample points provided by the cas of K would provide the desired answer.
But often the data structure does not need to store the sample points. Recall that we

are interested in evaluating a particular function f which is invariant over the regions of

292 B. Chazelle and M. Sharir

C. Before throwing away the sample points, we will precompute and store the values of
f at these points. Note that from a theorem of (Milnor, 1964) the number of connected
regions in C is at most singly exponential in d. Therefore the evaluation of f over the

sample points is bound to produce the same values repeatedly.

If d = 1 the algorithm is a trivial binary search, so let us assume that d > 1.
Recursively, we assume that we have available the index of the cell C that contains
(21,...,24-1). Perform a binary search in S; with respect to z4, and report the element
of W; corresponding to the result of the search. We can implement the generic comparison

against [; ; as the two-fold question:
1. Does P, ;(z) = 0 and is z the (m;; + 1)st real root of P, ;7

2. Is z4 strictly larger or smaller than the (m; ; +1)st real root of P, ;(21,...,24-1,¥),

regarded here as a polynomial in y?

The first part of Question (1) is easy to answer since it involves a simple polynomial
evaluation. The second part requires evaluating the predicate R. The second question

can be answered by computing the predicate

() 1> 2a) o8 ~(RE o,y ,r @) |-

Of course, since the polynomial A(y) = A, ,(z1,...,24-1,y) has constant degree and
rational coefficients it might be just as simple to enumerate all its real roots (as algebraic
numbers) and compare z4 against them. Each polynomial occurring in any projectior_l
has degree O(1) and norm-length O(f), so the analysis above applies to all the binary
searches performed in the location of z. Since the total number of these polynomials is
in O(n?*™"), the overall query time amounts to O(£3log n) in the bit model and O(log n)
in the unit-cost model. (Incidentally, note that these bounds involve constant factors
doubly exponential in d.) The preprocessing time is O(nz‘“) in the unit-cost model

and 0([3112“6) in the bit model.

Theorem 2. Let F = {Py,..., P} be a family of n d-variate polynomials with rational
coefficients and constant mazimum degree. The generalized point location problem on
F can be solved in O(logn) query time, using a data structure of size O(n"‘l); the
preprocessing time is O(nzdﬂ). This assumes that operations on any integers of length

proportional to the norm-length of the polynomials of F can be done in constant time.

Generalized Point Location 293

4. Point Location and Multidimensional Searching

Multidimensional searching refers to the general task of querying a database to
retrieve information of a particular nature. This can be defined formally by introducing
a finite set V, a query space @, and a response domain R. We also need a predicate
function p : Q x V — {0,1} and an evaluation function ¢ : 2¥ — R. A query is an
arbitrary element ¢ € Q and its output is the value of ¢({z € V |p(g,2)}). A classical
example is orthogonal range searching: V is a set of points in E4, Q is the set of all d-
dimensional isothetic hyperrectangles, p(q,) is true if and only if the point z lies in the
hyperrectangle ¢, and ¢ returns the cardinality of the input set in the counting version

of the problem; in the reporting version, ¢ is the identity function.

Elements of both V and Q are expressed as points in Euclidean space, and the value
of the predicate p(g,z) is determined by the signs of certain polynomials P,,Q.,...
evaluated at ¢. The family F = { P,,Q,... |z € V} is assumed to consist of d-variate
polynomials of constant maximum degree with rational coefficients. The reduction\of
multidimensional searching to point location is now obvious. This is called the locus
approach: subdivide E? via the varieties defined by F and assign to each resulting cell

the corresponding (constant) value of the function e.

Two implementations of the locus approach suggest themselves. One is to apply the
point location algorithm of the previous section. The other approach, suggested in (Yao
and Yao, 1985), is to linearize the polynomials by throwing in additional variables. For

example, the variety in E3,
2?2+ 2228 — 3 + 2Py +2=0
can be replaced by the hy;')erplane in ES
214229 — 323+ 24+ 25 = 0.

Searching for the location of the point (z,y, z) is thus reduced to the point location of
(zy?23, 2293, 24, 2%y, z) € EB® with respect to a linear variety. The obvious disadvantage
of the latter method is that the number of variables may jump from, say, d, to (b + 1)4,
where b is the maximum degree in a single variable of any polynomial of F. This can
have dire consequences, as the preprocessing cost will be doubly exponential in d in one

case and doubly exponential in (b + 1)¢ in the other.

