

The major (

language in whi

there can he an1

program and that

examples.

The first ex

a finite sequenc

bounded integers

menting register

the contents of r

Loops; there is

n = 1 causes the

a predetermined

register. Loops

but Loops with n

equivalent to

Each Loo;

which is intel

The ordinal af

and measures

The idea)

original with

[17, pp. 212-21

the theory of such

[22] and pub1ishqf

at ion with Loop ip],

new.

For each crdina||

function is recursive

f _ . T h e d e f i n i t i o n
P

of [15,16] and in ge,

by Robbin [25] for m"

programs can be state

ordinal 3 there is a|

P with inputs x., ,. . .

steps t halt (The: >e'^

with itself p tLmeb

which do in fact raquf

(Theorem (4b)). A

by a program is a b"

sented in §2.

Further re-

thesis, use heavJ

o f f u n c t i o n s 1 :

are true: -if a

where b bounds

if b is in the ^

Tur ing mach' ne, i';-

If £ is the class of fl

an ordinal less than or eq-

time closed. This allows

a > 2 is closed under lim'

for a > 2 can be chara

ence to Turing machines cr

gram P assigned ordinal a

its inputs where f3 < a, t

a program P' which is equiv

ever, it is in general unde_

P (Theorem (12.6)).

The second example of a

describing the multiple recui^-

recursive function can be defin

can effectively be assigned an
V

functions defined by systems o

U „ P is the class of n-recur
Q! < CO a ^
the 1-recursive functions^

func tions. Muc h th e °s ame *

particular, $ is computati

if f e &Q., f(xx,. . . ,xn) can

(max{xn , . . . ,x }) steps fS 1+cr 1 n. t m

the recursion equations defini"'

(8.3)). These facts alone show:

.

The same kind of techniques are appliec

Axt [2], Grzegorczyk [9] and Robbin

are shown to be identical to a portion o:

and thus to each other. ' Specifically, ij

. m

classes, £ = P for a > 4 (Theorem (10.4|
UC {J*

n
Grzegorczyk classes, £ = £q,+1 ^or 2 5

g. , a < oi°, are a trivial modification ofi
a'

for a > 2 (Theorem (10.6)). All of thes

using camputation-time closure. Not all"

1 w to a personal communication, Axt showeclj

but used a different method. Meyer shqp

[14], using a method like ojurs. Robbin
- r

same as "the class of n-recursive functi?

divide the latter class after the mannei

mentioned as well that Robbin establish!

functions and those functions defined by

oin sa "standard" well-orderings of type cd , andj

occurring in a restricted version ofl

It seems likely that by closer study ej

be established at each ordinal.

Chapters II, III, and IV study

cursive functions; Chapter V contains

developed in the earlier chapters. 'The

have indicated, is the idea of computation

appearance of this idea, without an explici'
-

[23]; who used it in characterizing classes],

elementary functions. • Cobham [6] pointed^
"j^m

class could be characterized in terms of

of our Theorem (6.2), which states £ is
'

computable by a Turing machine in a time bounded

As we mentioned, Meyer [14] and also Robbln Tsf^p^fehe idea:as

Chapter V, §13, discusses unnested and boiu®i®^fecursion

21] and their relation to the £ classes,thus^strengthening jspme

of Peter [20,21]. §14 examines the properties of Computation-time
aBHHg

classes of functions in general; its ma.iorjarp that eacij

eludes a sequence of classes,'all computation-time closed andJ'ci

limited recursion and substitution, which isTdensely ordered under

inclusion (Theorem (14.14)); also, £^ includes an infinite sequenc

rwise incomparable

obt;

classes with the same closure properties bu

set inclusion (Theorem (14.15)). These tw^||gults:.:

collaboration with Albert R. Meyer. §15 applies Lemma (14.13)

tain a strengthened version of the Super Sp

Among the consequences of our Theorem (15.3)

lying very low in the £ hierarchy whose com|j
OC j'ai

in Blum's sense, very considerably.

I. INTRODUCTION

§0. Predicting how long a digital computer with a given program

will require to process its inputs is sometimes impossibly difficult.

This difficulty can be partially explained as a manifestation of

the theorem that there is no effective method for bounding the com

putation time of a Turing machine by inspection of the machine, or

for bounding- the running time of a program written in any language

capable of describing all recursive functions.

In other words, any formalism which can describe all terminat

ing computations must describe some nonterminating computations, and

there is no generally effective way of distinguishing the description

of a terminating from a non- terminating computation. In consequence,

-.here can be no satisfactory way of relating the complexity of a pro

gram in a sufficiently powerful language to the complexity of the

operations it carries out. This fact is borne out most strongly by

the existence of a universal Turing machine: a fixed program, actually

quite small, whose behavior is as difficult to predict as that of

any possible program.

Although bounding the length of a computation by inspection oj

a program for the computation is in general impossible, this prob*
I

in common with many other unsolvable nroblens, has interesting spedu

cases which can be treated. One approach which has yielded fruitfu£f|

results is fairly common. It essentially involves a refusal to con

sider computations which take too long. Among the best known examples

of this method are the linear hounded automata of Myhill [18], the

T(n) countable sequences of Hartmanis and Stearns [10], and the pre

dictably computable functions of R. W. Ritchie [23]. Each of these

theories considers computations by a Turing machine where there is

a bound on the time (or the storage space) allowed for computation.

The bound is imposed from outside simply by restricting attention

to those computations which satisfy the bound.

By contrast, the approach of this thesis is to restrict the

language in which programs for computations are expressed so that

infinite computations are no longer possible. The first result of

this restriction is that there are indeed effectively calculable

bounds on the describable computations, but the important fact is

that the existence of these bounds becomes a theorem not a postulate

about the computations. It also becomes possible to do for these

special kinds of programs what is impossible for programs in general,

namely to relate the complexity of a program to the complexity of

the calculation it describes; both kinds of complexity, of course,

have to be taken in the proper sense.

