Algorithmica (1994) 11: 116-132

Algorithmica

© 1994 Springer-Verlag New York Inc,

Algorithms for Bichromatic Line-Segment Problems
and Polyhedral Terrains'

Bernard Chazelle,” Herbert Edelsbrunner,® Leonidas J. Guibas,*
and Micha Sharir®

Abstract. We consider a variety of problems on the interaction between two sets of line segments in
two and three dimensions. These problems range from counting the number of intersecting pairs
between m blue segments and n red segments in the plane (assuming that two line segments are disjoint
if they have the same color) to finding the smallest vertical distance between two nonintersecting
polyhedral terrains in three-dimensional space. We solve these problems efficiently by using a variant
of the segment tree. For the three-dimensional problems we also apply a variety of recent combinatorial
and algorithmic techniques involving arrangements of lines in three-dimensional space, as developed
in a companion paper.

Key Words. Computational geometry, Line-segment intersection, Segment trees, Lines in space,
Polyhedral terrains, Deterministic and randomized algorithms.

1. Introduction. In this paper we study a variety of problems on the interaction
between two sets of line segments in two and three dimensions. These problems
can all be solved efficiently by using a variant of the well-known segment tree (see,
e.g, [PS]). We begin by listing the problems and their solutions. More background
information and references are given later in the sections that address the
individual problems.

ProBLEM L. Let B be a set of m pairwise disjoint “blue” line segments in the
plane, let R be a set of n pairwise disjoint “red” line segments, and define
N =m + n. Report all bichromatic pairs of intersecting line segments. We solve

! Work on this paper by the first author has been supported in part by the National Science
Foundation under Grant CCR-9002352. Work by the second author was supported in part
by the National Science Foundation under Grant CCR-8714565. The fourth author has been
supported in part by the Office of Naval Research under Grant N0014-87-K-0129, by the National
Science Foundation under Grant NSF-DCR-83-20085, by grants from the Digital Equipment
Corporation and the IBM Corporation, and by a grant from the US-Israeli Binational Science
Foundation,

2 Department of Computer Science, Princeton University, Princeton, NJ 08544, USA.

? Department of Computer Science, University of Illinois at Urbana~Champaign, Urbana, IL 61801,
USA.

4 DEC Systems Research Center, Palo Alto, CA 94301, USA, and Computer Science Department,
Stanford University, CA 94305-4055, USA.

? Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA, and
School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel.

Received March 12, 1990; revised January 28, 1992. Communicated by D. T. Lee.

e e i —p—

— g

o T

i ———

| TuT

T e ot e e e o = - e

Algorithms for Bichromatic Line-Segment Problems and Polyhedral Terrains 117

this problem in time O(N log N + k) and linear storage, where k is the number of
blue-red intersecting pairs (see Sections 2 and 3.1).9

PrROBLEM 2. Given the same data as in Problem 1, count how many bichromatic
pairs of intersecting line segments there are. The solution to this problem takes
time O(N log N) and linear storage (Sections 2 and 3.1).

PrROBLEM 3. Given the same data again and an integer k, find the kth bichromatic
intersection point from the left. This point can be found in time O(N log N) and
linear storage (Section 3.2).

ProBLEM 4. Given two convex polytopes, &/ and %, in three dimensions with m
and n edges, N = m + n, compute the number of faces bounding their Minkowski
sum, that is, the polytope {p + q|pe o, qe #}. This takes time O(N log N) and
linear storage (Section 3.3).

PROBLEM 5. A polyhedral terrain is the graph of a real bivariate continuous
function, or, equivalently, a piecewise linear continuous surface in three dimensions
that meets every vertical line in exactly one point. Given two nonintersecting
polyhedral terrains with m and n edges, N = m + n, find the smallest vertical
distance between them. We give an algorithm that solves this problem in O(N*/3*#)
time and storage, for any ¢ > 0 (Section 5).

PrOBLEM 6. Given the same data as in Problem 5 but allowing the two terrains
to intersect, compute their upper envelope, that is, pointwise maximum. For this
problem we have an algorithm that takes time O(N32"¢ + k log? N) and worst-
case storage O(N), where ¢ is an arbitrary positive constant and k is the number
of edges of the resulting envelope (Section 6).

While Problems 1-4 can be solved using a variant of the segment tree plus some
standard data structuring techniques, Problems 5 and 6 require additional techni-
ques (developed in [CEG*]; see also below) which employ (derandomized) random
sampling of the data.

The common theme of the solutions to the above problems is that they all
exploit the same data structure, the hereditary segment tree, which is introduced
in this paper. It is very similar to the standard segment tree, except that it stores
two sets of line segments in a manner that makes it easy to keep track of their
interactions. The data structure is described in detail in Section 2, where we
demonstrate its applications to Problems 1 and 2. Using certain modifications
and extension of the basic technique of Section 2 we improve the solutions to
Problems 1 and 2 in Section 3 and we also give solutions to Problems 3 and 4.

Section 4 discusses another extension of the basic hereditary segment tree used
in Sections 5 and 6 to solve Problems 5 and 6. Both problems ask questions about

8 Unless the base of a logarithm is explicitly noted it is assumed to be 2.

118 B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir

the interaction between two polyhedral terrains in three-dimensional space. We
apply the hereditary segment tree to their xy-projections to obtain a compact
representation of the way in which the terrain edges cross above or below one
another. This enables us to break the problem into smaller subproblems, with the
advantage that in each subproblem we can extend the edges to lines without
changing the solution to the subproblem. These subproblems, among several
related ones, have been studied in a companion paper [CEG*] that deals with
combinatorial and algorithmic problems for arrangements of lines in three dimen-
sions. Combining the techniques developed in [CEG™*] with our hereditary
segment tree, we obtain reasonably efficient solutions for Problems 5 and 6.

