
44 S C I E N T I F I C A M E R I C A N M AY 2 0 0 6

DNA S TORES DATA naturally,
making it ideal raw material
for building computers.

COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC.

w w w. s c i a m . c o m S C I E N T I F I C A M E R I C A N 45

DNA
COMPUTERS TO LIFE

BRINGING

W
hen British mathematician Alan Turing con-
ceived the notion of a universal programmable
computing machine, the word “computer”
typically referred not to an object but to a hu-
man being. It was 1936, and people with the

job of computer, in modern terms, crunched numbers. Tur-
ing’s design for a machine that could do such work instead—

one capable of computing any computable problem—set the
stage for theoretical study of computation and remains a foun-
dation for all of computer science. But he never specified what
materials should be used to build it.

Turing’s purely conceptual machine had no electrical
wires, transistors or logic gates. Indeed, he continued to imag-
ine it as a person, one with an infinitely long piece of paper, a
pencil and a simple instruction book. His tireless computer
would read a symbol, change the symbol, then move on to the
next symbol, according to its programmed rules, and would
keep doing so until no further rules applied. Thus, the elec-
tronic computing machines made of metal and vacuum tubes
that emerged in the 1940s and later evolved silicon parts may

be the only “species” of nonhuman computer most people
have ever encountered, but theirs is not the only possible form
a computer can take.

Living organisms, for instance, also carry out complex
physical processes under the direction of digital information.
Biochemical reactions and ultimately an entire organism’s op-
eration are ruled by instructions stored in its genome, encoded
in sequences of nucleic acids. When the workings of biomo-
lecular machines inside cells that process DNA and RNA are
compared to Turing’s machine, striking similarities emerge:
both systems process information stored in a string of symbols
taken from a fixed alphabet, and both operate by moving step
by step along those strings, modifying or adding symbols ac-
cording to a given set of rules.

These parallels have inspired the idea that biological mol-
ecules could one day become the raw material of a new com-
puter species. Such biological computers would not necessar-
ily offer greater power or performance in traditional comput-
ing tasks. The speed of natural molecular machines such as the
ribosome is only hundreds of operations a second, compared

Tapping the computing power of biological molecules gives rise to
tiny machines that can speak directly to living cells

By Ehud Shapiro and Yaakov Benenson

M
A

T
T

C
O

L
L

IN
S

COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC.

46 S C I E N T I F I C A M E R I C A N M AY 2 0 0 6

with billions of gate-switching operations a second in some
electronic devices. But the molecules do have a unique ability:
they speak the language of living cells.

The promise of computers made from biological molecules
lies in their potential to operate within a biochemical environ-
ment, even within a living organism, and to interact with that
environment through inputs and outputs in the form of other
biological molecules. A biomolecular computer might act as
an autonomous “doctor” within a cell, for example. It could
sense signals from the environment indicating disease, process
them using its preprogrammed medical knowledge, and out-
put a signal or a therapeutic drug.

Over the past seven years we have been working toward
realizing this vision. We have already succeeded in creating a
biological automaton made of DNA and proteins able to diag-
nose in a test tube the molecular symptoms of certain cancers
and “treat” the disease by releasing a therapeutic molecule.
This proof of concept was exciting, both because it has poten-

tial future medical applications and because it is not at all what
we originally set out to build.

Models to Molecules
one of us (Shapiro) began this research with the realization
that the basic operations of certain biomolecular machines
within living cells—recognition of molecular building blocks,
cleavage and ligation of biopolymer molecules, and movement
along a polymer—could all be used, in principle, to construct
a universal computer based on Turing’s conceptual machine.
In essence, the computational operations of such a Turing ma-
chine would translate into biomolecular terms as one “recog-
nition,” two “cleavages,” two “ligations,” and a move to the
left or right.