The major part of this thesis is the study of two examples of

the technique of restricting the language in which computations are

described; the remainder consists of several applications of the

tools developed in the first part. Before going into the specifics

of the two examples, we should discuss the possible forms of an

answer to the question: how does the complexity of a program relate

to the complexity of the computation described by it?

It is not enough to- say merely that there is an effective means

of coins from a program and. its mpnt to a number bounding the time

required to run the program with that input. For if we know the pro-

grain eventually does halt, the effective method is simply the follow

ing! run the program on the given input and measure the time required.

'This method is not only foolish in a practical sense but (far worse,

from our point of view) uninteresting mathematically. A better way

is to give the answer in terms of a known function. Thus if we had

a program with a single input parameter, we might be satisfied to

2
know that for input x, the program would halt within x seconds. This

is the kind of result, given for the programs considered in this thesis.

On the other hand, even this kind of answer has many practical

defects. The trouble is that even simple programs can run for a long

time. Consider the following pseudo-FORTRAN program.

READ N
J = 1

D O 1 1 = 1 , N + l

J = 2**J

PRINT J

The third and fourth lines mean that 2° is to replace J, N+l times.

We assume that the storage registers associated with the variables

of the program are of unlimited size. This program is an extremely

simple one. Yet when N = 4, several pages of paper are required to

write down the resulting J; when N = 5, the known universe is totally

/

insufficient to contain the volume of paper required to write down J.

Thus the function of N which predicts the running time of -the program

must be very large. In fact, it is proportional to

This example indicates that we must accept one of two things: either

that we agree to treat programs whose running times are so incredibly

long as to prc-clude any practical application of the results developed,

or that we must throw out means of expression, like those in the pro

gram above, which programmers could hardly do without. In either case

the fact must be faced that there can be no direct practical applic

ations of the theory. In the latter there is another difficulty. When

programs are restricted severely enough to make every program halt in

a rather short time, the exact means of expression allowed to begin to

have a major -effect on the time required: it matters a great deal, for

example, whether multiplication is allowed as an elementary operation

or must he done in steps by means of repeated addition. In the case

of real computers, of course, this is an important consideration. But

we have already given up real applications by treating only programs

which no programmer would write, so it would be improper to claim

practical significance for our work merely because of this feature.

V he i ght. N

On the other hand, the mathematical significance of the theory

can only be enhanced when it is not model-dependent; that is when the

details of the basic definitions have little effect on the theorems.

Thus, in the programs described below and studied in the sequel it

would make little difference if addition or multiplication were added

as elementary operations. We study two major examples of ways of

defining computations in such a manner that from a program one can

go effectively to a function which bounds the length of the computa

tion. The two examples are Loop programs and definition of functions

by multiple recursion equations; both involve computations far beyond

the capabilities of real computers, but in return give rise to inter

esting mathematical structures.'

Loop programs exemplify the approach to the theory of computability

introduced by Turing [28] in that a Loop program may be regarded as

a set of instructions to be executed by a sort of digital computer.

The Turing approach is typified by the use of simplified models of

real computers; it is probably the one most frequently found.

A distinct although equivalent version of the theory of computa

bility is the one based on systems of Herbrand-Godel-Kleene recursion

equations, as presented by Kleene in [11] and [12, §54]. Our second

example, that of definition of functions by multiple recursion, bears

exactly the same relationship to definition by unrestricted recursion

equations as do Loop programs to programs in general; in each case the

forms of expression are weakened in such a way that infinite computa

tions beeome impos sib1e.

A Loop program is a sequence of instructions for manipulating

non-negative integers stored in registers; each register is capable

of storing an arbitrarily large number, and the number of registers

to which a program refers s fixed but unlimited. There are instruc

tions for moving the contents of registers, for incrementing by unity,

and for setting registers to zero. The flow of control in a Loop

program normally passes from one instruction to the next in sequence,

and the only way of affecting the normal flow is through the use of

Loops. A Loop is introduced by a LOOP instruction and terminated by

an END instruction. Together these indicate that the section of the

program between the two instructions is to be executed repeatedly

some number of times. There is a variety of LOOP instructions, one

for each number n > 1; these are written LOOP(l), L00P(2), etc.

Each kind of LOOP instruction names a register whose contents

control the looping. In the case of the instruction "LOOP(l) X",

for example. X may be any register name. This instruction causes the

portion of the program between itself and its matching END to be re

peated a number of times equal to the contents of X at the time the

LOOP is encountered; subsequent changes to X do not affect the number

of times the repetition occurs. Thus a Loop introduced by LOOP(l)

is entirely comparable to the DO loop of FORTRAN and to the most usual

cases of the for of Algol and the 'THROUGH of MAD. The similarity is

not accidental, for part of the motivation for the study of Loop pro

grams is to study the power of this construction.

Loops may contain other Loops; that is, Loops may be nested to

any fixed depth. This is the motivation for the existence of LOOP(n)

instructions for n > 1: the effect of LOOP(n+l) is defined so as to

make such a Loop equivalent to a variable depth of nesting of LOOP(n)

Loops. In particular, the program

LOOP(n +1) X

Q

END

where n > 1, X is a register name, and Q is a program, equivalent to

the program

LOOP(n) X ^

LOOP(n) X

Q

END

END

where x is the number in X initially; that is, we have a nest of

LOOP(n) Loops of depth x. There are no constructions in real pro

gramming languages comparable to LOOP(n) where n > 1.

CD
To each Loop program an ordinal a is assigned, where a < cd .

The ordinal is derived directly from the depth of nesting of the

various kinds of Loops: for a program without Loops, a = 0; if a

program is the concatenation of two programs with ordinals (3, y,

the ordinal assigned is a = max(f3, y); if program £ is assigned

ordinal 3, then program P =

LOOP(n + l) X

£
END

for n > 0 and X a register name, is assigned A = (3+CD . Then, for

example, a program which uses only LOOP(l) instructions is as

signed a finite ordinal equal to the greatest depth of nesting of

Loops in the program. The ordinal assigned to a program is the

measure of complexity of the program.

