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DNA S TORES DATA naturally, 
making it ideal raw material 
for building computers.
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DNA
COMPUTERS TO LIFE

BRINGING

W
hen British mathematician Alan Turing con-
ceived the notion of a universal programmable 
computing machine, the word “computer” 
typically referred not to an object but to a hu-
man being. It was 1936, and people with the 

job of computer, in modern terms, crunched numbers. Tur-
ing’s design for a machine that could do such work instead—

one capable of computing any computable problem—set the 
stage for theoretical study of computation and remains a foun-
dation for all of computer science. But he never specified what 
materials should be used to build it. 

Turing’s purely conceptual machine had no electrical 
wires, transistors or logic gates. Indeed, he continued to imag-
ine it as a person, one with an infinitely long piece of paper, a 
pencil and a simple instruction book. His tireless computer 
would read a symbol, change the symbol, then move on to the 
next symbol, according to its programmed rules, and would 
keep doing so until no further rules applied. Thus, the elec-
tronic computing machines made of metal and vacuum tubes 
that emerged in the 1940s and later evolved silicon parts may 

be the only “species” of nonhuman computer most people 
have ever encountered, but theirs is not the only possible form 
a computer can take. 

Living organisms, for instance, also carry out complex 
physical processes under the direction of digital information. 
Biochemical reactions and ultimately an entire organism’s op-
eration are ruled by instructions stored in its genome, encoded 
in sequences of nucleic acids. When the workings of biomo-
lecular machines inside cells that process DNA and RNA are 
compared to Turing’s machine, striking similarities emerge: 
both systems process information stored in a string of symbols 
taken from a fixed alphabet, and both operate by moving step 
by step along those strings, modifying or adding symbols ac-
cording to a given set of rules.

These parallels have inspired the idea that biological mol-
ecules could one day become the raw material of a new com-
puter species. Such biological computers would not necessar-
ily offer greater power or performance in traditional comput-
ing tasks. The speed of natural molecular machines such as the 
ribosome is only hundreds of operations a second, compared 

Tapping the computing power of biological molecules gives rise to  
tiny machines that can speak directly to living cells

By Ehud Shapiro and Yaakov Benenson 
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with billions of gate-switching operations a second in some 
electronic devices. But the molecules do have a unique ability: 
they speak the language of living cells.

The promise of computers made from biological molecules 
lies in their potential to operate within a biochemical environ-
ment, even within a living organism, and to interact with that 
environment through inputs and outputs in the form of other 
biological molecules. A biomolecular computer might act as 
an autonomous “doctor” within a cell, for example. It could 
sense signals from the environment indicating disease, process 
them using its preprogrammed medical knowledge, and out-
put a signal or a therapeutic drug. 

Over the past seven years we have been working toward 
realizing this vision. We have already succeeded in creating a 
biological automaton made of DNA and proteins able to diag-
nose in a test tube the molecular symptoms of certain cancers 
and “treat” the disease by releasing a therapeutic molecule. 
This proof of concept was exciting, both because it has poten-

tial future medical applications and because it is not at all what 
we originally set out to build.

Models to Molecules
one of us (Shapiro) began this research with the realization 
that the basic operations of certain biomolecular machines 
within living cells—recognition of molecular building blocks, 
cleavage and ligation of biopolymer molecules, and movement 
along a polymer—could all be used, in principle, to construct 
a universal computer based on Turing’s conceptual machine. 
In essence, the computational operations of such a Turing ma-
chine would translate into biomolecular terms as one “recog-
nition,” two “cleavages,” two “ligations,” and a move to the 
left or right.

Charles Bennett of IBM had already made similar observa-
tions and proposed a hypothetical molecular Turing machine 
in 1982. Interested in the physics of energy consumption, he 
speculated that molecules might one day become the basis of 
more energy-effi cient computing devices [see “The Fundamen-
tal Physical Limits of Computation,” by Charles H. Bennett 
and Rolf Landauer; Scientifi c American, July 1985].

The fi rst real-world demonstration of molecules’ compu-
tational power came in 1994, when Leonard M. Adleman of 
the University of Southern California used DNA to solve a 
problem that is always cumbersome for traditional computer 
algorithms. Known as the Hamiltonian path or the traveling 
salesman problem, its goal is to fi nd the shortest path among 
cities connected by airline routes that passes through every city 
exactly once. By creating DNA molecules to symbolically rep-
resent the cities and fl ights and then combining trillions of 
these in a test tube, he took advantage of the molecules’ pairing 
affi nities to achieve an answer within a few minutes [see 

■   Natural molecular machines process information in 
a manner similar to the Turing machine, an early 
conceptual computer.