Charles Bennett of IBM had already made similar observa-
tions and proposed a hypothetical molecular Turing machine
in 1982. Interested in the physics of energy consumption, he
speculated that molecules might one day become the basis of
more energy-effi cient computing devices [see “The Fundamen-
tal Physical Limits of Computation,” by Charles H. Bennett
and Rolf Landauer; Scientifi c American, July 1985].

The fi rst real-world demonstration of molecules’ compu-
tational power came in 1994, when Leonard M. Adleman of
the University of Southern California used DNA to solve a
problem that is always cumbersome for traditional computer
algorithms. Known as the Hamiltonian path or the traveling
salesman problem, its goal is to fi nd the shortest path among
cities connected by airline routes that passes through every city
exactly once. By creating DNA molecules to symbolically rep-
resent the cities and fl ights and then combining trillions of
these in a test tube, he took advantage of the molecules’ pairing
affi nities to achieve an answer within a few minutes [see

■ Natural molecular machines process information in
a manner similar to the Turing machine, an early
conceptual computer.

■ A Turing-like automaton built from DNA and enzymes
can perform computations, receive input from other
biological molecules and output a tangible result, such
as a signal or a therapeutic drug.

■ This working computer made from the molecules of life
demonstrates the viability of its species and may prove
a valuable medical tool.

Overview/Living Computers

COMPUTING MACHINES: CONCEPTUAL AND NATURAL

Mathematician Alan Turing envisioned the properties of a
mechanical computer in 1936, long before molecule-scale
machines within cells could be seen and studied. As the
workings of nature’s tiny automata were later revealed,

striking similarities to Turing’s concept emerged: both
systems store information in strings of symbols, both process
these strings in stepwise fashion, and both modify or add
symbols according to fi xed rules.

Control unit

tRNA

mRNA

Amino acid chain
Ribosome

Codon

TURING MACHINE
This hypothetical device operates on an information-encoding tape
bearing symbols such as “a” and “b.” A control unit with read/write
ability processes the tape, one symbol position at a time, according
to instructions provided by transition rules, which note the control
unit’s own internal state. Thus, the transition rule in this example
dictates that if the control unit’s state is 0 (S0), and the symbol read
is a, then the unit should change its state to 1 (S1), change the
symbol to b and move one position to the left (L).

BIOLOGICAL MACHINE
An organelle found in cells, the ribosome reads information encoded in
gene transcripts known as messenger RNAs (mRNAs) and translates
it into amino acid sequences to form proteins. The symbolic alphabet
of mRNA is made up of nucleotide trios called codons, each of which
corresponds to a specifi c amino acid. As the ribosome processes the
mRNA strand, one codon at a time, helper molecules called transfer
RNAs (tRNAs) deliver the correct amino acid. The tRNA confi rms the
codon match, then releases the amino acid to join the growing chain.

L
U

C
Y

R
E

A
D

IN
G

-I
K

K
A

N
D

A

COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC.

w w w. s c i a m . c o m S C I E N T I F I C A M E R I C A N 47

“Computing with DNA,” by Leonard M. Adleman; Scien-
tifi c American, August 1998]. Unfortunately, it took him
considerably longer to manually fi sh the molecules represent-
ing the correct solution out of the mixture using the labora-
tory tools available to him at the time. Adleman looked for-
ward to new technologies that would enable the creation of a
more practical molecular computer.

“In the future, research in molecular biology may provide
improved techniques for manipulating macromolecules,” Adle-
man wrote in a seminal 1994 scientifi c paper describing the
DNA experiment. “Research in chemistry may allow for the
development of synthetic designer enzymes. One can imagine
the eventual emergence of a general purpose computer consist-
ing of nothing more than a single macromolecule conjugated
to a ribosomelike collection of enzymes which act upon it.”

Devising a concrete logical design for just such a device,
one that could function as the fundamental “operational spec-
ifi cation” for a broad class of future molecular computing ma-
chines, became Shapiro’s goal. By 1999 he had a mechanical

model of the design made from plastic parts. We then joined
forces to translate that model into real molecules.