2. The Basic Hereditary Segment Tree. In this section we introduce our basic
data structure, and apply it to Problems 1 and 2. Recall that in these problems
we have two collections, B = {b;, by, ..., b,} and R = {ry, ra,..., 1.}, of m “blue”
and n “red” line segments in the plane, so that any two line segments of the same
color are disjoint. Our goal is to compute (or just count) all bichromatic pairs of
intersecting line segments. Define N = m + n. The straightforward application of
our basic techniques leads to an algorithm that reports all intersecting bichromatic
pairs in time O(N log* N + k), where k is the number of such pairs, and uses
O(N log N) storage, and to another algorithm that counts these pairs in time
O(N log* N) and uses O(N log N) storage. Using additional methods we show in
Section 3.1 how to remove a factor log N from each bound.

Our first step is to construct a segment tree, 7, on the interval decomposition
of the x-axis induced by the x-coordinates of the endpoints of the given line
segments. More specifically, 7 is defined as follows. Let us assume that the
x-coordinates of the 2N endpoints are all distinct; if they are not we can get this
property by simulating an arbitrarily small perturbation of the x-coordinates. As
a result, the 2N x-coordinates decompose the x-axis into 2N + 1 (atomic) intervals.
We define these intervals as closed sets. J is a minimum height ordered binary
tree whose ith leaf corresponds to the ith atomic interval from the left. Each interior
node y represents an interval I,, which is the union of the intervals associated
with the leaves of the subtree rooted at u. Alternatively, we can think of u as
representing the vertical slab o, = {(x, y)|x€l,,y€ #}. In the standard segment
tree, each node u (internal and external) has an associated list L,, consisting of
all line segments s, with the property that the vertical projection of s contains I,
but does not contain I, where x is the parent of p. In our version we maintain
four lists with each node p. First we split L, into two standard lists, B, and R,,
consisting of the blue and red line segments in L,. Furthermore, we associate with
u two additional hereditary lists B¥ and R¥. The list B} contains the blue line
segments stored in L, for all proper descendants v of u; R¥ is the red analog of
B}. In other words, whenever we store a line segment s in some B, or R,, we also
store the line segment in the hereditary list of each proper ancestor u of v (see
Figure 2.1).

Even though a line segment s can be stored in the standard lists of more than
one descendant of a node yu, we still keep only one copy of s in the appropriate

Algorithms for Bichromatic Line-Segment Problems and Polyhedral Terrains 119

P——————

S

Fig. 2.1. The segment s is stored in the standard lists of all marked nodes and in the hereditary lists
of all ancestors of the marked nodes. These ancestors lie on two paths in the tree.

hereditary list of u. For the applications that follow, it is helpful to regard each
element of a standard or hereditary list of a node u as representing the subsegment
s n o, of the corresponding line segment s. As suggested by this interpretation, we
refer to line segments stored in the standard lists as long segments and to those
stored in the hereditary lists as short segments.

This is our basic hereditary segment tree, which is borrowed from [C1]. In some
of the applications given below we modify it slightly to improve its performance.
Modifications different from the ones to be described have been also used in [VW]
for point enclosure problems.

In a standard segment tree, the total size of all the lists L, is O(N log N). Our
first observation is that this is also the total size of all hereditary lists. Indeed,
each line segment s is stored in O(log N) standard lists. The interior nodes that
store s in their hereditary lists form two paths both starting at the root of 7°; thus
s is stored in at most O(log N) hereditary lists and therefore O(log N) times
altogether (see also [VW]).

We next show how to use the hereditary segment tree to solve Problems 1 and
. 9. We first construct the tree 4 for the given collections B and R in time
O(N log N), using standard techniques. At each node u of J~ we compute (or, in
Problem 2, just count) the intersections between

(i) a line segment in B, and one in R,
(i) a line segment in B, and one in R}, and
(iii) a line segment in B} and one in R,.

We refer to type (i) intersections as “long-long intersections,” and to the two other
types as “long-short intersections.” According to our interpretation, in all three
cases we consider only the portions of the line segments within o,,.

Note that by repeating this step for all nodes u of 7~ we detect all bichromatic
intersecting pairs; moreover, each pair is detected exactly once. Indeed, suppose
b; N r; # . Then there is a unique leaf A of 7 such that the point p = b; N r, lies
in ¢, (assuming that the x-coordinate of p is different from all endpoints of atomic
intervals). Moreover, b, is stored in the standard list of some unique node along
the path from A to the root, and so is r;. Let these nodes be x; and x;, respectively.

120 B. Chazelle, H, Edelsbrunner, L. J. Guibas, and M. Sharir

If x; = K;, then p will be detected as a long—long intersection at x;; otherwise, it
will be detected as a long~short intersection at either ; or k;, whichever is higher
in 7. This observation is significant because when we deal with problems that
involve counting intersections, rather than reporting them, we can simply sum up
the numbers computed at the nodes.

COMPUTING LONG—LONG INTERSECTIONS. Let m, = |B,| and n, = |R,|. Sort each
of these lists in increasing y-order; since the line segments in each list are pairwise
disjoint, each of these orders is fixed throughout the slab ¢,. Let (by, b,, ..., bu,)
and (ry, 73, ..., I,) be the two sorted lists. Next we merge the two lists twice, once
according to their order along the left boundary of ¢,,, and once according to their
order along the right boundary. This allows us to determine for each blue line
segment b e B, two indices, i, and jj, such that b lies between r;, and ry .., along
the left boundary and between r;, and r;, ., along the right boundary. However,
then the red line segments intersecting b within o, are precisely 7; 4y, ..., 7, if
iy <Jjp, and T 4qs..., 1y, Otherwise. We can therefore enumerate all long-long
intersections within @, in time O(m,logm, + n,logn, + k,), where k, is the
number of such intersecting pairs. Alternatively, we can calculate the number k,
in time O(m, log m, + n, logn,).