■   A Turing-like automaton built from DNA and enzymes 
can perform computations, receive input from other 
biological molecules and output a tangible result, such 
as a signal or a therapeutic drug.

■   This working computer made from the molecules of life 
demonstrates the viability of its species and may prove 
a valuable medical tool.

Overview/Living Computers

COMPUTING MACHINES: CONCEPTUAL AND NATURAL

Mathematician Alan Turing envisioned the properties of a 
mechanical computer in 1936, long before molecule-scale 
machines within cells could be seen and studied. As the 
workings of nature’s tiny automata were later revealed, 

striking similarities to Turing’s concept emerged: both 
systems store information in strings of symbols, both process 
these strings in stepwise fashion, and both modify or add 
symbols according to fi xed rules.

Control unit

tRNA

mRNA

Amino acid chain
Ribosome

Codon

TURING MACHINE
This hypothetical device operates on an information-encoding tape 
bearing symbols such as “a” and “b.” A control unit with read/write 
ability processes the tape, one symbol position at a time, according 
to instructions provided by transition rules, which note the control 
unit’s own internal state. Thus, the transition rule in this example 
dictates that if the control unit’s state is 0 (S0), and the symbol read 
is a, then the unit should change its state to 1 (S1), change the 
symbol to b and move one position to the left (L).

BIOLOGICAL MACHINE
An organelle found in cells, the ribosome reads information encoded in 
gene transcripts known as messenger RNAs (mRNAs) and translates 
it into amino acid sequences to form proteins. The symbolic alphabet 
of mRNA is made up of nucleotide trios called codons, each of which 
corresponds to a specifi c amino acid. As the ribosome processes the 
mRNA strand, one codon at a time, helper molecules called transfer 
RNAs (tRNAs) deliver the correct amino acid. The tRNA confi rms the 
codon match, then releases the amino acid to join the growing chain.
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“Computing with DNA,” by Leonard M. Adleman; Scien-
tifi c American, August 1998]. Unfortunately, it took him 
considerably longer to manually fi sh the molecules represent-
ing the correct solution out of the mixture using the labora-
tory tools available to him at the time. Adleman looked for-
ward to new technologies that would enable the creation of a 
more practical molecular computer. 

“In the future, research in molecular biology may provide 
improved techniques for manipulating macromolecules,” Adle-
man wrote in a seminal 1994 scientifi c paper describing the 
DNA experiment. “Research in chemistry may allow for the 
development of synthetic designer enzymes. One can imagine 
the eventual emergence of a general purpose computer consist-
ing of nothing more than a single macromolecule conjugated 
to a ribosomelike collection of enzymes which act upon it.”

Devising a concrete logical design for just such a device, 
one that could function as the fundamental “operational spec-
ifi cation” for a broad class of future molecular computing ma-
chines, became Shapiro’s goal. By 1999 he had a mechanical 

model of the design made from plastic parts. We then joined 
forces to translate that model into real molecules.

Rather than attacking the ultimate challenge of building a 
full-fl edged molecular Turing machine head-on, however, we 
agreed to fi rst attempt a very simplifi ed Turing-like machine 
known as a fi nite automaton. Its sole job would be to determine 
whether a string of symbols or letters from a two-letter alpha-
bet, such as “a” and “b,” contained an even number of b’s. This 
task can be achieved by a fi nite automaton with just two states 
and a “program” consisting of four statements called transition 
rules. One of us (Benenson) had the idea to use a double-strand-
ed DNA molecule to represent the input string, four more short 
double-stranded DNA molecules to represent the automaton’s 
transition rules, or “software,” and two natural DNA-manip-
ulating enzymes, FokI and ligase, as “hardware.” 

The main logical problem we had to solve in its design was 
how to represent the changing intermediate states of the com-
putation, which consist of the current internal state of the au-
tomaton and a pointer to the symbol in the input string being 

MOLECULAR TURING MACHINE MODEL

A Turing machine made of biomolecules would employ their natural ability to recognize symbols 
and to join molecular subunits together or cleave their bonds. A plastic model built by one of the 
authors (right) serves as a blueprint for such a system. Yellow “molecule” blocks carry the 
symbols. Blue software molecules indicate a machine state and defi ne transition rules. 
Protrusions on the blocks physically differentiate them.