Rather than attacking the ultimate challenge of building a
full-fl edged molecular Turing machine head-on, however, we
agreed to fi rst attempt a very simplifi ed Turing-like machine
known as a fi nite automaton. Its sole job would be to determine
whether a string of symbols or letters from a two-letter alpha-
bet, such as “a” and “b,” contained an even number of b’s. This
task can be achieved by a fi nite automaton with just two states
and a “program” consisting of four statements called transition
rules. One of us (Benenson) had the idea to use a double-strand-
ed DNA molecule to represent the input string, four more short
double-stranded DNA molecules to represent the automaton’s
transition rules, or “software,” and two natural DNA-manip-
ulating enzymes, FokI and ligase, as “hardware.”

The main logical problem we had to solve in its design was
how to represent the changing intermediate states of the com-
putation, which consist of the current internal state of the au-
tomaton and a pointer to the symbol in the input string being

MOLECULAR TURING MACHINE MODEL

A Turing machine made of biomolecules would employ their natural ability to recognize symbols
and to join molecular subunits together or cleave their bonds. A plastic model built by one of the
authors (right) serves as a blueprint for such a system. Yellow “molecule” blocks carry the
symbols. Blue software molecules indicate a machine state and defi ne transition rules.
Protrusions on the blocks physically differentiate them.

Control unit
position

HOW IT WORKS

The machine operates on a string of symbol molecules.
In its control unit position at the center, both a symbol
and the machine’s current state are defi ned.

One “computational transition” is represented by a molecule complex
containing a new state and symbol for the machine and a recognition site to
detect the current state and symbol. The example shown represents a
transition rule: “If current state is S0 and current symbol is b, change state to
S1 and symbol to a, then move one step to the left.”

A free-fl oating computational transition complex slides into the machine’s control unit (1). The molecule complex binds to
and then displaces the current symbol and state (2). The control unit can move one position to the left to accommodate another
transition complex (3). The process repeats indefi nitely with new states and symbols as long as transition rules apply.

1 2

Current symbol
and state

Recognition site

New state

New symbolComputational
transition

complex

3

L
U

C
Y

R
E

A
D

IN
G

-I
K

K
A

N
D

A
 (

il
lu

s
tr

a
ti

o
n

s)
;

W
E

IZ
M

A
N

N
 I

N
S

TI
TU

TE
 O

F
S

C
IE

N
C

E
 (

p
h

o
to

g
ra

p
h

)

COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC.

48 S C I E N T I F I C A M E R I C A N M AY 2 0 0 6

<S1,a> <S1,b> <S1,t>

<S0,a> <S0,b> <S0,t>

+

+

+

BUILDING A MOLECULAR AUTOMATON

FokI

FokI recognition site

9 nucleotides

13 nucleotides

DNA

Hardware-software
complex

Input molecule

Remaining input

Output = SO

AUTONOMOUS COMPUTATION

A hardware-software complex recognizes
its complementary state/symbol
combination on the input molecule.
The molecules join to form a hardware-
software-input complex, then FokI
cleaves the input molecule to expose
the next symbol.

A new hardware-software complex
recognizes the next state and symbol on
what remains of the input molecule.

Reactions continue until no rule applies
or the terminator symbol is revealed.

In this example, computational cleavages
leading to the fi nal output (far right) have
produced a four-nucleotide terminator
symbol indicating a machine state of 0, the
calculation’s result.

HARDWARE
The FokI enzyme (gray) always
recognizes the nucleotide sequence
GGATG (blue) and snips a double DNA
strand at positions 9 and 13 nucleotides
downstream of that recognition site.

SOFT WARE
Transition rules are encoded in eight
short double-stranded DNA molecules
containing the FokI recognition site (blue),
followed by spacer nucleotides (green)
and a single-stranded sticky end (yellow)
that will join to its complementary
sequence on an input molecule.

SYMBOL AND STATE
Combinations of symbols a, b or terminator (t)
and machine states 1 or 0 are represented by
four-nucleotide sequences. Depending on how
the fi ve-nucleotide sequence TGGCT is cleaved
into four nucleotides, for example, it will
denote symbol a and a state of either 1 or 0.