The notion of computation by Loop program can be formalized;

a by-product of the formalization is a precise definition of the

running time of a given program as a function of its inputs. The

running time measures the number of individual instruction executions

required to complete a program and in a sense the justification for

introducing the somewhat opaque formalism is to make reasonable the

claim that the complexity of a calculation is measured accurately

by its running time.

The basic result on Loop programs is the Bounding Theorem (3.6).

We introduce for each ordinal ol, ot < ̂ , a function fQ as follows:

if a = 0, .

if x > 1

if x < 1

If a is a successor ordinal, a = {3 + 1,

fQ(x) = fW(l)

where the notation f A^(y) means f(f(...f(y)...))5 there are x com

positions of f. That is, f0 , is defined from f0 by iteration. If p+j_ p
Y~' | "|-

a is a limit ordinal, let £3 be the least ordinal so a = (3 + of1

where n > 0. Then

f (x) = f ;i (x)
a ' P-KD -X

Thus at limit ordinals, f is defined by diagonalization over a Ot

certain sequence (fp. } of functions where £3^ < £3^ < ••• and sup{£3. }

= a. The first few f^ are easy to describe: f,(x)=max(l, 2x); -i-

f2(x) = 2X;

f3(x) = 22

The details of the definition of f are unimportant. For finite

ordinals, a = n, f is the same as the f used in [15] and [16];
a n

at limit ordinals, the definition is the-same as that used by Robbin

[25] for his functions , which play the same role as our f . What

is important is that the f^ are easily defined and have pleasant

properties: each f is a strictly increasing function, and if a > 3,

f^ majorizes (bounds almost everywhere) the function f^.

Given the function f , the Bounding Theorem is: if P is a pro

gram assigned ordinal a, there is' a fixed number p, effectively

found from P, such that the running time of P with inputs x-^,...,x

is bounded by fA^\max[xn , . . . ,x }) . a ' 1 n

By fixing upon one or more registers for input and a register

for output, we associate with a Loop program a function computed by

that program; the class of functions computable by Loop programs

assigned ordinals less than or equal to a is called £^. It is an

immediate consequence of the Bounding Theorem that every function

(\
f e £ has an so f(x,,...,x) < fit (maxCx, ,.. . ,x }). Also, for a * v 1 ' ' n ' — a v I n ' '

each a < CLP there is a function f e £ so £ (x) > f (x); it is im-ol a a — a

mediate that the classes £ form a hierarchy, for it is easily shown

(c)
that if a > 3, £a(x) > (x) £°r each c and almost all x. Already

several of the goals looked for in the study of Loop programs have

been achieved, for it follows first that every program assigned or-
r \

dinal a consumes no more than f^p (max{x^,...,x^]) steps when given

input x^,...,xn, and second that there are some programs assigned

ordinal a which actually do require this many steps to halt. Thus

the ordinal assigned a program is a reasonable measure of the (po

tential) complexity of the computation described by the program.

The further study of Loop programs, and in fact much of the re

mained of the thesis, is heavily concerned with the property of com

putation-time closure of a set of functions defined as follows: first,

when a function is in the set, it can be computed by a Turing machine

in a number of steps which is bounded, as a function of the inputs, by

another function in the set; and second, if a bound on the computation

time of a function is in the set, the function itself is in the set.

Each class £ for a. > 2 is computation-time closed. The first require

ment is met by combining the Bounding Theorem with a demonstration that

a Turing machine can simulate an arbitrary Loop program while con

suming a number of steps which is an £ function of the running

time of the Lo; p program; the second by finding a Loop program

which simulates a Turing machine calculation carried out for a

given number of steps, and then substituting the known bound on

the length of the computation into the simulation program.

The computation-time closure cf £ leads immediately to several d

theorems; for example, if it is known that a program assigned or-

(c)
dinal a actually has a running time bounded by f^ where 2 < p < a,

the program can be effectively rewritten so it is assigned ordinal (3.

It is also shown that each class £ , a > 2, is closed under the oper

ation of limited recursion (see*Grzegorczyk [9]); that each class £ , u.

a > 2, can be characterized in purely arithmetic terms, without re

ference either to Turing machines or Loop programs; and that every

primitive recursive function is in £ for some finite ordinal a.

Our second example is that of the multiple recursive functions.

These are, for our purposes, precisely those functions definable by

certain formal systems of equations. We imagine a language contain

ing symbols for constants, variables, function letters, and appropriate

punctuation, combined in such a way as to represent definitions of

effectively computable functions. This language is simply a formal

version of the informal definition of functions by means of various

kinds of recursion, including, for example, primitive recursion.

Unlike Kleene [11, 12] however, we place certain restrictions on the

form of the systems of equations. In particular, an equation defining

•w----, -,-y

i .

I
a function in terms of already-defined functions must be an instance

of one of several schemata, namely those of substitution and n-

recursion for some fixed integer n > 1. Substitution simply means

obtaining a new function by means of explicit transformation or

composition of other functions. The schema of n-recursion allows

defining a function f (x.^,•..in terms of known functions and

values of f itself at arguments ...,z such that the n-tuple

zl''**'zn is lexic ̂ra-PMc ally less than x1, ...,x . The very form

of the schema of n-recursion is such as to ensure that the set of

equations constituting an instance of n-recursion actually does de

fine a function effectively.

An ordinal ct < co can be effectively attached to each formal

system of equations satisfying certain purely syntactic requirements.