Control unit
position

HOW IT WORKS

The machine operates on a string of symbol molecules. 
In its control unit position at the center, both a symbol 
and the machine’s current state are defi ned.

One “computational transition” is represented by a molecule complex 
containing a new state and symbol for the machine and a recognition site to 
detect the current state and symbol. The example shown represents a 
transition rule: “If current state is S0 and current symbol is b, change state to 
S1 and symbol to a, then move one step to the left.”  

A free-fl oating computational transition complex slides into the machine’s control unit (1). The molecule complex binds to 
and then displaces the current symbol and state (2). The control unit can move one position to the left to accommodate another 
transition complex (3). The process repeats indefi nitely with new states and symbols as long as transition rules apply. 

1 2

Current symbol 
and state

Recognition site

New state

New symbolComputational 
transition 

complex

3
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<S1,a> <S1,b> <S1,t>

<S0,a> <S0,b> <S0,t>

+

+

+

BUILDING A MOLECULAR AUTOMATON

FokI

FokI recognition site

9 nucleotides

13 nucleotides

DNA

Hardware-software 
complex

Input molecule 

Remaining input

Output = SO

AUTONOMOUS COMPUTATION

A hardware-software complex recognizes 
its complementary state/symbol 
combination on the input molecule. 
The molecules join to form a hardware-
software-input complex, then FokI 
cleaves the input molecule to expose 
the next symbol.

A new hardware-software complex 
recognizes the next state and symbol on 
what remains of the input molecule.

Reactions continue until no rule applies 
or the terminator symbol is revealed.

In this example, computational cleavages 
leading to the fi nal output ( far right) have 
produced a four-nucleotide terminator 
symbol indicating a machine state of 0, the 
calculation’s result. 

HARDWARE
The FokI enzyme (gray) always 
recognizes the nucleotide sequence 
GGATG (blue) and snips a double DNA 
strand at positions 9 and 13 nucleotides 
downstream of that recognition site. 

SOFT WARE
Transition rules are encoded in eight 
short double-stranded DNA molecules 
containing the FokI recognition site (blue), 
followed by spacer nucleotides (green) 
and a single-stranded sticky end (yellow) 
that will join to its complementary 
sequence on an input molecule.

SYMBOL AND STATE
Combinations of symbols a, b or terminator (t) 
and machine states 1 or 0 are represented by 
four-nucleotide sequences. Depending on how 
the fi ve-nucleotide sequence TGGCT is cleaved 
into four nucleotides, for example, it will 
denote symbol a and a state of either 1 or 0.

Because living organisms process information, their 
materials and mechanisms lend themselves readily to 
computing. The DNA molecule exists to store data, written in 
an alphabet of nucleotides. Cellular machinery reads and 
modifi es that information using enzymes and other molecules. 
Central to this operating system are chemical affi nities 
among molecules allowing them to recognize and bind with 
one another. Making molecules into a Turing-like device, 
therefore, means translating his concepts into their language. 

A simple conceptual computer called a fi nite automaton 

can move in only one direction and can read a series of 
symbols, changing its internal state according to transition 
rules. A two-state automaton could thus answer a yes-no 
question by alternating between states designated 1 and 0. 
Its state at the end of the calculation represents the result. 

Raw materials for a molecular automaton include DNA 
strands in assorted confi gurations to serve as both input and 
software and the DNA-cleaving enzyme FokI as hardware. 
Nucleotides, whose names are abbreviated A, C, G and T, here 
encode both symbols and the machine’s internal state.
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processed. We accomplished this with a neat trick: in each step 
of the computation the enzymatic hardware was actually “di-
gesting” the input molecule, cleaving the current symbol being 
processed and exposing the next one. Because the symbol 
could be cleaved in two different locations, each resulting ver-
sion of it could represent, in addition to the symbol itself, one 
of two possible states of the computation. Interestingly, we 
discovered later that this last element was similar to a design 
that Paul Rothemund, a former student of Adleman, once 
proposed for a molecular Turing machine. 

Remarkably, the resulting computer that our team an-
nounced in 2001 was autonomous: once the input, software 
and hardware molecules were placed in an appropriate buffer 
solution in a test tube, computation commenced and proceed-
ed iteratively to completion without any human intervention.  

As we tested this system, we also realized that it not only 
solved the original problem for which we had intended it—de-
termining whether a symbol occurs an even number of times 
in a string—it could do more. A two-state, two-symbol finite 
automaton has eight possible symbol-state-rule combinations 
(23), and because our design was modular, all eight possible 
transition rules could be readily implemented using eight dif-
ferent transition molecules. The automaton could therefore be 
made to perform different tasks by choosing a different “pro-
gram”—that is, a different mix of transition molecules. 