Because living organisms process information, their
materials and mechanisms lend themselves readily to
computing. The DNA molecule exists to store data, written in
an alphabet of nucleotides. Cellular machinery reads and
modifi es that information using enzymes and other molecules.
Central to this operating system are chemical affi nities
among molecules allowing them to recognize and bind with
one another. Making molecules into a Turing-like device,
therefore, means translating his concepts into their language.

A simple conceptual computer called a fi nite automaton

can move in only one direction and can read a series of
symbols, changing its internal state according to transition
rules. A two-state automaton could thus answer a yes-no
question by alternating between states designated 1 and 0.
Its state at the end of the calculation represents the result.

Raw materials for a molecular automaton include DNA
strands in assorted confi gurations to serve as both input and
software and the DNA-cleaving enzyme FokI as hardware.
Nucleotides, whose names are abbreviated A, C, G and T, here
encode both symbols and the machine’s internal state.

L
U

C
Y

R
E

A
D

IN
G

-I
K

K
A

N
D

A

COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC.

w w w. s c i a m . c o m S C I E N T I F I C A M E R I C A N 49

processed. We accomplished this with a neat trick: in each step
of the computation the enzymatic hardware was actually “di-
gesting” the input molecule, cleaving the current symbol being
processed and exposing the next one. Because the symbol
could be cleaved in two different locations, each resulting ver-
sion of it could represent, in addition to the symbol itself, one
of two possible states of the computation. Interestingly, we
discovered later that this last element was similar to a design
that Paul Rothemund, a former student of Adleman, once
proposed for a molecular Turing machine.

Remarkably, the resulting computer that our team an-
nounced in 2001 was autonomous: once the input, software
and hardware molecules were placed in an appropriate buffer
solution in a test tube, computation commenced and proceed-
ed iteratively to completion without any human intervention.

As we tested this system, we also realized that it not only
solved the original problem for which we had intended it—de-
termining whether a symbol occurs an even number of times
in a string—it could do more. A two-state, two-symbol finite
automaton has eight possible symbol-state-rule combinations
(23), and because our design was modular, all eight possible
transition rules could be readily implemented using eight dif-
ferent transition molecules. The automaton could therefore be
made to perform different tasks by choosing a different “pro-
gram”—that is, a different mix of transition molecules.

In trying a variety of programs with our simple molecular
automaton, we also found a way of further improving its per-
formance. Among our tests was an omission experiment, in
which the automaton’s operation was evaluated with one mo-
lecular component removed at a time. When we took away
ligase, which seals the software molecule to the input molecule
to enable its recognition and cleavage by the other enzyme,
FokI, the computation seemed to make some progress none-
theless. We had discovered a previously unknown ability of
FokI to recognize and cleave certain DNA sequences, whether
or not the molecule’s two strands were sealed together.

The prospect of removing ligase from our molecular com-
puter design made us quite happy because it would immedi-
ately reduce the required enzymatic hardware by 50 percent.
More important, ligation was the only energy-consuming op-
eration in the computation, so sidestepping it would allow the
computer to operate without an external source of fuel. Fi-
nally, eliminating the ligation step would mean that software
molecules were no longer being consumed during the compu-
tation and could instead be recycled.

The ligase-free system took our group months of painstak-
ing effort and data analysis to perfect. It was extremely inef-
ficient at first, stalling out after only one or two computa-
tional steps. But we were driven by both the computational
and biochemical challenges, and with help and advice from
Rivka Adar and other colleagues, Benenson finally found a
solution. By making small but crucial alterations to the DNA
sequences used in our automaton, we were able to take advan-
tage of FokI’s hitherto unknown capability and achieve a
quantum leap in the computer’s performance. By 2003 we had

an autonomous, programmable computer that could use its
input molecule as its sole source of fuel [see box on opposite
page]. In principle, it could therefore process any input mole-
cule, of any length, using a fixed number of hardware and
software molecules without ever running out of energy.