Letting be the class of functions definable by systems of equations

with ordinals less than or equal to a, another hierarchy results which

is equivalent to the following: consists of the closure under sub

stitution of the constant and identity functions; (ft for every a > 0

consists of the closure under substitution of all functions f for which

there exist (3 and n so cc = f3-f-co and f is definable by (n +l)-recursion

from functions in £Q.
P

For each n > 1 the functions in U ft are called n-recursive;
oc <o)n

functions which are n-recursive for some n constitute the multiple re

cursive functions. The notion of multiple recursive function is a ge

neralization of that of primitive recursive function, which was intro

duced explicitly by C-bdel [3]; as Peter [21] shows, the l-recursive

V

functions are identical to the primitive recursive functions. Ackermann

[1] first introduced a. 2-recursive (also called double recursive)
t

function and used it to show that there are effectively computable

functions which are not primitive recursive. Peter [19,20,21]

studied the whole class of multiple recursive functions.

Our examination of the multiple recursive functions uses much

the same methods as those applied to Loop programs. A Bounding Theorem

for ft establishes that each function in ft is bounded by fi^ for
a .a J 1+a

some p which can be found effectively from the formal system of

equations defining the function; on the other hand, f.. £ ft for ±+ot cx

a > 1. Likewise, each class ftQ for a > 2 is camputation-time closed;

this is established by considering the number of steps a Turing

machine would require to carry out the evaluation of a.function from

its defining equations. Then the theorem £_ = ft for a > 2 is im-1+a a —
mediate. For if f e f(x , ...,x) can be computed on a Turing -i +u j_ n

machine in no more than f^(max(x, ,. . . ,x }) steps; but the latter -L+Q, n

function is in ft_v,, and so by the computation-time closure of ft^,

f e ft . The converse argument is identical.

It is here that the concept of computation-time closure is most

important. For to show directly that = ft- is quite difficult.
1+a a

In particular, if a < (D then to construct an equivalent Loop program

with ordinal 1+a directly from the equations defining an ft^ function

is quite hard. But given that the ft function can be computed by a

(\

Turing machine in steps, one need only write a program which

/ \

computes any function at least as large as insert it into

a program to simulate the Turing machine.

The same kind of methods are also applicable to three other

hierarchies, those of Grzegorczyk [9], Axt [2], and Robbin [25].

The first two classify the primitive recursive functions and the

third all the multiple recursive functions. The point of interest

is that each of these hierarchies is identical to a corresponding

portion of the £ and & hierarchies; the classes of functions
^ a a

eventually become the same.

The idea of computation-time•closure, which plays a major role

in our work, was used by R. W. Ritchie [23] without an explicit name;

its value in characterizing the Grzegorczyk hierarchy was pointed out

by Cobham [6]. Some of the results of Robbin [25] make implicit use

of the idea.

The usefulness of the notion is that the particular functions

in a computation-time closed set of functions depend merely on the

approximate size of the functions in the set; that is, a function*is

in the set if and only if a sufficiently large function is in the set.

For example, suppose C and D are two computation-time closed sets of

functions, and that D contains both a function which grows at least

exponentially and a function which majorizes every function of C.

Then it can be shown not only that D contains C properly, but that D

contains a function universal for C: a function U £ D so that for each

f e C, f(x) = U(e,x) for some e.

The secondary goal of th's thesis is to study the application

of computation-time closure and other tools developed in the pursuit

of the primary goal. Fhe most important application, of course, is

the study of the classes 1 and which arise from Loop programs

and multiple recurs: v* functions. There are three others: the ef

fects of various restrictions on the schema of n-recursion; the ex

tent to which computation-time closure characterizes a set of functions

(which leads to an impressive refinement of the £ hierarchy); and the

existence of functions whose computation can be sped up very greatly.

For the most part this thesis is self-contained. The only re

quirement is a knowledge of the elementary theory of Turing machines:

what they are, and a few of the tricks that they can perform in order

to carry out intuitively simple kinds of operations. Familiarity with

the first few chapters of Davis [7] is more than enough background.

The mathematical notation in the thesis is generally standard.

•We use a bar over a letter to indicate a sequence of elements: "xn"

is the same as "x ,...,x ". In each case the first subscript in the
j. n

sequence is 1 and the last is the same as that on the barred letter.

Variables and constants, usually indicated by small letters of the

alphabet, all range over N, which is the class of non-negative integers;

functions, often small letters f, g, h, are always functions from l/1

into N for some n; sets of such functions are usually denoted by capital

script letters. Small Greek letters from the beginning of the alphabet

are used for ordinal numbers. Functional composition is often denoted

by juxtaposition, especially with one-place functions: fg(x) is the

same as f(g(x)). Finally "c" means strict set theoretic containment.

II. LOOP PROGRAMS

§1.. A Loop program is a finite sequence of instructions for manip

ulating non-negative integers stored in registers. There is no limit

to the size of an integer stored in a register, nor to the number of

registers to which a program may refer; but a given program refers

only uo a fixed set of registers. We will use upper case English

letters, sometimes with subscripts, as register names, and abbreviate

a sequence X^...^ of register names by Boldface capitals (iden

tified by a wiggly underscore) stand for Loop programs, and if P is a

program Reg (f>) is the set of register names used by P.

The instructions of a Loop program are of five types:

(1) X = 0

(2) X - X + l

(3) X = Y

(4) LOOP(n) X where n is a fixed integer, n > 1

(5) END

Here X' and "Y" may be replaced by any names for registers, and the

0 of X = 0" is to be read "zero".

(1.1) Definition. The class L of Loop programs is U LQ, where &

ranges over ordinals < CD , and where is the smallest class

satisfying

(i) J J Ct o, î is the class of finite sequences of type (l),

(2), and (3) instructions,

(i i) If H < Lp and G < CL} then P e I, ,

(iii) If Q, R € and P is Q concatenated with R,

.then p e La,

(iv) If Q £ Lp and Ct = f3 + co1 for sortie n, 0 < n < GO,

then P e La, where P is

LOOP(n + 1) X

s
END

and X is any register name.

By (l.l.iv), type (4) and (5) instructions occur in pairs, like

parentheses m a well-formed formula, so that the LOOP-END pairs in

a program are unambiguously determined.