294 B. Chazelle and M. Sharir

Let us illustrate our point location approach on a specific example. Let V be a set
of n points in E4 and Q be the set of d-variate polynomials of degree at most b with
rational coefficients. Given a query polynomial ¢ € @, count the number of points z € V
such that g(z) > 0. In our framework the query ¢ can be regarded as a rational point in
E¢, where ¢ is the dimension of the vector space @Q. It is well-known that ¢ = (dt"). (The
dimension ¢ is equal to the number of ways one can assign exponents to z;,z2,...,24
adding up to at most b.) The family F consists of n linear forms of ¢ variables. A query

is answered in time O(log n) at the cost of O(n?"~!) space.

Consider now the case where V is a set of n points in E? and a query is a pair (g, r)
consisting of a point ¢ € E¥4 and a positive rational number r. The response to the query
is the number of points in V lying within a distance r of q. The family F consists of n
(d+1)-variate polynomials p(z1,...,2441) of the form (z; —a;)?+- - -+(z4—ag)? —z3,,.

A query is answered in time O(logn) at the cost of O(n2‘+1‘1) space.

5. Biggest Stick, Segment Shifting, and Other Related Problems

In this section we concern ourselves with the following class of problems: given
two collections A, B of n objects each and a real-valued function F defined on A x B,
compute the minimum of F over A x B. If the function F can be evaluated anywhere
in constant time, problems of this type always have trivial O(n?) solutions. Note that
many common problems fall in this category, e.g., Hopcroft’s problem (given a collection
of lines and points in the plane, determine whether any line passes through any point)
and the diameter problem in E2 (given a three-dimensional polytope, compute the largest

interdistance between any two vertices).

We will give a method for solving these problems in subquadratic time. The tech-
nique is very general, and will always work as long as a fixed number of rational parame-
ters are needed to represent objects in A or B, and the expression F(a,b) can be specified
by a straight-line program of constant length involving algebraic functions (in the pa-
rameters specifying a and b) of bounded degree. Rather than describing the method in
full generality we will illustrate it by looking at two problems posed in the literature.
In a different context the next section will also provide an example of the same basic

technique.

Generalized Point Location 295

Here is a problem posed in (McKenna, 1986): given two collections F and G of
nonvertical segments in E3, such that each segment in F (resp. G) is parallel to the
rz-plane (resp. the yz-plane) and each segment in F lies above every segment in G, find
the largest distance d by which F can be shifted downwards until it hits G. It is easy to
rephrase this problem in the framework outlined above. As it turns out, it is not much
more difficult to solve the more general segment shifiing problem obtained by removing

any restriction on the orientation of the segments.

As a starter, we consider a special case of the problem, restricted line shifling, where
both F and G are collections of infinite lines. Each line of F is of the form (y = y;, z =
a;iz +b;), for i = 1,...,m, and each line of G is of the form (z = z;, z = ¢cjy + d;), for

j=1,...,n. In this particular case we want to compute
niliin(a.-zj + b; — CiYi — dj).

Put u; = (a;,b;,¥:,1), fori =1,... ,m and v; = (z;,1,—c;,—d;),for j=1,...,n. We

must now compute min, ; u; - vj, which gives us a new problem.

Given two sets of vectors U = {u;,...,u,} and V = {vy,...,v,} in E?, find
min(u;-v;|1<i<m,1<j<n).

Clearly the minimum must be attained at points u; and v; lying on the convex hulls of
U and V, respectively. So, without loss of generality, suppose that all points u;,v; lie
on the corresponding hulls. (Note that for the set of vectors arising in the restricted line
shifting problem, computation of the convex hulls can be done in time O(mlogm) and
O(nlogn), respectively, because each of these sets lies in a 3-dimensional cross-section
of E.) Next, without loss of generality, assume that m < n. For each vector v, the
minimum of u; - v is attained at that point (or points) u; € U at which U is supported by
a hyperplane whose inward drawn normal is v. Therefore, we need to preprocess U into
a data structure that supports queries of the above form. This is reasonably easy to do
in E? and E3. In E3, for example, we use the standard Gaussian sphere representation,
also known as the normal diagram of U. That is, we define a map on the sphere S? with
O(n) regions, so that for each region R; there corresponds a vector u; € U such that all

planes with inward drawn normals in R; support U at u;. Next, we construct a data

296 B. Chazelle and M. Sharir

structure which supports O(logm) point location queries in this spherical map. Such
a data structure can be obtained in O(m logm) preprocessing. We can now determine
min;(u; - v) in logarithmic time by simply locating v in the map. In a total time of

O((m + n)log min(m, n)) we can thus find the required minimum.

Note that this approach is also applicable to the restricted line shifting problem,
because the underlying set is essentially 3-dimensional. We can thus preprocess U as
above; given any vector v we simply remove its fourth coordinate and find the plane
supporting U whose inward normal is precisely the truncated v. This gives us an O((m+

n)log min(m, n)) time solution to McKenna’s restricted line shifting problem.