In trying a variety of programs with our simple molecular 
automaton, we also found a way of further improving its per-
formance. Among our tests was an omission experiment, in 
which the automaton’s operation was evaluated with one mo-
lecular component removed at a time. When we took away 
ligase, which seals the software molecule to the input molecule 
to enable its recognition and cleavage by the other enzyme, 
FokI, the computation seemed to make some progress none-
theless. We had discovered a previously unknown ability of 
FokI to recognize and cleave certain DNA sequences, whether 
or not the molecule’s two strands were sealed together. 

The prospect of removing ligase from our molecular com-
puter design made us quite happy because it would immedi-
ately reduce the required enzymatic hardware by 50 percent. 
More important, ligation was the only energy-consuming op-
eration in the computation, so sidestepping it would allow the 
computer to operate without an external source of fuel. Fi-
nally, eliminating the ligation step would mean that software 
molecules were no longer being consumed during the compu-
tation and could instead be recycled. 

The ligase-free system took our group months of painstak-
ing effort and data analysis to perfect. It was extremely inef-
ficient at first, stalling out after only one or two computa-
tional steps. But we were driven by both the computational 
and biochemical challenges, and with help and advice from 
Rivka Adar and other colleagues, Benenson finally found a 
solution. By making small but crucial alterations to the DNA 
sequences used in our automaton, we were able to take advan-
tage of FokI’s hitherto unknown capability and achieve a 
quantum leap in the computer’s performance. By 2003 we had 

an autonomous, programmable computer that could use its 
input molecule as its sole source of fuel [see box on opposite 
page]. In principle, it could therefore process any input mole-
cule, of any length, using a fixed number of hardware and 
software molecules without ever running out of energy. 

And yet from a computational standpoint, our automaton 
still seemed like a self-propelled scooter compared with the 
Rolls-Royce of computers on which we had set our sights: the 
biomolecular Turing machine. 

DNA Doctor
because the t wo-state finite automaton was too sim-
ple to be of any use in solving complex computational prob-
lems, we considered it nothing more than an interesting dem-
onstration of the concept of programmable, autonomous bio-
molecular computers, and we decided to move on. Focusing 
our efforts for a while on trying to build more complicated 
automata, however, we soon ran up against the problem rec-
ognized by Adleman: the “designer enzymes” he had yearned 
for a decade earlier still did not exist.

No known naturally occurring enzyme or enzyme com-
plex can perform the specific recognitions, cleavages and liga-
tions, in sequence and in tandem, with the flexibility needed 
to realize the Turing machine design. Natural enzymes would 
have to be customized or entirely new synthetic enzymes en-
gineered. Because science does not yet have this ability, we 
found ourselves with a logical design specification for a bio-
molecular Turing machine but forced to wait until the parts 
needed to build it are invented. 

That is why we returned to our two-state automaton to 
see if we could at least find something useful for it to accom-
plish. With medical applications already in mind, we won-
dered if the device might be able to perform some kind of 
simple diagnosis, such as determining whether a set of condi-
tions representing a particular disease is present. 

For this task, just two states suffice: we called one state 
“yes” and the other “no.” The automaton would begin the 
computation in the yes state and check one condition at a time. 
If a condition on its checklist were present, the yes state would 
hold, but if any condition were not present, the automaton 
would change to the no state and remain that way for the rest 
of the computational process. Thus, the computation would 

EHUD SHAPIRO and YAAKOV BENENSON began collaborating to 
build molecular automata in 1999. Shapiro is a professor in the 
departments of computer science and biological chemistry at the 
Weizmann Institute of Science in Rehovot, Israel, where he holds 
the Harry Weinrebe Professorial Chair. He was already an accom-
plished computer scientist and software pioneer with a growing 
interest in biology in 1998 when he first designed a model for a 
molecular Turing machine. Benenson, just completing a master’s 
degree in biochemistry at the Technion in Haifa, became Shapiro’s 
Ph.D. student the following year. Now a fellow at Harvard Univer-
sity’s Bauer Center for Genomics Research, Benenson is working 
on new molecular tools to probe and affect live cells. 
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end in yes only if all the disease conditions held, but if one 
condition were not met the “diagnosis” would be negative. 