The first three types of instruction have the interpretation

suggested by their appearance. "X = 0" means that the contents of

register X are to be replaced by zero; "X = X + l" means that the

contents of register X are to be incremented by one; "X = Y" means

that the contents of register Y are to be copied into register X,

destroying the old contents of X but leaving Y unchanged. These are

the only instructions which affect the registers.

Instructions of types (l), (2), and (3) are executed sequentially

in the order in which they appear in the program. Type (4) and (5)

instructions affect the normal order by indicating that the execution

of the block of instructions between the LOOP and its matching END

io to be repeated 'zero or more times.

The effect of a LOOP(n) instruction is defined "by induction

n. Specifically suppose that P is a Loop program, and that x is

stored in register X initially. Then the program

L00P(1) X

P

END

means that ^P is to he repeated x times in succession before the

next instruction (if any) after the END is executed. Changes in

the contents of X by do not affect the number of times P is exe

cuted; and if x is zero initially P is not executed at all.

(1.2) Example. The L.^ program

L00P(1) X

X = X+ 1

END

doubles the contents of register X.

(1.3) Example. If the initial contents of X and Y are x and y,

the program

L00P(1) Y

A = 0

L00P(1) X

X = A

A = A +1

END

END

leaves x-y in X, where x-y (pronounced "x monus y")

equals x-y if x > y, 0 otherwise.

Suppose now that the interpretation of the effect of a

LOOP(n) - END pair has been given for some n > 1, and P is a Loop

program. Say that the initial contents of register X are x > 1.

Then we interpret the program

LOOP(n+ 1) X

P

END

as being identical to

LOOP(n) X

LOOP(n) X

LOOP(n) X

P

END

END

END

where the LOOP(n) - END pairs are nested to depth x. If x is zero

initially, the effect is the same as

L00P(1) X

P

END

That is, P is riot executed at all.

> x

> X

(1.4) Example. Suppose we have the L program

LOOP(2) X

X = X+ 1

EM)

and X contains 2. Then the program is equivalent to

LOOP(l) X

LOOP(l) X

X = X + l

END

END

and execution of the program would leave 8 in register

X. Notice that the depth of nesting is not affected by

changes to X.

(1.5) Example. If the initial contents of register X are 2,

the L 2 program

LOOP(3) X

X = X+ 1

END

is equivalent to the program

LOOP(2) X

I.OOP(2) X

X = X +1

END

EN J)

which is in turn equivalent to

L00P(1) X

LOOP(l) X

r LOOP(2) X
Q < X = X + l

I END

END

END

Now when the program Q indicated above is executed, the

contents of X will change to 8, by Example (1.4). But

then the next time £ is executed, Q will be equivalent to

L00P(1) X 1
> depth 8

LOOP(1) X J
X = X + 1

END 1

> depth 8

END J

Thus the expansion of a LOOP(n+l) - END pair in terms of

LOOP(n) - END depends on the contents of the associated

register at the time the LOOP is encountered.

Finding the number left in register X by the program of (1.5) is

left as an exercise for the persistent reader.

§2. Although it would be possible to characterize formally the

notion of computation by Loop program directly in terms of the in

formal discussion above, the examples, especially (1.5), should have

convinced the reader that such a characterization would tend to be

quite complicated; more seriously, the individual steps in a com

putation by a Loop program would in themselves involve considerable

computation. This is undesirable because we will be attempting to

measure the computational complexity of a function by the number of

steps required to compute it. If the individual steps turn out to

be nearly as complicated as the function itself, this measure can

hardly be claimed to have much significance.

We will circumvent this kind of objection by giving a definition

of computation by Loop program whose individual steps are quite ele

mentary. The price that must be paid for this characterization is
l

that it is no longer clear from the definition that Loop programs be

have as outlined in §1; thus, a theorem must be proved which states

in effect that Loop programs operate as desired. The proof, unfor

tunately, is rather tedious; but given the theorem, we can select

whichever version of computation is more appropriate to the case at

hand.

To begin this alternate characterization, associate with each

program P not only the registers Reg (p), but also a switch and a

pushdown store; the latter are used by LOOP and END instructions.

T

24

(2.1 Definition. A pushdown store is either the single

object (0) or the pair (t,p) where t is an n-tuple

of integers and p is a pushdown store. If a push

down store is 0) it is empty. The depth of (0) is

0, arid if p ' s a pushdown store whose depth is m,

the depth of (t,p) is m + 1.

For the remainder of this section, let P be a Loop program

with Reg (P) = (X } and let P consist of the sequence I^,Ig,...,Ie

of instructions where e > 0. There is of course no loss of general

ity- in restricting Reg (P) in this way.

(2.2) Definition. A state of P is an (r+ 3)-tuple (x ,i,i,p)

where x. > 0 for 1 < j < r, where 1 < i < e+ 1, where
J

0< £ < 1, and where p is a pushdown store. A state is

in.iti al if i = 1 and is final if i = e + 1.

(2.3) Definition. If s and s' are states of P with

s = (x^,i,i,p) and s' = (x^,i',& ',p'), then s' is the

next state of s under P if i -j e + 1. x* = x except as _ T r r .

provided in (i), (ii), (iii) below, and one of the fol

lowing holds for some k, n:

(i) If I. is "X, = 0" then x' = 0, iT = i + 1, I = 11 = 0,
1 K. K

and p' = p;

(ii) If I., is "X^ = X^ +1" then x^ = x^+l> i' = i + 1,

i - I' =0, and p' = p;

• 25

(iii) If I. is "X, = X." then x' = x., i' = i + 1,
i K j k j

P = I1 =0, and .p' = p;

(iv) If I is "L00P(n) X./' and the matching END is I ,

then i' = m, P - P' = 0, and p' = (t,p) where

t = (a.,,... ,a^.;l) and for all j with 1 < j < n,

a. — x. — i , a — x. « j k 3 n k'