COMPUTING LONG—SHORT INTERSECTIONS. Without loss of generality, consider
only intersections between B} and R,,. Let m}! = | B}¥| and n, = |R,|. As above, we
sort the list R, in ascending y-order and write (ry, 73, r,) for the resulting
sequence. Then, for each b e BY, we locate the two endpoints of b (within g,) in
the list R, using binary search twice. The line segments of R, that lie between
these two locations are precisely those that intersect b within ¢,. Thus, in time
O((m} + n,) log n, + k}) we can find all k¥ intersecting pairs between B}} and R,.
To count these pairs takes time O((m} + n,) log n,). Intersections between R}} and
B, are handled symmetrically.

Summing up these bounds over all nodes p of 7, taking also into account the
cost of constructing -, and observing that the total size of all lists is O(N log N),
we obtain the bounds on reporting and counting bichromatic pairs of intersecting
line segments mentioned at the beginning of this section.

3. Modifications, Extensions, and Applications. Having introduced our basic data
structure, we continue our presentation with a number of modifications, exten-
sions, and further applications, proceeding down the list of problems given in the
introduction. Section 3.1 presents the additional techniques needed to improve the
performance of the two intersection algorithms of Section 2, and Sections 3.2 and
3.3 discuss Problems 3 and 4.

3.1, Improving the Bichromatic Intersection Algorithms. In this section we show
how to improve both the storage and the time bound of the two intersection
algorithms in Section 2 using standard data structuring techniques.

Algorithms for Bichromatic Line-Segment Problems and Polyhedral Terrains 121

Let us first address the issue of reducing the storage requirements. This is done
by noting that for most of the listed problems (including Problems 1 and 2) we
do not need to maintain the entire segment tree, but only process it node by node.
We therefore traverse the tree in preorder so that at any time we maintain only
a single path of 7. Assuming we have the standard lists, B, and R,, as well as
the hereditary lists, B* and R¥, at a node x, we can construct the lists of a child
p simply by scanning BY¥ and R}¥. To initialize those lists at the root p we note
that B, = R, = (J and B} = B and R} = R. Notice that a line segment in B, and
R, can be neither in a standard nor in a hereditary list of . Let us now argue
that the total size of all lists along a path is at most proportional to N. This is
easy to see for the standard lists because a line segment can be in at most one
standard list along a single path. The argument for the hereditary lists is based
on the well-balancedness of the segment tree (and on the assumption that the
x-coordinates of the endpoints are pairwise different). If a line segment is in B
or in R¥, then at least one of its endpoints lies in the vertical slab o, of x. However,
then the number of endpoints in ¢, is one less than the number of leaves in the
subtree rooted at x. Since the number of leaves in the subtrees of nodes on a path
decreases geometrically, the total count and thus the total size of the hereditary
lists of these nodes is O(N).

To cut down the time from O(N log? N) to O(N log N) we need to achieve two
goals. One is to avoid having to sort the standard lists at each node of 7, and
the other is to speed up the search of elements of hereditary lists in the standard
lists.

To address the first issue, we begin by finding a linear extension of the following
relation on the blue line segments: b, < b; if the x-projections of b; and b; overlap
and b, lies above b, along a vertical line that intersects both. The relation can be
computed in time O(m log m) by a simple left to right sweep, and a linear extension
can then be found in time O(m). We sort R in a similar manner, Then we do the
preorder traversal and the construction of the lists as described above. Since the
standard lists and the hereditary lists of a node u are derived by scanning B¥ and
R¥, where x is the parent of y, they are in sorted order already. Doing it this way,
we maintain the sortedness of all lists throughout the traversal. The total time
consumed by this procedure is proportional to the total size of all lists which is
O(N log N) as argued before.

The second step in speeding up the binary search can be achieved by “fraction-
ally cascading” the standard lists (see [CG] for a complete description of the data
structuring technique called fractional cascading). Here is what we mean by
this. As we go down the current path we maintain each standard list in a padded-
up form, so that it also contains some elements of the standard lists of ancestor
nodes along the path. As we go down from a node x to one of its children ,
we take every fourth element of the (padded) list B,, pass down these elements
to u and merge them with B,. Similar action is performed on R, and R,. These
operations neither increase the storage nor the time of the algorithm by more than
a constant factor. Note that the fractional cascading technique is performed
on-the-fly, which is somewhat different from the standard static version of the
technique (as described in [CG1). Also it proceeds downward, which is the reverse

122 B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir

of the more standard upward direction generally used when cascading on
trees.

The benefits of the cascading technique are reaped when we back up from x to
k. We can assume inductively that each endpoint of any (short or long) red line
segment re R} U R, has been located among the line segments in the standard
blue list B,. Since this list also contains a portion of the list B,, it is easy, by
maintaining appropriate pointers between these lists and by investing an addi-
tional constant time per endpoint, to locate all these endpoints among the line
segments in B, as well. Similar speed-up is achieved in a completely symmetric
manner for locating the blue endpoints in the list R,.. Notice that we thus construct
the lists in preorder and evaluate them in an order which is similar to postorder.
More specifically, the evaluation at a node « is done in two steps, once when we
back up from its left child and then again when the recursion returns from its
right child. The preceding considerations imply our first main result.

THEOREM 3.1, Given a set of m blue and a set of n red line segments in the plane,
N = m + n, such that no two line segments with the same color intersect.