Next, we turn to the general segment shifting problem. Let A and B be two col-
lections, each consisting of n nonvertical segments in E3. The problem is to find the
smallest positive vertical distance F(a,b) between any pair of segments a € A and b € B.
The function F(a,b) is defined as follows: if the projections of a and b onto the zy-plane
intersect at some point ¢, then F(a,bd) is equal to z, — 23, where z, (resp. z;) is the

z-coordinate of the point of a (resp. b) projecting into c; otherwise F(a,b) = +o0.

Fix two segmefxts a € A, b € B. Each of them can be specified by six parameters,
e.g., the coordinates of its two endpoints. Let aj,as be the endpoints of a and by,b,
be the endpoints of b. Let aj, a3, b7, b5 be the projections of these four points onto the

zy-plane. We first find the two rational parameters o, 3, satisfying
aj + a(a3 — a7) = b7 + B(b3 — b7).

For the projections of a and b to intersect, it is necessary and sufficient that 0 < o <1
and 0 < B < 1. Clearly both o and 3 are rational functions of a}, a3, b}, and 5. Once

a and B have been found (and lie between 0 and 1), the desired F(a,b) is equal to
Z(a,b) = af + a(ag — o) ~ b — B(% — b)),

where ai, a3, b}, and b3 are the z-coordinates of the four corresponding points.

In other words, regarding each segment b € B as a point in ES, for each a € A, we

can express F(a,b) as follows:

F(a,b) = Z(a,b), if0<a(abd)<1and0<f(a,bd)<1;
T oo, otherwise,

Generalized Point Location 297

where a(a, b), B(a,b), and Z(a,b) are all rational functions of a and . Now consider the
collection F of O(n?) rational functions consisting of a(a,), 1—a(a, b), B(a, b), 1-p(a,b),
and Z(a,b) — Z(d’,b), for a,a’ € A. If we now apply the point location algorithm to the
collection F we wili be able to compute minge 4 F'(a,d) by simply locating b in its proper

Collins cell.

What does that presuppose? First of all, Theorem 2 tells us that the collection F
should consist of polynomials and not rational functions. This is clearly not a problem:
any rational P/Q can be replaced in F by the two polynomals P and Q, thus at most
doubling the size of the collection. Secondly, we need to have an explicit correspondence
between each cell of the Collins decomposition and its associated “winning” segment of
A (if any). To obtain one, the naive solution will do: simply interpret each point of the
cas as a segment in E3 and test it against every segment of A. Break ties arbitrarily.
What is the complexity of this solution? The cas consists of O ((n2)2°-1) = 0(n?"-2)
algebraic points, so labeling the Collins cells with the proper segments of A will require
O(n?"~1) time. This is largely dominated by the estimate of the preprocessing time
given by Theorem 2, that is, 0((112)2“) = O(n2u).

We can now use these observations to obtain a subquadratic solution to the seg-
ment shifting problem. We use a batching strategy inspired by Yao’s work on higher-
dimensional minimum spanning trees (Yao, 1982). The technique is somewhat reminis-
cent of the Four-Russian algorithm for Boolean matrix multiplication (Aho et al., 1974);
see also (Chazelle, 1987) for a generalized version of it. The idea is to partition the
collection A into [n1=1/2"] subsets of roughly equal size. Instead of preprocessing the
entire set A for point location, as decribed above, we work on each subset A; separately:
for every segment z € B we will determine in logarithmic time the minimum distance

to A;. Repeating this operation for each subset A; gives an overall running time of
0(n'~/?"nlogn) = O(n?=1/2" logn).

Theorem 3. The segment shifting problem on n line segments can be solved in O(n1'999878)

time.

We shall follow a similar approach to solve another problem posed by (McKenna,
1986): given a simple n-gon P, what is the longest line segment that can be drawn in

the closure of P? In McKenna’s terminology the segment is called the biggest stick of P.

298 B. Chazelle and M. Sharir

Obviously, the biggest stick is not necessarily unique (think of a regular n-gon), so the
term actually refers to any segment with the characteristics described above. A simple yet
crucial observation of McKenna is that any biggest stick must pass through two distinct
vertices of P. Going through n iterations of a linear vertex-visibility algorithm (ElGindy
and Avis, 1981), an O(n?) solution to the biggest stick problem follows readily. If the
vertex-visibility graph is o(n?) then we can obtain better results by using output-sensitive
methods for computing vertex visibilities, as in (Hershberger, 1987, Ghosh and Mount,
1987, Kapoor and Maheshwari, 1988). Of course, in the worst case the complexity is still

quadratic. Can one do better?