(v) For the remaining five cases let I be "END",

p = ((an ,. . . ,a^;a), q), and let the matching

LOOP instruction be I = "LOOP(n) X, ". If a = 0,
m v ' k n 7

a = 1, I - 0, then i' = i + 1, i' =0, pf = q; or

(vi) I f a^ = 0 , a = 0, <0 = 0 then i* = i, P' = 0 ,

p' = q;

< vii) If for all j with 1 < j < n, a.. - 0, but ^ 0

and I = 0 then i' = m+1, Px = 0, p' =

(V aq; • • • } _ q > ~ 9 ^ ^) 5

(viii) If for some u with 1 < u < n, a j 0, and a i 0, — u ' n '

P, = 0, then i' = i, P x = 1, p* = ((a1, . . . ,an_1,an~l;a) ,q);

(ix) If for some u with 1 < u < n, a ^ 0, and for all \ _ > u / 7

j with u < ,j < n, a. = 0, and P - 1, then i' = i,
•J

P' = 0, p' = ((a*,...,a';0), p) where for 1 < j < u,
j. n

a'. = a., a' = a -1, and for u < j < n, a'. = x. -1,
J J u u J k

and a^ = .

(2.4) Definition. Let P = I-, I0,...,1 be a Loop program.
^ i. c e

A sequence sq>-*-.>srrl of states of P is an execution

of P whenever

(i) s^ is initial, and

(ii) s is final, and
m

(iii) The pushdown stores of s^ and s^ are the same, and

(iv) For each i, 1 < i < m, is the next state of

s. under P.
1 ~

If the pushdown store of s^ is empty, the execution is proper.

(2.5) Definition. If there is a unique execution of P of length

m beginning with (x ,l,0,p) and ending with (x^,e+l,0,p)

• then for 1 < i < r, x^ is the integer left in by P when

Reg (P) initially contain x^. Also m - 1 is the running

time •

(2.6) Definition. If for each x^ there is a unique proper exe

cution of P beginning with (x^,1,0,(0)), then let Tp(xr) be

the running time of the execution beginning with (x,1,0,(0)).

Definition (2.2) may seem complicated, but its complexity lies

in the multitude of clauses rather than in the clauses themselves.

A more comprehensible description of the execution of a Loop program

can be given as follows.

(i)-(iii) If the current instruction is an instruction of type

(l), (2) or (3), carry out the instruction in the obvious way and go

on to the next instruction.

(iv) If the current instruction is "LOOP(n) X^" put the

(n+ l)-tuple (xk-l,.. .,^-l^jl) on the pushdown store, (if n = 1,

put on pushdown store.) Then go to the matching END

instruction.

(v) If the current instruction is "END", and if the top of

the pushdown store is (a^,...,an;l) with a^ = 0, and 4 = 0, pop up

the pushdown store and go on to the next instruction.

(vi) If the current instruction is "END", and if the top of

the pushdown store is (a^,...,an;0) with an = 0, and 4=0, pop up

the pushdown store and do this instruction again.

(vii) If the current instruction is "END", and if the top of

the pushdown store is (a^,...,a^;a) with a^ = 0 for all i < n but

a ^ 0, and 4=0, subtract 1 from a and go to the instruction fol-
n 7 7 n

lowing the matching LOOP.

(viii) If the current instruction is "END", and if the top of

the pushdown store is (a^,...,an; a) with an j 0 and a^ ̂ 0 for some

u < n, and 4=0, subtract 1 from a^ and set 4 = 1; then do this in

struction again.

(ix) If the current instruction is "END", and if the top of

the pushdown store is (a^,...,a^,0,...,0,an;a) with 1 < u < n and

a 4 0, and 4 = 1, and if the matching LOOP instruction is "L00P(n) X, ",
u 7 ^

then set 4 = 0 and put the (n+l)-tuple (a^,. .. ,au_]_,auil,x̂ ~l, * • • >x̂ ~l>

on the pushdown store; then do the END instruction again. This ex

hausts the cases which can possibly arise.

Examination of the various cases of (2.3) should convince the

reader that the next state of a given state is unique if it exists

at all, and thus that there is at most one execution with a given

initial state. The possibilities do arise that a state has no next

state yet is not final, or that there is never a final state;

but the theorem about to be proved has among its consequences that

from any initial state there is exactly one execution, and thus that

the running time Tp and the integer left in X. are well-defined
/-N-»

functions from Nr into N.

(2.7) Definition. Two programs £ and P are equivalent if given

any initial state of P and P there are unique executions

of P and P whose final states are the same except perhaps in

the third from last ("instruction counter") component.

(2.8) Theorem. Let P be a Loop program using r registers.

(i) If s = (xr,l,0,p) is an initial state of P, there
/•v

is a unique execution of P beginning with s; furthermore,

the running time and the integers left in Peg (p) are

independent of p, the initial pushdown store.

(ii) If P is of the form

L00P(1) X

£
END

5

where Q is a Loop program and X is a register

name, let X contain x initially; then P is
A

equivalent to P =

and Tp(x.r) = Tg(xr) + x + 2

iii) If P is of the form

LOOPf n + 1) X.

s
END

for Q a Loop program, n > 1, and X a register

name, let X contain x initially. Then if x > 0

A

P is equivalent to P =

LOOP(n) X

LOOP(n) X

LOOP(n) X

Q

END

END

END

and if x— 0, P is equivalent to P =

L00P(1) X

s
END

In both cases T^(x) = T^(x).
P r P r

Proof. The proof is by transfinite induction on Definition (l.l)

°f La.

If P e L̂ , by (l.l.i), so that <2 = 0 and P contains no LOOP in- ̂ U, /-w

structions, (i) of the theorem is obvious and (ii) and (iii) are

vacuous. If P e by (l.l.ii), so that P e with (3 < Ol, the theorem

is immediate by the induction hypothesis. If P e by (l.l.iii) so

that P is Q concatenated with R, any final state of Q, corresponds in ^ ^ ^

an obvious way with an initial state of R; the details are omitted.