(i) The k bichromatic pairs of intersecting line segments can be reported in time
O(N log N + k) and storage O(N).

(i) The bichromatic pairs of intersecting line segments can be counted in time
O(N log N) and storage O(N).

The first of these two results is not new; indeed, the algorithm of Mairson and
Stolfi [MaS] achieves the same asymptotic bounds, and the time-complexity is
also matched by the more general algorithm of Chazelle and Edelsbrunner [CE].
The second result is new. We note that the best-known algorithms for counting
intersections between line segments are much inferior to the results of the theorem:
they run in time close to O(n*?) [A1], [GOS], [C2], [C3].

3.2, Order Statistics for Bichromatic Intersections. We next turn to Problem 3,
Let B and R be two collections of m blue and n red line segments (N = m + n)
with no intersecting monochromatic pairs. Given an integer k, we wish to find the
x-coordinate £(k) of the intersection point that has the property that there are
exactly k — 1 bichromatic intersecting pairs whose intersection points lie to the
left of the vertical line x = £(k). We assume that the x-coordinates of the
intersection points are pairwise distinct as well as distinct from the endpoints of
atomic intervals; otherwise, this property can be simulated [EM]., We also assume
that k is not larger than the total number of bichromatic intersecting pairs; we
already know how to compute the latter number in time O(N log N) and linear
storage,

An efficient solution has been recently obtained for the related problem where
each line segment is a line and there is no bichromatic condition. To find é(k) in
this case takes time O(N log N) as noted by Cole et al. [CSSS]. In contrast, very
little is known about the monochromatic case for line segments. The most efficient
known way just to compute the total number of intersecting pairs runs in time

Algorithms for Bichromatic Line-Segment Problems and Polyhedral Terrains 123

O(N*?3(log N)*/®) and linear storage [C2]. However, with the guidance of the
hereditary segment tree, we can solve the problem efficiently in the bichromatic
case as follows.

Our first step is to locate a leaf, A, of the tree I such that ¢, contains the kth
intersection point. The simplest way to find A is by binary search over the
x-coordinates of the endpoints of the given line segments. At each step of the
search we are at some x-coordinate &, and our goal is to count the number of
intersections to the left of the line x = £, This is done by clipping each line segment
to its portion to the left of this line and by applying our solution to Problem 2
to the clipped collection. It follows that we can find A in time O(N log® N) and
linear storage.

Suppose there are k, < k intersections to the left of ¢,, and define k, = k — k.
We can now collect all line segments that cross the slab ¢, into a set A and extend
these line segments to full lines. Now we apply the algorithm of [CSSS] to find
the (k, + k,)th leftmost intersection in the arrangement of these lines, where k, is
. the number of intersections of these lines to the left of ¢, (which is easily computed
in time O(N log N)). This gives us an O(N log® N) algorithm for finding the kth
leftmost bichromatic intersection.

Agarwal [A2] has suggested to us a way to cut down the running time to
O(N log N). The bottleneck is the computation of the leaf 1. This can be done by
binary search in Z, provided that we can determine quickly how many bichro-
matic intersections lie in a given slab ¢,. Suppose that we can do that in time
O(h, + k,d, log N), where

(i) h, is the sum of the sizes of all the lists (standard or hereditary, blue or red)
stored at u or at any of its ancestors,
(ii) k, is the total size of the hereditary lists at u (ie., k, = |B¥| + |R¥|), and
(iii) d, is the number of ancestors of u.

From our previous discussion, we know that h, = O(N), and therefore the sum
Y by, taken over all nodes u on the path 7 from the root to 4, is O(N log N).
Similarly, k, cannot exceed the number of endpoints in the slab o,. Since this
number decreases geometrically as we go down the path =, we have

Y, k,d,log N < (logN) Y (i + 1)N/2' = O(N log N),

nen =0

and therefore we can find A, and hence the kth leftmost intersection, in O(N log N)
time.

It remains now to show how to compute the number of bichromatic intersections
in o, in time O(h, + k,d, log N). Note that by using the algorithm of Theorem
3.1(ii), we can assume that the intersections in B, U R, U B} U R} have already
been counted. So, it suffices to count the intersections in o, from among B, L R,,
B* U R,, and R* U B,, where v is an ancestor of p.

From the ordering of the segments in B, and R, we can compute their ordering
along the bounding lines of o,, and hence, in |B,| + |R,| time, derive the number
of intersections in B, U R,. Next, consider the intersections in B, U R¥ (the case

124 B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir

of B U R, is similar). The segments of R¥ fall into two categories: those with an
endpoint in o, and those crossing o, all the way through. To handle the latter
kind is exactly the same as what we just described with B, and R,, and therefore
can be done in |B,| 4+ |R}| time. For the other kind of segments we must perform
a binary search in B, with respect to their endpoints (with the segments clipped
to within ¢,). Since these segments also appear in R}, we find that the time spent
at node v is at most proportional to |B,| + |R,| + |B¥| + |R¥| + k,log N. Sum-
ming over all ancestors v of u, we find that, indeed, the number of bichromatic
intersections in ¢, can be determined in time O(h, + k,d, log N). Again, the
segment tree need not be computed in its entirety. Only linear space is required
to apply the algorithm of Theorem 3.1(ii), after which, it suffices to maintain the
segment tree lists alongside the path = (as it is discovered top-down). This limits
the space requirement to O(N).