To begin with, we set the stage for divide-and-conquer by applying the polygon-
cutting theorem (Chazelle, 1982). In O(nlogn) time we find a diagonal ¢ which partitions
P into two subpolygons, P, and P, each of size at least roughly n/3. The diagonal cis a
line segment inside P joining two of its vertices. Next, we call the algorithm recursively
to determine a biggest stick in each of P; and P,. What remains to be done is to find a
biggest stick crossing the diagonal ¢ and keep the biggest of all three as the output. To

look at the problem in dual space will clarify some of the issues.

Consider the dual mapping which puts in one-to-one correspondence the point (a, b)
and the line az+by+1 = 0. If d is the distance from the origin O to the point p, the dual
of p is the line perpendicular to Op at distance 1/d from O and placed on the other side
of O. Any line £ crossing ¢ is thus mapped to a point £* in the dual plane. This point
lies in the double wedge W (not containing the origin) formed by the dual lines of the
endpoints of ¢. For each such line and i = 1,2, let F;(£*) be the length of the connected
portion of £MN P;, one of whose endpoints lies on ¢. Clearly the length of a biggest stick
s* through c is given by

max{ F1(£*) + F5(€*) £ crosses c }.

As shown in (Chazelle and Guibas, 1989), each of the functions F), and F, can be rep-
resented as a piecewise smooth function such that the projection of its smooth portions
forms a straight-edge convex subdivision of W. The domain of the functions can be
extended to the whole plane (setting F; to 0 outside of W), which gives us two convex
subdivisions M and N of the plane. These subdivisions encode the set of boundary

points of P that are visible from the diagonal ¢. More precisely, an edge of M (resp. N)

Generalized Point Location 299

encodes the visibility of a vertex of Py (resp. P:) from c; a vertex of M (resp. N) is dual
to a line passing through ¢ and two vertices of P, (resp. P,) with no other contact with
P between these three intersections. It is shown in (Chazelle and Guibas, 1989) that
both M and N have O(n) vertices and can be computed in O(nlogn) time. McKenna
has observed that Fy(£*) + Fy(£*) is maximized either at a vertex of M or N or at an
intersection between an edge of M and an edge of N. Finding the biggest stick s* can

now be regarded as a special case of the following more general problem.

Given two bivariate functions F(z,y) and G(z,y) and two associated convex planar
subdivisions M and N, such that F (resp. G) is smooth (or continuous, or convex) over
each region of M (resp. N), and such that F 4+ G attains its maximum either at vertices
of M or N or at intersections of edges of M with edges of N, is it possible to determine
the maximum of F 4+ G in o(mn) time, where m (resp. n) denotes the number of vertices
of M (resp. N)? By preprocessing each subdivision for point location we can evaluate F
and G at any point in O(logn + logm) time. This allows us to evaluate F + G at all the
vertices of M and N in O(nlog n + mlogm) time. There now remains the more difficult

task of testing edges against each other.

It should be clear that our previous batching technique can be applied in much the
same way. A few differences are worth noticing, however. Let us discuss the problem of
computing max(, e, F(z,y) + G(2,y) in logarithmic time, given some edge e of, say,
N. First, we must recall the geometric meaning of the subdivision N. With each edge

e of N is associated a vertex v of P, as well a8 a line segment £ on the boundary of P,
(Figure 1).

Figure 1

300 B. Chazelle and M. Sharir

For this reason, e can be represented as a point z € E® (two coordinates for v and
four for the segment £). Note that each point of e = e(z) is mapped dually to a line
passing through both the diagonal ¢ and the segment £. The edge e(2) is “obtained” by
pivoting the line in question around v and scanning all of £. Given two edges a € M
and e(z) € N, we define H(a,z) as being 0 if a and e(z) do not intersect and the value
of F(z,y) + G(z,y), where (2,y) = a N e(z), otherwise. Given an edge e(z) of N we
compute max,¢a H(a, z) by performing a point location in the appropriate cad in E®.
Which functions should be included in the underlying collection F? Let (p(a, z),¢(a, 2))
be the intersection of a and e(z). Since the endpoints of the edge e(z) can be expressed
as rational functions of z (i.e., of its coordinates), so can p(a,z) and g(a, z). Note that
the intersection of a and e(z) can be ensured by enforcing the signs of four three-by-
three determinants, each also a rational function of z. These constraints ensure that the
endpoints of a and e(z) lie on opposite sides of the intersection of the lines containing

the segments.