And yet from a computational standpoint, our automaton
still seemed like a self-propelled scooter compared with the
Rolls-Royce of computers on which we had set our sights: the
biomolecular Turing machine.

DNA Doctor
because the t wo-state finite automaton was too sim-
ple to be of any use in solving complex computational prob-
lems, we considered it nothing more than an interesting dem-
onstration of the concept of programmable, autonomous bio-
molecular computers, and we decided to move on. Focusing
our efforts for a while on trying to build more complicated
automata, however, we soon ran up against the problem rec-
ognized by Adleman: the “designer enzymes” he had yearned
for a decade earlier still did not exist.

No known naturally occurring enzyme or enzyme com-
plex can perform the specific recognitions, cleavages and liga-
tions, in sequence and in tandem, with the flexibility needed
to realize the Turing machine design. Natural enzymes would
have to be customized or entirely new synthetic enzymes en-
gineered. Because science does not yet have this ability, we
found ourselves with a logical design specification for a bio-
molecular Turing machine but forced to wait until the parts
needed to build it are invented.

That is why we returned to our two-state automaton to
see if we could at least find something useful for it to accom-
plish. With medical applications already in mind, we won-
dered if the device might be able to perform some kind of
simple diagnosis, such as determining whether a set of condi-
tions representing a particular disease is present.

For this task, just two states suffice: we called one state
“yes” and the other “no.” The automaton would begin the
computation in the yes state and check one condition at a time.
If a condition on its checklist were present, the yes state would
hold, but if any condition were not present, the automaton
would change to the no state and remain that way for the rest
of the computational process. Thus, the computation would

EHUD SHAPIRO and YAAKOV BENENSON began collaborating to
build molecular automata in 1999. Shapiro is a professor in the
departments of computer science and biological chemistry at the
Weizmann Institute of Science in Rehovot, Israel, where he holds
the Harry Weinrebe Professorial Chair. He was already an accom-
plished computer scientist and software pioneer with a growing
interest in biology in 1998 when he first designed a model for a
molecular Turing machine. Benenson, just completing a master’s
degree in biochemistry at the Technion in Haifa, became Shapiro’s
Ph.D. student the following year. Now a fellow at Harvard Univer-
sity’s Bauer Center for Genomics Research, Benenson is working
on new molecular tools to probe and affect live cells.

TH
E

 A
U

TH
O

R
S

COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC.

50 S C I E N T I F I C A M E R I C A N M AY 2 0 0 6

end in yes only if all the disease conditions held, but if one
condition were not met the “diagnosis” would be negative.

To make this logical scheme work, we had to fi nd a way to
connect the molecular automaton to its biochemical environ-
ment so that it could sense whether specifi c disease conditions
were present. The general idea that the environment could af-
fect the relative concentrations of competing transition mole-
cules—and thus affect the computation—had already been
suggested in the blueprint for the molecular Turing machine.
To apply this principle to sense disease symptoms, we had to
make the presence or absence of a disease indicator a determi-
nant of the concentration of software molecules that testify for
the symptom.

Many cancers, for example, are characterized by abnor-
mal levels of certain proteins in the cell as a result of specifi c
genes either overexpressing or underexpressing their encoded
protein. When a gene is expressed, enzymes in the cell’s nu-
cleus copy its sequence into an RNA version. This molecular
transcript of the gene, known as messenger RNA (mRNA), is
then read by a structure called the ribosome that translates
the RNA sequence into a string of amino acids that will form
the protein. Thus, higher- or lower-than-normal levels of spe-
cifi c mRNA transcripts can refl ect gene activity.