THEOREM 3.2. The kth leftmost bichromatic intersection for a collection of m blue
pairwise disjoint line segments and a collection of n red pairwise disjoint line
segments, N = m + n, can be computed in time O(N log N) and linear storage,

3.3. The Minkowski Sum of Two Convex Polytopes. Let o and @ be two convex
polytopes in three-dimensional space with m and n edges, respectively. The
Minkowski (vector) sum € = of + & is defined as {p+4alpe o, ge B}. Asis well
known, € is also a convex polytope, and an alternative way of defining (or
constructing) ¢ is as follows:

Consider the unit sphere S? in space, and define on it two spherical maps,
M, and Mg, as follows. For each u e §2 let f.,(u) denote the vertex, edge, or
facet of .« that is the intersection of & with its supporting plane having an
outward normal direction u. The map M, is the corresponding decomposi-
tion of $? into maximal portions on each of which Ju is invariant. The map
M is known as the Gaussian image of s¢. The map Mgy is defined in a similar
manner. Note that vertices of M, are the directions of outer normals to the
faces of .o, edges of M, are portions of great circles of directions perpendicu-
lar to edges of &, and faces of M, correspond to vertices of . Similar
properties hold for My. To obtain €, we overlay the two maps and the
resulting decomposition of $? is M. The faces, edges, and vertices of ¥ and
their adjacency structure can then be read off My using the correspondence
just explained.

Note that % can have up to ©(mn) facets that correspond to intersections between
edges of M, and of Mg. As a matter of fact, each such facet is the Minkowski
sum of the corresponding edges of «# and %.

Mg can be computed in time O(N + k), where k is the number of intersecting
edge pairs using an algorithm by Guibas and Seidel [GS]. In order to apply their
algorithm which overlays two subdivisions of the plane into convex regions, we
first have to project M, and Mg onto a plane. If we carry the projection from
the origin of $2 the circle arcs map to straight line segments. This way only one
hemisphere is captured at a time and we have to repeat the algorithm for the other

Algorithms for Bichromatic Line-Segment Problems and Polyhedral Terrains 125

hemisphere. Each subdivision of the plane can also be viewed as a collection of
pairwise disjoint line segments (if they are taken as relatively open sets), so we can
apply our solutions to Problem 2 which gives the following result.

THEOREM 3.3, Given two convex polytopes with m and n edges in three-dimensional
space, N = m + n, the number of facets bounding their Minkowski sum can be
computed in time O(N log N) and linear storage.

4. The Two-Level Hereditary Segment Tree. Next we modify the hereditary
segment tree by adding another level of preprocessing. More specifically, we
process the lists of the nodes into certain tree structures. This allows us to reduce
problems for blue and red line segments to a moderately large number of such
problems where each blue line segment intersects each red line segment.

So let B be a set of m pairwise disjoint blue line segments, let R be a set of n
pairwise disjoint red line segments, and define N = m + n, as usual. Construct the
hereditary segment tree, 7, for B and R. Our goal is to reduce the possible types
of interactions between the line segments in the standard and the hereditary lists
at any node u of 7 as mentioned above. In particular, we would like to divide
the set of blue line segments at u into (not necessarily disjoint) subsets B, and the
set of red line segments at u into matching subsets R; so that, for each i,

(x) every line segment in B, intersects every line segment in R; within the slab g,.

To reduce bichromatic interactions to the kind required, we proceed as follows.
For each node u, we represent the standard list B, (and R,) by a minimum height
ordered binary tree #, (#,). The leaves of 4, are associated with the blue line
segments in B,, in the same order, and for each node v of #, we define C, as the
list of blue line segments associated with the leaves below t; this list is explicitly
stored at . Symmetrically, each node 7 of &, stores the list C, of red line segments
associated with the leaves below v. Consider now, for example, the blue list B,
For each red line segment re R, U R} find the sublist of B, consisting of line
segments that intersect r. Since this is a contiguous sublist, it is the union of
O(log m) lists C, stored at nodes of #,, and so we pair r with each of them. In
this manner, each node 7 acquires a list D, of red line segments that cross all of
its blue line segments within ¢,. Thus, (C,, D,) satisfies condition ().

Let us do an analysis of the number of pairs (C,, D,) generated this way, and
of the total size of the lists C, and D,. The number of pairs (C,, D,) is equal to the
number of nodes of the binary trees that represent the standard lists which, in
turn, is at most twice the total size of standard lists attached to the nodes of the
segment tree. We noted before that the total size of standard lists is O(N log N)
which shows that the number of subproblems of type (x) is O(N log N). Each line
segment, whether blue or red, belongs to at most 2 log N sets C, or D, of a single
tree representing a standard list. It follows that the total size of these sets is at
most a factor 2 log N bigger than the total size of standard and hereditary lists.
In other words, the total size of the sets C, and D, is O(N log® N).

126 B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir

5. The Smallest Distance Between Polyhedral Terrains. Let £, and X, be two
polyhedral terrains with m and n edges so that X, lies completely above Z,, and
define N = m + n, as usual. We wish to determine the smallest vertical distance
between Z; and X,, that is, the length of the shortest vertical line segment
connecting a point on X, to a point on X,. Chazelle and Sharir [CS] give an
algorithm for this problem which runs in time O(N?~?) for some very small § > 0;
in this section we obtain an improved solution that runs in time O(N*3*®) for
any ¢> 0.

We first observe that the desired smallest vertical distance is attained either
between a vertex of T, and a facet of X,, between a vertex of X, and a facet of
Z,, or between a point of an edge of T, and a point of an edge of Z,. In the last
case, the vertical projections onto the xy-plane of these two edges intersect, It is
this case that consumes the largest amount of time.

We begin by projecting both X, and X, vertically onto the xy-plane and obtain
two straight-edge plane maps, .#, and .#,. Then we apply standard point-location
techniques (see, e.g., [EGS]) to locate each vertex of ., in .#, and vice versa.
This allows us to compute the smallest vertical distance between a vertex of one
terrain and a facet of the other in total time O(N log N).