Let L be the line dual to the point (p(a,z),q(a,2)) and let A (resp. B) be the
intersections of L with the portion of the boundary of P; (resp. P,) associated with the
edge a (resp. e(z)). If H(a,z) is not zero then it is equal to the length of the segment
|AB|. The idea is to include all functions H(a,z) — H(b,z) in F, for all edges a,b € M.
A minor problem is that H(a,z) is not a polynomial, but the square root of a rational
function, and it is not even continuous. It is easy to extend H continuously, however, by
defining it as F(z, y)+G(z,y), where (z,y) is now the intersection of the lines supporting
a and e(z). Then, we include in F the rational functions (H/(a, z))2 — (H(b, z))z. We
also add to F the determinants that test for intersections between e(z) and edges of M.

Let us mention in passing a general method for dealing with sets F that include
arbitrary algebraic functions (and not just polynomials). Suppose that we have a func-
tion f(zy,...,x;) which is expressed as a root of a univariate polynomial P(z) whose
coeflicients are polynomials in 2;,...,2¢. Any zero (z,,...,2¢) of f is also a zero of the
polynomial P(0), so we can replace f by P(0) in F. As long as the queries are not zeros
of P(0) themselves the Collins decomposition obtained after the replacement will work
just fine. For example, let f(z,y,z) = Vz — 2,/y + 3\/z. Using repeated squaring, we
derive the identity

((f? + z — 4y — 92)% — 4z f? — 144yz)® = 2304zy2 2.

Generalized Point Location 301

Therefore we can use the substitute function

z? + 16y® + 812% — 8zy — 72yz — 18z2.

Returning now to the biggest stick problem, we are about ready to conclude. Once
again the cost of precomputing the function on the algebraic points of the casis dominated
by the construction of the data structure. As in the segment shifting problem, F contains
O(n?) functions, therefore the preprocessing requires O(nzu) time. The batching trick

leads to the following result.

Theorem 4. Computing the biggest stick of a simple n-gon can be done in O(n!-999878)

time.

Note that the same basic technique can be applied to handle the sum of two bivariate
functions over more general planar maps. The complexity, of course, will depend on the

particular definitions of these functions.

6. A Problem on Points in Motion

Atallah has posed the following problem (Atallah, 1985): Suppose that n points are
moving in the plane, with the trajectory of each point described by a polynomial function
of the time. What is the first instant at which their convex hull will enter a steady—state,
i.e., a combinatorially stable configuration? We shall assume that each polynomial has
degree bounded above by a constant. Since the output can be a fairly arbitrary algebraic
number, we will content ourselves with a description of that number involving a defining
polynomial along with an isolating interval. The naive algorithm consists of computing
the steady convex hull in O(nlogn) time (Atallah, 1985), and then determining the first
time each point will achieve its steady positioning with respect to each edge on the hull.
Let e be an edge of the hull: for each moving point p it suffices to compute the last instant
(if any) at which p lies on the line supporting the edge e. Let t(e) be the maximum value
obtained by this process. The desired answer is the maximum value of t(e) over all edges
e of the convex hull. Can this quadratic algorithm be improved? We will show that it can
indeed—well, at least theoretically. We will use our generalized point location algorithm

to produce an O(n?~¢) time algorithm, for some small positive constant e.

302 B. Chazelle and M. Sharir

Let V = {p1,-..,pn} be a set of n > 2 moving points in the Euclidean plane. We
assume the existence of 2n univariate polynomials z;,¥1,...,Zn,yn of degree d with
rational coefficients, such that for each i (1 < i < n), z;(¢) and y;(t) are respectively the
z and y coordinates of p; at time ¢t > 0. Let p;,,...,p;, be the points on the boundary
of the convex hull of V at time ¢, given in clockwise order, with) < min(iy,...,%).
(If somehow p;, ..., pi, coincide for some j,j’ then their indices should appear in the
order i; < ... < ij».) Let H(t) be the uniquely defined sequence (iy,...,%). It is clear
that H(t) converges, as t grows to infinity [A]. We define the threshold of H(+0c0) as the
smallest value of t > 0 such that [(Vt' > t) | H(t) = H(t')].

Let zi(t) = Logjca @it and 4i(t) = Yogjcabinjt?, for i = 1,...,n. Without loss
of generality, assume that H(+o00) is the sequence (1,...,m), for m < n, and that all
n points (a;0,--.,8; 4,0 0,.--,b 4) of @**2 are pairwise distinct. In O(nlogn) time
compute H(+o00) [A] and check all pairs (p;, pit1) (1 < i < m) in order to determine
the largest g > 0 such that, for some i, we have z;(to) = 2i31(t0) and ¥ (fo) = yi+1(to);

if not defined, set ¢ = —oo. Here (as in the following), index arithmetic is taken mod
m. Similarly, we ensure the convexity of the polygon {p1,...,pm} by considering the
function

£ile) = () — vir1()) = + (zigr(t) — zi(1)) @y + zi(W)yig1 (1) — B () zigr (2). .