Benenson devised a system wherein some transition mol-
ecules would preferentially interact with these mRNA se-
quences. The interaction, in turn, would affect the transition
molecules’ ability to participate in the computation. A high

level of mRNA representing a disease condition would cause
the yes ‡ yes transition molecules to predominate, increasing
the probability that the computer would fi nd the symptom to
be present [see box above]. In practice, this system could be
applied to any disease associated with abnormal levels of pro-
teins resulting from gene activity, and it could also be adapted
to detect harmful mutations in mRNA sequences.

Once we had both an input mechanism that could sense
disease symptoms and the logical apparatus to perform the
diagnosis, the next question became, What should the com-
puter do when a disease is diagnosed? At fi rst, we considered
having it produce a visible diagnostic signal. In the molecular
world, however, producing a signal and actually taking the
next logical step of administering a drug are not that far
apart. Binyamin Gil, a graduate student on our team, pro-
posed and implemented a mechanism that enables the com-
puter to release a drug molecule on positive diagnosis.

Still, our plan was not complete. Perhaps the central ques-
tion in computer hardware design is how to build a reliable
system from unreliable components. This problem is not
unique to biological computers—it is an inherent property of
complex systems; even mechanical devices become more un-
reliable as scale diminishes and the number of components
increases. In our case, given the overall probabilistic nature
of the computation and the imprecise behavior of biomolecu-
lar elements, some computations would inevitably end with a
positive diagnosis even if several or all of the disease symp- L

U
C

Y
R

E
A

D
IN

G
-I

K
K

A
N

D
A

Having shown that an automaton made from DNA and enzymes
can perform abstract yes-or-no computations, the authors sought
to give the device a practical query that it might face inside a
living cell: Are indicators of a disease present? If the answer is
yes, the automaton can output an active drug treatment. The
basic computational concept is unchanged from the earlier

design: complexes of “software” transition molecules and
enzymatic “hardware” process symbols within a diagnostic
molecule, cleaving it repeatedly to expose subsequent
symbols. In addition, the new task requires a means for disease
indicators to create input for the computation and mechanisms
for confi rming the diagnosis and delivering treatment.

DNA DOCTOR

Software strand 1

Software strand 2

Disease-associated mRNA

Protector strand

mRNA

+

FokI

Gene 1⇓
Gene 2⇓ Gene 3⇑ Gene 4⇑

Inactive drug

Hardware-software
complex

COMPUTATION
Complexes of transition-molecule software and FokI enzymatic
hardware process a series of symbols within the diagnostic molecule
that represent underactivity (⇓) or overactivity (⇑) by specifi c genes.
The automaton starts the computation in a yes state, and if all
disease indicators are present, it produces a positive diagnosis.
If any symptom is missing, the automaton transitions to no and
remains in that state.

INPUT
Gene transcripts called messenger RNAs (mRNAs) serve as disease
indicators. By interacting with software molecules, mRNAs infl uence
which of them is ultimately used in the computation. In this example,
the two strands of a yes ‡ yes transition molecule start out
separated, with one bound to a single protector strand. The protector
has a strong affi nity for the disease-associated mRNA, however. If that
mRNA is present, the protector will abandon its software strand to
bind to the mRNA. The single software strands will then bind to one
another, forming an active yes ‡ yes transition molecule.

Protector strand

Active yes ➔ yes
software molecule

Diagnostic molecule

COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC.

w w w. s c i a m . c o m S C I E N T I F I C A M E R I C A N 51

toms were absent, and vice versa. Fortunately, this probabi-
listic behavior is measurable and repeatable, so we could com-
pensate for it with a system of checks and balances.

We created two types of computation molecules: one de-
signed to release a drug when the computation terminates in
the yes state, the other to release a suppressor of that same
drug when the computation terminates in no. By changing
the relative concentrations of the two types of molecules, we
could have fi ne control over the threshold of diagnostic cer-
tainty that would trigger administration of an active drug.

Human physicians make this kind of decision whenever
they weigh the risk to a patient of a possible disease against the
toxicity of the treatment and the certainty of the diagnosis. In
the future, if our molecular automaton is sent on a medical
mission, it can be programmed to exercise similar judgment.