However, we still have to consider the edge~edge intersections, whose number
might be quadratic. To this end, regard .#, as a collection of pairwise disjoint
(relatively open) blue line segments and .4, as a similar collection of red line
segments, and construct a hereditary segment tree, 7, for the two collections. At
each node u of 7~ we have the two usual standard lists, B, and R, and the two
hereditary lists, B} and RY. As before, by checking B, against R,, B against R,
and R} against B, for all nodes u of 7, we encounter every intersection between
edges of #, and .#,.

Similar to Section 4, our goal is to reduce these interactions to a collection of
interactions between subsets of blue line segments and of red line segments, with
the property that whenever we test a blue subset B, against a red subset R,
condition (x) of Section 4 holds. For every such pair of subsets, the smallest vertical
distance between the corresponding edges of X, and Z, can be obtained by
extending all these edges to full lines in three-dimensional space. Doing this, we
do not introduce any new bichromatic intersections in the projection. Thus, we
can apply the so-called towering algorithm given in [CEG™] which, given two sets,
B and R, of lines in three-dimensional space, verifies that all lines in B lie above
all lines in R. Also, if the verification is successful, it computes the smallest vertical
distance between a line in B and a line in R. All this is done using a simple
randomized procedure whose expected time and storage requirements are
O(M****), for any ¢ > 0, where M is the total size of the two subsets. The algorithm
can be derandomized without asymptotic loss in performance, using the techniques
of [C2], [M1], and [M2].

To reduce bichromatic interactions to the kind required above, we proceed as
in Section 4, constructing the pairs (C,, D)), for © a node of B, or R, at a node u
of 7, in the manner described there, Because the pairs (C,, D,) satisfy condition ()
we can apply to it the towering algorithm of [CEG™] mentioned earlier. As noted
in Section 4, the total size of all these lists is O(N log? N). It follows that we can

Algorithms for Bichromatic Line-Segment Problems and Polyhedral Terrains 127

determine the smallest vertical distance between any pair of edges of ¥, and X,
in time and storage O(N*3*%), for any ¢ > 0. In summary, we have shown the
following result.

THEOREM 5.1. The smallest vertical distance between two nonintersecting poly-
hedral terrains with m and n edges, N = m + n, can be computed in time and storage
O(N*3*%), for any ¢ > 0.

6. The Upper Envelope of Polyhedral Terrains. Let X, and £, be two polyhedral
terrains with m and n edges as in the preceding section but without the disjointness
assumption. Our goal is to compute the upper envelope, T, of £, and X,, that is,
if we think of X, and Z, as the graphs of continuous, piecewise linear, bivariate
functions, then X is the pointwise maximum of them. Special cases and variants
of this problem, mainly when one of the terrains is convex, were treated in [MeS]
and [S] where solutions that are more efficient than the solution in this section
are given. Here we study the general problem. For simplicity we assume non-
degenerate position throughout.

Clearly, X is also a polyhedral terrain. Each vertex of X is either a vertex of X,
a vertex of ,, or the intersection between an edge of one terrain and a facet of
the other. Similarly, each edge of X is either a portion of an edge of £, or X,, or
it is the intersection between a facet of X, and a facet of X,. This implies that k,
the number of vertices, edges, and facets of I, is O(mn), and, indeed, this upper
bound is tight. Our goal is to compute ¥ in an output-sensitive manner, We achieve
this with an algorithm that runs in time O(N3/2** 4 k log? N), where N = m + n.

The above observations make it clear that X is easy to construct once we have
computed all intersections between edges of £, and facets of £, and vice versa.
As a matter of fact, it suffices to produce one point on each connected component
of the intersection ; N X,. From each such point the component of the intersec-
tion can be obtained by a straightforward tracing procedure (see [MeS] or [S] for
details). Now, the upper envelope can be constructed by putting things together
in the right way. We therefore concentrate on finding all edge-facet intersections
between the two terrains. We first describe the data structure used to store X,
and I, and then show how to use it to find edge~facet intersections.

The Hereditary Segment Tree for T, and X,. Project £, and X, along the z-axis
onto the xy-plane to get two planar subdivisions. For technical reasons we
decompose each region of the subdivisions into trapezoids by drawing, from each
vertex v, a vertical edge (parallel to the y-axis) upward until it hits the first edge
above v and one downward until it hits the first edge below v. With this
modification we get two trapezoidal subdivisions, A, from X, and A, from Z,.
Each trapezoid has at most two nonvertical edges which we classify as lower and
upper depending on whether the trapezoid lies vertically above or below the edge.
Notice, however, that the trapezoids are not necessarily glued edge-to-edge and
therefore A; and A, might not always be cell complexes. Let B be the set of lower
and upper edges of all trapezoids in A, and define R as the set of lower

128 B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir

\

AT

N

Fig. 6.1. The projection of a terrain onto the xy-plane is a planar subdivision. Each region is cut into
trapezoids with unique upper and lower edges. Overlapping edges of neighboring trapezoids are
interpreted as nonintersecting,

~_
e

and upper edges of all trapezoids in A,. No two edges in B (and in R) cross but
there can be overlapping edges. In fact, each edge of the projection of Z, (and of
Z,) is now represented by two sequences of edges with the union of all edges in
either sequence being the old edge. Thus, some of the edges in B (and in R) are
bound to overlap. Still, the effect of the overlap is uncritical and we can pretend
that two overlapping edges are disjoint, for example, by conceptually shrinking
each trapezoid by an infinitesimal amount (see Figure 6.1).