The point ¢ = (gs,¢y) € E? lies to the right (resp. on or to the left) of the oriented
line (p;, Pipit1) iff fi(g) < O (resp. fi(g) = 0 or fi(q) > 0). For each p; (1 < i < m)
compute the largest real root of fj;1(p;) as a polynomial in t; discard every case where
the polynomial is identically zero. Let ¢; be the largest Vt;lue thus obtained (or —oo if
there is none), and let t; = max(0,,¢1). Once H(+00) is available, t2 can be easily
computed in O(n) time. All that remains to be done is to compute the first instant at
which each p; (m < j < n) lies inside H(+00) for good. To accomplish this, we allow
ourselves some preprocessing. Let g(t) = (¢-(t), ¢y(t)) be a time-varying point in E2, with
0:(t) = Logjca Gt and ¢y(t) = Fogjcqqft?. The point x = (4f,.-., 95,98, --,q%)
belongs to £2¢+2 and is independent of n. Let sign A = —1 (resp. = 0,1) if A < 0 (resp.
A =0,>0). We define

tx) = min{t € R|t >ty and (Vi; 1 <i < m)(Vt' > t)sign f;(q(t)) = sign fi(e(t')) }

Generalized Point Location 303

Clearly, t(x) can be computed in O(m) time. Next, we describe a fast algorithm for

computing ¢(x) based on point location.

Let F = {¢1(x,1),--.,Pm(x,t)}, where ¢;(x,1) denotes the (2d + 3)-variate polyno-
mial of degree 2d + 1,

FOYS Y,) oY),

0<i<d 0<i<d
with ¢ being the (2d + 3)rd coordinate. Let K be the F-invariant cad of E24+2 provided
by the procedure described in section 2, and let K’ = {¢;,...,c,} be its base cad (i.e.,
the induced cad of E?4+2). Recall that, for each ¢; € K’, the procedure provides us with
a sequence of indices (possibly empty) S; = {li1,...,l;,} with the following meaning:
for any given x € c; the line x x E! contains an increasing sequence of real roots for
the univariate polynomials ¢;, , (x,t),..., & iy {x,t). The interpretation of this sequence
is trivial: it gives the indices i of the lines supporting p;pi41 that are intersected by
the trajectory of x in chronological order (from t = —o0o to t = +0c0). If the sequence
is empty then x never intersects such a line. Once K’ has been preprocessed for point
location, computing t(x) is straightforward. Locate the cell ¢; that contains x and check
whether the sequence S; is empty. If yes, set ¢(x) = t3. If the sequence is not empty,
the trajectory of x intersects the line passing through pi;, pi;,, +1 at some time ¢ and
does not intersect any other such line subsequently. We obtain t by computing the
largest real root of ¢y, (x,t) as a polynomial in ¢ (which must exist). Finally we set
t(x) = max(t3,t). From Theorem 2 we immediately conclude that in O(m?***") time it
is possible to construct a data structure so that the function t(x) can be evaluated at
any point x € E?¢+2 in O(log m) time.
We are now ready to attack Atallah’s problem, using the same batching trick used in
the previous section. This leads to an algorithm with a running time of O (n?-/ 224%?

We omit the details.

logn).

Theorem 5. In O(nz"l/z““ log n) time it is possible to compule the threshold time of
the steady-state conver hull of n points moving in the plane according to polynomial

functions of time of mazimum degree d.

We close this section with a few remarks about Atallah’s problem. Qur technique

clearly is general enough to be applied to other problems (e.g., closest/farthest pairs). An

304 B. Chazelle and M. Sharir

interesting question is to determine whether a more ad hoc treatment of these problems
might lead to a more efficient solution. For example, a continuity argument easily shows
that ensuring the local coherence of the steady-state Voronoi diagram is sufficient to
compute its threshold (e.g., checking the nonzero length of its edges). It is then fairly
simple to devise an O(nlogn) algorithm for computing the steady-state Voronoi diagram
of n moving points as well as its threshold. Note that the same argument can be made
for convex hulls if all the points are guaranteed to lie on it. One essential feature of
these easy cases is that the output contains all the input. Is this in general a necessary

condition of efficiency?

7. A Discussion of the Batching Technique

In the preceding sections we have given a few examples of techniques for obtaining
(slightly) subquadratic solutions to a large variety of geometric problems which admit
trivial exhaustive quadratic solutions. Many other problems yield to our technique. For

example,

{i) Given a set of m red objects (algebraic curves, surface patches, etc.) and n blue ob-
jects, does any red object intersect any blue object? Hopcroft’s problem, mentioned
above, is such a problem; detecting intersection beween a collection of red segments

and a collection of blue segments is another example.