To make this logical scheme work, we had to fi nd a way to 
connect the molecular automaton to its biochemical environ-
ment so that it could sense whether specifi c disease conditions 
were present. The general idea that the environment could af-
fect the relative concentrations of competing transition mole-
cules—and thus affect the computation—had already been 
suggested in the blueprint for the molecular Turing machine. 
To apply this principle to sense disease symptoms, we had to 
make the presence or absence of a disease indicator a determi-
nant of the concentration of software molecules that testify for 
the symptom. 

Many cancers, for example, are characterized by abnor-
mal levels of certain proteins in the cell as a result of specifi c 
genes either overexpressing or underexpressing their encoded 
protein. When a gene is expressed, enzymes in the cell’s nu-
cleus copy its sequence into an RNA version. This molecular 
transcript of the gene, known as messenger RNA (mRNA), is 
then read by a structure called the ribosome that translates 
the RNA sequence into a string of amino acids that will form 
the protein. Thus, higher- or lower-than-normal levels of spe-
cifi c mRNA transcripts can refl ect gene activity. 

Benenson devised a system wherein some transition mol-
ecules would preferentially interact with these mRNA se-
quences. The interaction, in turn, would affect the transition 
molecules’ ability to participate in the computation. A high 

level of mRNA representing a disease condition would cause 
the yes ‡ yes transition molecules to predominate, increasing 
the probability that the computer would fi nd the symptom to 
be present [see box above]. In practice, this system could be 
applied to any disease associated with abnormal levels of pro-
teins resulting from gene activity, and it could also be adapted 
to detect harmful mutations in mRNA sequences. 

Once we had both an input mechanism that could sense 
disease symptoms and the logical apparatus to perform the 
diagnosis, the next question became, What should the com-
puter do when a disease is diagnosed? At fi rst, we considered 
having it produce a visible diagnostic signal. In the molecular 
world, however, producing a signal and actually taking the 
next logical step of administering a drug are not that far 
apart. Binyamin Gil, a graduate student on our team, pro-
posed and implemented a mechanism that enables the com-
puter to release a drug molecule on positive diagnosis.

Still, our plan was not complete. Perhaps the central ques-
tion in computer hardware design is how to build a reliable 
system from unreliable components. This problem is not 
unique to biological computers—it is an inherent property of 
complex systems; even mechanical devices become more un-
reliable as scale diminishes and the number of components 
increases. In our case, given the overall probabilistic nature 
of the computation and the imprecise behavior of biomolecu-
lar elements, some computations would inevitably end with a 
positive diagnosis even if several or all of the disease symp- L
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Having shown that an automaton made from DNA and enzymes 
can perform abstract yes-or-no computations, the authors sought 
to give the device a practical query that it might face inside a 
living cell: Are indicators of a disease present? If the answer is 
yes, the automaton can output an active drug treatment. The 
basic computational concept is unchanged from the earlier 

design: complexes of “software” transition molecules and 
enzymatic “hardware” process symbols within a diagnostic 
molecule, cleaving it repeatedly to expose subsequent 
symbols. In addition, the new task requires a means for disease 
indicators to create input for the computation and mechanisms 
for confi rming the diagnosis and delivering treatment. 

DNA DOCTOR

Software strand 1

Software strand 2

Disease-associated mRNA

Protector strand

mRNA

+

FokI

Gene 1⇓
Gene 2⇓ Gene 3⇑ Gene 4⇑

Inactive drug

Hardware-software 
complex

COMPUTATION
Complexes of transition-molecule software and FokI enzymatic 
hardware process a series of symbols within the diagnostic molecule 
that represent underactivity (⇓) or overactivity (⇑) by specifi c genes. 
The automaton starts the computation in a yes state, and if all 
disease indicators are present, it produces a positive diagnosis. 
If any symptom is missing, the automaton transitions to no and 
remains in that state.  

INPUT 
Gene transcripts called messenger RNAs (mRNAs) serve as disease 
indicators. By interacting with software molecules, mRNAs infl uence 
which of them is ultimately used in the computation. In this example, 
the two strands of a yes ‡ yes transition molecule start out 
separated, with one bound to a single protector strand. The protector 
has a strong affi nity for the disease-associated mRNA, however. If that 
mRNA is present, the protector will abandon its software strand to 
bind to the mRNA. The single software strands will then bind to one 
another, forming an active yes ‡ yes transition molecule.  

Protector strand

Active yes ➔ yes
software molecule

Diagnostic molecule
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toms were absent, and vice versa. Fortunately, this probabi-
listic behavior is measurable and repeatable, so we could com-
pensate for it with a system of checks and balances. 