Dawn of a New Species
as i t t ur ned out, our simple scooter carried us much
further than we had believed it could and in a somewhat dif-
ferent direction than we had fi rst imagined. So far our biomo-
lecular computer has been demonstrated only in a test tube. Its
biological environment was simulated by adding different con-
centrations of RNA and DNA molecules and then placing all
the automaton components in the same tube. Now our goals are
to make it work inside a living cell, to see it compute inside the
cell and to make it communicate with its environment.

Just delivering the automaton into the cell is challenging

because most molecular delivery systems are tailored for either
DNA or protein. Our computer contains both, so we are trying
to fi nd ways to administer these molecules in tandem. Another
hurdle is fi nding a means of watching all aspects of the compu-
tation as they occur within a cell, to confi rm that the automa-
ton can work without the cell’s activities disrupting computa-
tional steps or the computer’s components affecting cellular
behavior in unintended ways. And fi nally, we are exploring
alternative means of linking the automaton to its environment.
Very recent cancer research suggests that microRNAs, small
molecules with important regulatory functions inside cells, are
better indicators of the disease, so we are redesigning our com-
puter to “talk” to microRNA instead of mRNA.

Although we are still far from applying our device inside
living cells, let alone in living organisms, we already have the
important proof of concept. By linking biochemical disease
symptoms directly with the basic computational steps of a
molecular computer, our test-tube demonstration affi rmed
that an autonomous molecular computer can communicate
with biological systems and perform biologically meaningful
assessments. Its input mechanism can sense the environment
in which it operates; its computation mechanism can analyze
that environment; and its output mechanism can affect the
environment in an intelligent way based on the result of
its analysis.

Thus, our automaton has delivered on the promise of bio-
molecular computers to enable direct interaction with the bio-
chemical world. It also brings computational science full circle
back to Turing’s original vision. The fi rst computing machines
had to deviate from his concept to accommodate the proper-
ties of electronic parts. Only decades later, when molecular
biologists began revealing the operations of tiny machines in-
side living cells did computer scientists recognize a working
system similar to Turing’s abstract idea of computation.

This is not to suggest that molecules are likely to replace
electronic machines for all computational tasks. The two
computer species have different strengths and can easily coex-
ist. Because biomolecules can directly access data encoded in
other biomolecules, however, they are intrinsically compati-
ble with living systems in a way that electronic computers will
never be. And so we believe our experiments suggest that this
new computer species is of fundamental importance and will
prove itself valuable for a wide range of applications. The
biomolecular computer has come to life.

M O R E T O E X P L O R E
A Mechanical Turing Machine: Blueprint for a Biomolecular Computer.
Presented by Ehud Shapiro at the 5th International Meeting on DNA
Based Computers, Massachusetts Institute of Technology,
June 14–15, 1999. www.weizmann.ac.il/udi/press

Programmable and Autonomous Computing Machine Made of
Biomolecules. Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh
and E. Shapiro in Nature, Vol. 414, pages 430–434; November 22, 2001.

An Autonomous Molecular Computer for Logical Control of Gene
Expression. Y. Benenson, B. Gil, U. Ben-Dor, R. Adar and E. Shapiro in
Nature, Vol. 429, pages 423–429; May 27, 2004.

DNA DOCTOR

OUTPUT
After a positive diagnosis, fi nal cleavage of the diagnostic molecule
releases the treatment, a single-stranded so-called antisense DNA
molecule (top). To compensate for diagnostic errors, the authors also
created negative versions of the diagnostic molecules to perform
parallel computations. When disease indicators are absent, these
automata release a drug suppressor. With thousands of both types of
diagnostic molecules computing simultaneously, the majority will
make the correct diagnosis, and either the antisense molecule will
outnumber its suppressors (bottom), or vice versa.

Diagnostic molecule
in fi nal yes state

Antisense
drug release

Low level of
suppressed drug

Positive diagnosis

High level of
active drug

Antisense
suppressor

Antisense

COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC.