(i) Given m rays and n triangles in 3-space, find the first triangle hit by each of the

rays, or alternatively, find the number of triangles stabbed by each ray.

(iii) Given a collection of n (disjoint) triangles in three dimensions, find all pairs of
mutually visible vertices. Here, we regard each pair of vertices as a query point z
in E®; each triangle A corresponds to a Boolean predicate that expresses the fact
that 2z is not blocked by A. Batching the triangles and using our technique, we can

obtain a subcubic solution (a cubic solution being trivial).

Reflecting on our results, we can see a whole spectrum of problems amenable to our

techniques.

(A) The simplest of them admit linear or near-linear data structures and can be solved

in O(nlogn) time, e.g., the closest-pair problem in the plane.

Generalized Point Location 305

(B) Next in line, we have problems for which we have efficient, polynomial-size data
structures and for which the batching technique is very effective, e.g., computing the

diameter of n points in E3, Hopcroft’s problem (section 5).

(C) Then we have the problems of the type discussed in this paper: sufficiently compli-
cated as to offer no obvious alternatives but computing Collins decompositions (in

theory, that is).

(D) Finally, we have problems for which it is not clear even how to obtain a Collins
decomposition of the form used in this paper. For example, consider a variant of
problem (iii) above in which we want all pairs of mutually visible triangles (i.e., pairs
where a point of one triangle can see some point of the other one.) Can this problem
be solved in subcubic time using our technique? As it turns out, the best solution

currently known runs in time O(n*a(n)) (McKenna and O’Rourke, 1988).

A final comment concerns the use of probabilistic algorithms for the problems studied
in this paper. Such a method has been developed recently in (Haussler and Welzl,
1987, Clarkson 1987, 1988, Edelsbrunner, Guibas, and Sharir, 1988). It can be roughly
described as a divide-and-conquer paradigm which uses random sampling of a small
subset of the input objects to obtain a cell decomposition such that, with high probability,
each cell contains (or intersects) only a small number of the given objects. If the queries
are known in advance (which is the case in the problems studied in section 5) then we can
partition them among the cells of the decomposition, so that each point can interact only
with a small number of objects. We believe that one can develop a general framework for
blending this randomized method with our Collins decomposition technique, and obtain
(slightly) improved probabilistic algorithms for such problems. We leave this as an open

problem.

Acknowledgments

We wish to thank Johan Swenker for providing us with useful comments about this
work. We also thank the referees for their diligence and scrutiny, which helped improve

the presentation of this paper.

306 B. Chazelle and M. Sharir

Bernard Chazelle wishes to acknowledge the National Science Foundation for sup-
porting this research in part under Grant CCR-8700917. Micha Sharir is pleased to ac-
knowledge the support of the Office of Naval Research under Grant N00014-87-K—0129,
the National Science Foundation under Grant DCR-83-20085, the Digital Equipment
Corporation, the IBM Corporation, and the NCRD — the Israeli Council on Research

and Development.

References
Aho, A.V,, Hopceroft, J.E., Ullman, J.D. (1974). The design and analysis of computer
algorithms, Reading, MA, Addison-Wesley.

Arnon, D.S. (1981). Algorithms for the geometry of semi-algebraic sets, Tech. Rep. 436,

Computer Science Dept., University of Wisconsin, Madison.

Arnon, D.S., Collins, G.E., McCallum, S. (1984a). Cylindrical algebraic decomposition
I: the basic algorithm, SIAM J. Comput., 13, 865-877.

Arnon, D.S., Collins, G.E., McCallum, S. (1984b). Cylindrical algebraic decomposition
II: an adjacency algorithm for the plane, SIAM J. Comput., 13, 878-889.

Atallah, M.J. (1985). Dynamic computational geomeiry, Comput. Math. with Applica-
tions, 11, 1171-1181.

Ben-Or, M., Kozen, D., Reif, J. (1984). The complezily of elementary algebra and geom-
etry, Proc. 16th Ann. ACM Symp. on Theory of Computing, 457-464.

Brown, W., Traub, J.F. (1971). On Euclid’s algorithm and the theory of subresultants,
J. ACM, 18, 505-514.

Chazelle, B. (1982). A theorem on polygon cutting with applications, Proc. of 23rd Ann.
IEEE Symp. on Foundat. of Computer Science, 339-349.

Chazelle, B. (1987). Some technigques for geometric searching with implicit set represen-

tations, Acta Informatica, 24, 565-582.

Chazelle, B., Guibas, L.J. (1989). Visibility and intersection problems in plane geometry,
Disc. and Comput. Geom., 4, 551-581.