Now assume that P e L by (l.l.iv) with n = 0; that is, P is
^ \JC

there be e instructions in P and. say x is the initial contents of

Xj as an induction hypothesis assume that Q satisfies (2.8.i). Con

sider the initial state (x^,l,0,p). By (2.3.iv) the unique next

state is (x ,e,0,((x;l),p)); the next state after this, by (2.3.vii),

is (x ,2,0,((x - 1;1),p)) if x > 0. But this is essentially an initial

L00P(l) X

Q

END

for some Q e L^ where cc = (3+ 1 and X is some register name. Let

state in an execution of Q; by the induction hypothesis the next

several states consist -of an execution of Q which ends with

(x^,e,0,((x - l;l),p)) for some x^. Then the next state is

(x^,2,0,((x - 2;l),p)) if x > 1; repeating the argument leads,

after x executions of Q, to the state (x^,e,0,((0;l),p)). By

(2.3.v) the next state is (x^,e+ 1,0,p) which is final. Counting

the number of states not involved in the executions of Q, yields

(2.8.ii) and thus (2.8.i).

The remaining possibility is that P e L by (l.l.iv) with

n > 0, so that P is

I •: LOOP(n-fl) X

Q
/v/

I : END
e

Let the final END instruction be the e-th instruction of P, as in-

A

dicated above. We have to show first that the program P =

\

> X

J

\

) X

/

Ir
V

LOOP(n) X

LOOP(n) X

I : x

I-:
e

LOOP(n) X

Q /•>*/
END

"e+x-2 *

"e+x-1*

END

END

where x > 0 is the initial contents of X, is equivalent to P, and

that Tp(x^) = Tg(x^). As indicated, we let be the first END
'"X

instruction of P after Q. The method is to consider an execution

of P and show that each state of this execution corresponds in an

appropriate sense to a state in the execution of P; the correspondence

includes the requirements that the registers be the same, and that

A

the pushdown stores be "similar". Since P e L , and
~ P-huP-V

q n-1 ^
a > P + O) x, the induction hypothesis for P will yield the result

desired.

In the definition and lemma that follow, we use a consistent

notation: letters without hats refer to the program P, and those

^ /\ ^
with hats refer to P; for example, s and s are states of P and P

respectively. Also, a primed letter refers to the next state of

A A A

a given state; so if, for example,s is a state of P, s1 is the next

A A

state of s under P. Finally, x is the initial contents of register

X. We assume that x > 0.

(2.9) Definition. For a pushdown store p let cr.p be the object
J

at the j-th level of p; that is, if p= (q ,(q ,...(qR,(o))...)),

then cr.p = q. for 1 < j < k; if j > k, cr.p = 0. Two push-
J J J

A /N
down stores p and p occurring in states of P and P are

similar if for each j one of the following holds:

(i) cr.p = cr.p, or
J J

(ii) 01p = (y,ax,...,an;0) and C.p = (a^...,an;0) and

cr^.+1p = (y,b^,. . . ,bn;b) for some y with 0<y<x; or

(iii) o\p = (y,a1,...,an;0) and 0\p = (a^ ... >an;l)

311(1 °j+pP = (y+• • • ̂ bn;"b) where for l<k<n,

b^. = 0, and 0 < y < x; or

(iv) a.p = (x-l,ai,...,an;l) and o\.p= (ai,.. .,anjl).

(2.10) Lemma. Let s ,...,s be an execution of P. Then there
-L m rw

is an execution s1,...,sm of P such that s = s and for

each pair s = (x ,i,i,p) and s. = (5T ,i,i,p) we have
j r j r

xj = xj f°r 1 5 J < r> P is similar to p, and one of the

following holds:

(i) l<i<e and i = i + x-1; or

(ii) i = i = 1, and Z = Z = 0; or

(iii) CT-^p = (y,0,... ,0,an;a) with 0 < y < x, i = e,

Z = 1, Z = 0, 1 = X - y + 1; or

(iv) i = e +1, i = e + x

(^ p P = (y ^ a x , . . . , a ^ ; a) a n d i = e , i = e + y w i t h
A

0 < y < x, and Z = Z .

Proof of Lemma. Let s = s = (x ,1,0,p) be an initial state of P and
A

P. Then s and s satisfy (2.10.ii), and p = p so p is similar to p by

(2.9.i). Now assume that s = (x^,i,i,p) and s = (x^,i,i;p) are states
A

of P and P satisfying (2.10); we prove that s' and s' also satisfy

(2.10). The proof consists in considering the cases that arise.

Case 1. s and s satisfy (2.10.i). Then P and P are executing

the same instruction of Q, and the result follows from an induction

hypothesis on Q.

J

bwk

bwk
This is really wrong...

0,...,0,�

Case 2. s and s sat isfy (2.10. i i) , so i = i = 1, i = i = 0.

Then (2.3. iv) applies to both s and s : s ' =

(x r ,e+ x - 1,0,((x~l , . . • ,x - l ,x; l) ,p)) and s ' =

(x ,e ,0, :((x-l>x-l , . . . ,x- l ,x; l) ,p)) . Then s ' and s ' sat isfy

(2.10.v) and p ' and p ' remain s imilar by (2.9. iv) .

Case 5. s and s sat isfy (2.10.Hi) , so i = e , l = x- y+1,

£ = lp £ = 0 . Then (2.3. iv) applies to s , so i f is the current

contents of register X, s - (x^,e+y-l ,0, ((x^-1, . . . ,x^.- l ,x^; l) ,p)) .

Also, (2 .3 . ix) applies to s , so s ' = (x ,e ,0, ((y-l^-l , . • .

Now p ' and p ' remain similar by ^2.9. i i i) j s ' and s ' sat is ty (2.10.v) .

Case 4. s arid s sat isfy (2.10. iv) , so i = e + 1 , l = e+x.

Then sands are both f inal and nei ther has a next s tate .