So we think of B as a set of O(m) pairwise disjoint blue line segments, and of
R as a set of O(n) pairwise disjoint red line segments. The nice effect of cutting
regions into trapezoids is that the lower and the upper edges of a single trapezoid
are stored in exactly the same standard and hereditary lists when we construct
the hereditary segment tree for B and R. Thus, the line segments in the lists come
in pairs, and the two line segments of a pair delimit the same trapezoid. As the
reader might expect we indeed store B and R in their hereditary segment tree.
However, for reasons that will become clear later we do not use a binary tree as
usual but rather a tree where every node has & children, where § is a parameter
to be determined later. We use a minimum height tree so its heigth is O(log, N)
and each edge is stored in O(6 log, N) standard and O(logs N) hereditary lists.

Having constructed the hereditary segment tree in this manner, we next augment
it, as in the preceding section, with pairs (C., D,) as follows. Let B, and R, be the
standard lists at some node u of 7. We store B, (and R,) by a minimum height
ordered binary tree whose leaves store the pairs of line segments, each one
delimiting a common trapezoid; as in Section 4 we call this tree #, (and 2,). If
7 is a node of either tree, then C, and D, are lists of line segments of opposite
color so that each line segment in C, intersects every line segment in D,

What are the important properties of this data structure? Because the line
segments in any list B, (or R,) come in matching pairs, we can think of the list
as a sequence of trapezoids each spanning the vertical strip o, (see Figure 6.2). An
endpoint of a line segment re R, U R} is either within such a trapezoid (or on its
left or right side) or between two adjacent trapezoids. Similarly, a list C, is a
sequence of trapezoids spanning o, but now we have the property that each line
segment in D, intersects each line segment in C, (see Figure 6.2).

Algorithms for Bichromatic Line-Segment Problems and Polyhedral Terrains 129

~

Fig. 6.2. To the left we see a sequence of four trapezoids in a vertical strip; each line segment of the
opposite color intersects a contiguous sublist of their edges. To the right, the trapezoids are defined
by a list C, in which case all line segments in D, intersect all line segments in C,.

How To Represent the Lists C.. From now on let us concentrate on edge-facet
intersections between red edges and blue facets decomposed into trapezoids. To
find all such intersections we store each list C, of blue line segments (or trapezoids,
depending on which interpretation we prefer) in a data structure developed in
[CEG™]. We recall the relevant properties of this data structure.

Given a set of M lines in three-dimensional space, it is shown in [CEG*] how
to store them in a data structure of size O(M2 "%, for any ¢ > 0, so that given any
query line | it can be determined in O(log M) time whether [lines above all M
lines, below all M lines, or neither. We call this data structure the envelope structure
of the set of M lines. It takes time O(M?***) to construct it. Given a list C, we first
go back to the edges of X, that project onto the edges in C,, then extend these
edges to full lines, and finally store the envelope structure of the resulting set of
lines. Because each line segment in D, intersects each line segment in C, its
corresponding edge in I, lies above (or below) all edges of X; corresponding to
line segments in C, if and only if the same is true for their extensions to lines.

A major drawback of the data structure, as described so far, is that it takes
O(N?*% time and storage. To improve the complexity we construct the envelope
structure for a list C, only if it contains at most N"' ~%/2 line segments. A single
list thus takes no more than O(N) time and storage. We now set 4, the number
of children of any node in the segment tree, equal to | N¥?]. With this choice of
6 all lists C, together take only time O(N?**) for construction because each edge
belongs to at most O(8 log} N) = O(N*?) lists C, and the cost for each occurrence
is O(NW*e12),

Finding Edge~Facet Intersections. Using the envelope structures representing
the lists of blue trapezoids, C,, we can now find intersections between red edges
and blue facets. Recall that a red line segment, r (which is the projection of an
edge of I, onto the xy-plane), is stored in the standard and hereditary lists of
0(8 log; N) = O(N*?) nodes of the segment tree. Each occurrence of r gives rise
to O(log N) occurrences in lists D, of the binary trees that represent the standard

130 B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir

lists of blue trapezoids at these nodes. To describe the algorithm let 1 be a node
of the segment tree with re R, U RY, and let t be a node of &, with re D_. If r
lies above or below all line segments in C, (within ¢,), then we stop right away.
Otherwise, we distinguish three cases.

1. If 7 is a leaf, then test whether the edge corresponding to r intersects the blue
trapezoid in space represented at t. If it does, then report this intersection.

2. If C, is too large to warrant the construction of the envelope structure, then
recursively query both children of .

3. Here, t is not a leaf and C, is small enough so that 7 stores the envelope
structure of the corresponding set of lines. In this case test whether the edge
corresponding to r lies above all edges corresponding to blue line segments in
C. or below all such edges. If it lies above or below all the blue edges, then
stop. Otherwise, recursively query both children of 7.

For the analysis of the search algorithm let k, be the number of intersections
between the edge corresponding to r and the facets of Z,. The basic property of
hereditary segment trees discussed in Section 2 is easily seen to imply that each
such intersection is detected exactly once. The question that we have to answer
is how much time each intersection costs and how much overhead we need for
the line segment itself,

As noted earlier, r belongs to the standard lists of O(N*/2) nodes p of the segment
tree and to the hereditary lists of only a constant number of nodes y, where the
constant depends on . For each occurrence we query the tree 2#,. To get started
we run down the tree (Case 2) until we hit the fringe nodes equipped with envelope
structures; there are O(N' *%/2) of them. Thus, the overhead for each line segment
is O(N'2*%) and the rest of the time will be charged to the k, intersections caused
by r.