We created two types of computation molecules: one de-
signed to release a drug when the computation terminates in 
the yes state, the other to release a suppressor of that same 
drug when the computation terminates in no. By changing 
the relative concentrations of the two types of molecules, we 
could have fi ne control over the threshold of diagnostic cer-
tainty that would trigger administration of an active drug. 

Human physicians make this kind of decision whenever 
they weigh the risk to a patient of a possible disease against the 
toxicity of the treatment and the certainty of the diagnosis. In 
the future, if our molecular automaton is sent on a medical 
mission, it can be programmed to exercise similar judgment.  

Dawn of a New Species
as i t t ur ned out, our simple scooter carried us much 
further than we had believed it could and in a somewhat dif-
ferent direction than we had fi rst imagined. So far our biomo-
lecular computer has been demonstrated only in a test tube. Its 
biological environment was simulated by adding different con-
centrations of RNA and DNA molecules and then placing all 
the automaton components in the same tube. Now our goals are 
to make it work inside a living cell, to see it compute inside the 
cell and to make it communicate with its environment. 

Just delivering the automaton into the cell is challenging 

because most molecular delivery systems are tailored for either 
DNA or protein. Our computer contains both, so we are trying 
to fi nd ways to administer these molecules in tandem. Another 
hurdle is fi nding a means of watching all aspects of the compu-
tation as they occur within a cell, to confi rm that the automa-
ton can work without the cell’s activities disrupting computa-
tional steps or the computer’s components affecting cellular 
behavior in unintended ways. And fi nally, we are exploring 
alternative means of linking the automaton to its environment. 
Very recent cancer research suggests that microRNAs, small 
molecules with important regulatory functions inside cells, are 
better indicators of the disease, so we are redesigning our com-
puter to “talk” to microRNA instead of mRNA. 

Although we are still far from applying our device inside 
living cells, let alone in living organisms, we already have the 
important proof of concept. By linking biochemical disease 
symptoms directly with the basic computational steps of a 
molecular computer, our test-tube demonstration affi rmed 
that an autonomous molecular computer can communicate 
with biological systems and perform biologically meaningful 
assessments. Its input mechanism can sense the environment 
in which it operates; its computation mechanism can analyze 
that environment; and its output mechanism can affect the 
environment in an intelligent way based on the result of 
its analysis.

Thus, our automaton has delivered on the promise of bio-
molecular computers to enable direct interaction with the bio-
chemical world. It also brings computational science full circle 
back to Turing’s original vision. The fi rst computing machines 
had to deviate from his concept to accommodate the proper-
ties of electronic parts. Only decades later, when molecular 
biologists began revealing the operations of tiny machines in-
side living cells did computer scientists recognize a working 
system similar to Turing’s abstract idea of computation.

This is not to suggest that molecules are likely to replace 
electronic machines for all computational tasks. The two 
computer species have different strengths and can easily coex-
ist. Because biomolecules can directly access data encoded in 
other biomolecules, however, they are intrinsically compati-
ble with living systems in a way that electronic computers will 
never be. And so we believe our experiments suggest that this 
new computer species is of fundamental importance and will 
prove itself valuable for a wide range of applications. The 
biomolecular computer has come to life.  

M O R E  T O  E X P L O R E
A Mechanical Turing Machine: Blueprint for a Biomolecular Computer. 
Presented by Ehud Shapiro at the 5th International Meeting on DNA 
Based Computers, Massachusetts Institute of Technology, 
June 14–15, 1999. www.weizmann.ac.il/udi/press

Programmable and Autonomous Computing Machine Made of 
Biomolecules. Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh 
and E. Shapiro in Nature, Vol. 414, pages 430–434; November 22, 2001.

An Autonomous Molecular Computer for Logical Control of Gene 
Expression. Y. Benenson, B. Gil, U. Ben-Dor, R. Adar and E. Shapiro in 
Nature, Vol. 429, pages 423–429; May 27, 2004.

DNA DOCTOR

OUTPUT
After a positive diagnosis, fi nal cleavage of the diagnostic molecule 
releases the treatment, a single-stranded so-called antisense DNA 
molecule (top). To compensate for diagnostic errors, the authors also 
created negative versions of the diagnostic molecules to perform 
parallel computations. When disease indicators are absent, these 
automata release a drug suppressor. With thousands of both types of 
diagnostic molecules computing simultaneously, the majority will 
make the correct diagnosis, and either the antisense molecule will 
outnumber its suppressors (bottom), or vice versa. 
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