Generalized Point Location 307

Clarkson, K.L. (1987). New applications of random sampling in computational geometry,
Disc. Comp. Geom., 2, 195-222.

Clarkson, K. (1988). Applications of random sampling in computational geometry, II,
Proc. 4th Ann. ACM Sympos. Comput. Geom., 1-11.

Cohen, P.J. (1969). Decision procedures for real and p-adic fields, Comm. Pure and
Applied Math., 22, 131-151.

Cole, R. (1986). Searching and storing similar lists, J. Algorithms, 7, 111-119.

Collins, G.E., (1975). Quantifier elimination for real closed fields by cylindric alge-
braic decomposition, Proc. 2nd GI Conf. on Automata Theory and Formal Languages,

Springer-Verlag, LNCS 33, Berlin, 134-183.
Collins, G.E., Loos, R. (1976). Polynomial real root isolation by differentiation, Proc.

ACM Symp. on Symbolic and Algebraic Computations, Yorktown Heights, NY, 15-25.

Dobkin, D.P., Lipton, R.J. (1976). Multidimensional searching problems, SIAM J. Com-
put. 5, 181-186.

Dobkin, D.P., Silver, D. (1988). Recipes for Geometry and Numerical Analysis - Part I:
An Empirical Study, Proc. 4th Ann. ACM Sympos. Comput. Geom., 93-105.

Edelsbrunner, H., Guibas, L.J., Stolfi, J. (1986). Optimal point location in a monotone
subdivision, SIAM J. Comput., 15, 317-340.

Edelsbrunner, H., Guibas, L.J., Sharir, M. (1988). The complezily of many faces in
arrangements of lines and of segments, Proc. 4th Ann. ACM Sympos. Comput. Geom.,
44-55.

ElGindy, H., Avis, D. (1981). A linear algorithm for computing the visibility polygon
from a point, J. of Algorithms, 2, 186-197.

Ghosh, S.K., Mount, D.D. (1987). An output sensitive algorithm for computing visibility
graphs, Proc. 28th Annu. IEEE Symp. on Foundat. of Comput. Sci., 11-19.

Haussler, D., Welzl, E. (1987). Epsilon-nets and simplex range gueries, Disc. Comp.
Geom. 2, 127-151.

Hershberger, J. (1987). Finding the vistbility graph of a simple polygon in time propor-
tional to its size, Proc. 3rd Ann. ACM Sympos. Comput. Geom., 11-20.

308 B. Chazelle and M. Sharir

Hoffmann, C.M., Hopcroft, J.E., Karasick, M.S. (1988). Towards Implementing Robust
Geometric Computations, Proc. 4th Ann. ACM Sympos. Comput. Geom., 106-117.

Kapoor, S., Maheshwari, S.N. (1988). Efficient algorithms for Euclidean shortest path
and visibility problems with polygonal obstacles, Proc. 4th Ann. ACM Sympos. Comput.
Geom., 172-182.

Mabhler, K. (1964). An inequality for the discriminant of a polynomial, Michigan Math.
3., 11, 257-262.

McKenna, M. (1986). The biggest stick problem, First Computational Geometry Day,
New York University.

McKenna, M., O’Rourke, J. (1988). Arrangements of lines in 3-space: a data structure
with applications, Proc. 4th Ann. ACM Sympos. Comput. Geom., 371-380.

Milnor, J. (1964). On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15,
275-280.

Monk, L. (1974). Elementary recursive decision procedures, PhD thesis, University of
California, Berkeley.

Preparata, F.P., Shamos, M.I. (1985). Computational geometry: an introduction, Springer-
Verlag, New York, NY.

Sarnak, N., Tarjan, R.E. (1986). Planar point location using persistent search tree‘s,

Comm. ACM 29, 669-679.

Seidenberg, A. (1954). A new decision method for elementary algebra, Annals of Math.,
60, 365-374.

Schwartz, J.T., Sharir, M. (1983). On the “piano movers” problem. II: General tech-
niques for compuling topological properties of real algebraic manifolds, Adv. in Appl.
Math, 4, 298-351.

Tarski, A. (1948). A decision method for elementary algebra and geometry, Univ. of
Calif. Press, 1948, 2nd edition, 1951.

van der Waerden, B.L. (1953). Modern Algebra, Ungar Co., New York.

Yao, A.C. (1982). On constructing minimum spanning tree in k-dimensional space and

related problems, SIAM J. Comput., 11, 721-736.

Generalized Point Location 309

Yao, A.C., Yao, F.F. (1985). A general approach to d-dimensional geomeiric queries,
Proc. 17th Ann. ACM Symp. on Theory of Computing, 163-168.