If it turns out that the edge corresponding to r neither lies above all edges
corresponding to line segments in C, nor below all of them (Case 3), then by
continuity of £, the edge corresponding to r intersects & | at least once somewhere
between the topmost and bottommost line segments in C,. Now we need to
distinguish two cases depending on whether the trapezoid that intersects r at the
point of discussion is in C, or it is not (which is possible because there are gaps
between the trapezoids of C, due to edges that are either too long or too short
to be in C,). In both cases the intersection causes O(log N) queries to envelope
structures in #, and thus O(log® N) time. This is not all yet because the same
intersection point can cause such queries also in other trees 2#,. We now show
that the number of such trees is fortunately only at most some constant, which
will lead to the final result of this section.

The O(N*%) occurrences of r in standard lists amounts to a decomposition of r
into the same number of pairwise digjoint subsegments, and each intersection point
lies only on one of these subsegments and thus is charged only for the node u that
represents this subsegment of r. The occurrences of r in hereditary lists do not
decompose r into disjoint segments, so an intersection point can cause queries
for each such occurrence. However, as mentioned above there are only a
constant number of occurrences in hereditary lists which shows that the time

Algorithms for Bichromatic Line-Segment Problems and Polyhedral Terrains 131

spent per intersection point is O(log® N). This implies a total time bound of
O(N*?** 4+ klog? N), where k is the size of the output.

Finally, we note that instead of constructing the hereditary segment tree with
envelope structures first and searching it later we can just traverse it (and its
subtrees %, and 4,) in preorder and construct and search only the structures
currently needed (see also Section 3.1). This leaves us with the same time bound
but improves the bound on the storage to O(N). We thus summarize the results
of this section.

THEOREM 6.1. Given two polyhedral terrains in three-dimensional space with a total
of n edges, we can construct their upper envelope in time O(n***¢ + klog? n) and
storage O(n), where ¢ is an arbitrary but fixed positive constant and k is the number
of edges of the upper envelope.

Acknowledgments. We wish to thank P. K. Agarwal for his comments and helpful
suggestions.

References

(A1l P. K. Agarwal, Intersection and decomposition algorithms for arrangements of curves in
the plane, Ph.D. Thesis, New York University, 1989,
[A2] P. K. Agarwal, Private communication, 1991,
[C1] B. Chazelle, Reporting and counting segment intersections, J. Comput. System Sci. 32(2)
(1986), 156~182.
[C2] B. Chazelle, An optimal convex hull algorithm and new results on cuttings, Proc. 32nd
Ann. IEEE Symp, on Foundations of Computer Science, 1991, pp. 29-38.
[C3] B. Chazelle, Cutting hyperplanes for divide-and-conquer, Discrete Comput, Geom. 9 (1993),
145-158.
[CE] B. Chazelle and H. Edelsbrunner, An optimal algorithm for intersecting line segments in
the plane, J. Assoc. Comput. Mach, 39 (1992), 1--54,
[CEG*] B.Chazelle, H. Edelsbrunner, L. J. Guibas, M. Sharir, and J. Stolfi, Lines in space-combina~
torics, algorithms, Tech. Report, Dept. Computer Science, Courant Institute, New York,
1990
[CG] B. Chazelle and L. J. Guibas, Fractional cascading: I. A data structuring technique,
Algorithmica 1 (1986), 133162,
[CS] B. Chazelle and M. Sharir, An algorithm for generalized point location and its applications,
J. Symbolic Comput. 10 (1990), 281-309.
[CSSS] R. Cole, J. Salowe, W. Steiger, and E. Szemerédi, An optimal-time algorithm for slope
selection, SIAM J. Compur. 18 (1989), 792-810.
[EGS] H. Edelsbrunner, L. J. Guibas, and J. Stolfi, Optimal point location in a monotone
subdivision, SIAM J. Comput. 15 (1986), 317-340.
[EM] H. Edelsbrunner and E. P. Miicke, Simulation of simplicity: a technique to cope with
degenerate cases in geometric algorithms, ACM Trans. Graphics 9(1) (1990), 66-104.
[GOS] L.J. Guibas, M, H. Overmars and M. Sharir, Intersecting line segments, ray shooting, and
other applications of geometric partitioning techniques, Tech. Report RUU-CS-88-26, Dept.
Computer Science, University of Utrecht, 1988,
[GS] L.J.Guibas and R. Seidel, Computing convolutions by reciprocal search, Discrefe Comput.
Geom. 2 (1987), 175-193.
[M1] J. Matousek, Approximations and optimal geometric divide-and-conquer, Proc. 23rd Ann.
ACM Symp, on Theory of Computing 1991, pp. 505-511,

132
[M2]
[MaS]

[MeS]

[PS]
(51
[vwl

B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir

J. Matoudek, Efficient partition trees, Proc. 7th Amn. ACM Symp. on Computational
Geometry, 1991, pp. 1-9,

H. Mairson and J. Stolfi, Reporting and counting intersections between two sets of line
segments, in Theoretical Foundations of Computer Graphics and CAD (R. A. Earnshaw, ed.),
NATO ASI Series, Vol. F-40, Springer-Verlag, Berlin, 1988, pp- 307-325.

K. Mehlhorn and K. Simon, Intersecting two polyhedra one of which is convex, in Proc,
Fundamentals of Computer Theory, Lecture Notes in Computer Science, Vol. 199, Springer-
Verlag, Berlin, 1985, pp. 534-542.

F. P. Preparata and M. . Shamos, Computational Geometry—An Introduction, Springer-
Verlag, New York, 1985.

M. Sharir, The shortest watchtower and related problems for polyhedral terrains, Inform,
Process. Lett, 29 (1988), 265-270.

V. K. Vaishnavi and D. Wood, Rectilinear line segment intersection, layered segment trees
and dynamization, J. dlgorithms 2 (1982), 160~176.

il