Case 5. s and s sat isfy (2.10.v) , so i = e , i = e+y where

0 < y < x, £ = £ , a ,p = (y,a ,>. . . ,a^;a) , and by s imilari ty, C^p =

(a , . . . ,a^;a) . There are several subcases corresponding to various

possibi l i t ies for s .

Subcase 5.1. (2.3.v) applies to s : a = 1, a = 0, i = 0.

Then by (2.3.v) s ' = (x »e-f y + 1,0,q) . First say djP and O^p sat is

fy (2.9. i i i) m f then d- (p = (y,a1 , . . . ,an ;0) and s ince a^ = 0, (2.3.vi)

applies to s , so s ' = (x^,e,0,q) . But by (2.9. i i i) , (J^p =

(y +l , t> , . . . ,b ;b) so s ' and s ' sat isfy (2.10.v) . On the other

hand, If 0"n p and dp sat isfy (2.9. iv) , then by (2.3.v) , s ' =

(x ,e + 1,0,q) . Also by (2.3.v) , .s ' = (x r ,e + x,0,q) and so s and

s ' sat isfy (2.10. iv) .

/\ /N

Subcase 5.2. (2.3.vi) applies to _s: a = 0, a^ = 0, i = 0,

and so s' = "(x ,e + y,0,q). (2.3.vi) must also apply to s, so s' =

(x^,e,0,q) and s' and s' satisfy (2.10.v).

A A

Subcase 5.3. (2.3.vii) applies to s: & = 0 and a. = 0 for
J

1 < j < n but an / 0. Then s' = (xr,x-y+l,0,((a^ ...>an_l,anAl'^,q))

by (2.3.vii). If y = 0, (2.3.vii) also applies to s and sf =

(xr>2>0, ((0^, . .. ,a ^,a -l;a),q)) so s' and s' satisfy (2.10.i).

.If y > 0, then (2.3.viii) applies to s; s'=

(xr,e,l,((y,a^,...>a ^,a -l;a),q)). Then sl and s' satisfy (2.10.iii).

Subcase 5.4. (2.3.viii) applies to s: i - 0, a^ ̂ 0, and for

some u with 1 < u < n, a^ ̂ 0. Then s'' = (xr,e+y,l,((a.^,...,an_1,an-l;a),q)).

By similarity, (2.3.viii) also applies to s, so s1 =

(xr,e,l,((y^a^...,a ^,a -l;a),q)) and s' and s' satisfy (2.10.v).

Subcase 5.5. (2.3.ix) applies to s: & = 1, for some u with

1 < u < n, a 4 0, and for all j with u < j < n, a. = 0. Then if x. — XL ' ° 3 K

is the current contents of X, s'=

(xr,e + y,0,((a1,.. • ja^-^a^-l^-l,.. . jX^-l^x^O) ,p)). By similarity

(2.3.ix) applies also to s, and so s' =

(xr,e,0,((y,a1,...,au_1,au-l,xk-l,...,xk-l,xk;0),p)). Then p' and p'

remain similar by (2.9.ii), and s' and s' satisfy (2.10.v). This con

cludes the proof of Lemma (2.10).

A

We have thus shown that given an execution of P, there is an identi

cal-length execution of P with the same initial state and such that

in each corresponding state the registers are identical. Also, by the

J

! 1. •
similarity of the pushdown stores^ the execution of P ends with the

• pushdown store the same as it was initially; P and P are then equivalent.

The sole remaining case is that x, the initial contents of X, is

zero. But then the following is an execution of P:

51 = ^r»T,0,p)

52 = (xr»e>°^((0,0,...,0;l),p)) by (2.3.iv)

53 = (xr'e+ T^O^P) by (2.3.v)

This proves (2.8.iii); (2.8.i) is immediate by the induction hypo

thesis for P and Theorem (2.8) is proved.

In view of (2.8.i) the distinction between executions and proper

executions (in which the pushdown store is initially empty) is un

necessary, since the initial contents of the pushdown store do not

affect the quantities of interest, the final contents of the registers

and the running time.

J

§3. The previous section showed that the running time function

i ~
for any program P is totally defined. It should also be intuitively

clear that Tp is effectively computable. Thus the claim that the

running time of a Loop program is bounded a priori is trivially true,

provided that the claim simply means that given a program with its

initial state, there is an effective method of finding a number that

bounds the number of steps required for the program to halt. For

since any Loop program with any input eventually does halt, an "ef

fective method" simply consists of running the program and counting

the steps.

Of course, bounding the running time of P by T^ is not very
~ P

informative, for it amounts to "predicting" that P will run as long

as it runs. One would at least hope for bounding functions which

are in some sense sufficiently comprehensible that they provide more

information than the previous tautology. An inevitable difficulty

is that the bounding functions must grow at such extraordinary rates

that their sizes can hardly be called comprehensible. Nevertheless,

the functions f^ defined below have such simple definitions and use

ful properties that our Theorem (3.6) below has intuitive appeal as

well as technical usefulness.

(3.1) Definition. If g: N -* N is a function, the function h:

2
N -» N is called the iterate of g (or, h _is defined by

iteration from g) whenever h satisfies

h(0,z) = z

h(y+l,z) = g(h(y,z))

38

Often, we will write the iterate h(y,z) as g^(z). Thus,

(y)<-
S J ' vz) = g(g(... 'g(z) •••)), the composition "being taken y times.

(3.2) Definition. For CX < cd° an ordinal, the function f is

defined as follows:

(i) if a"= 0, fa(x) = x+1 if x < 1; ̂ (x) = x+2 if x > 1;

(ii) .if a = (3+1, fa(x) = fpX'(i);

iii) if a is a limit ordinal and 0 is the least ordinal

. n+1
satisfying CX = f3+oo* for some n > 0, then

fa(x) = f n (x).
P KJ O X

Thus if ex is a successor, f^ is defined "by iteration from its

predecessor; if CX is a limit, f^ is defined "by di agonal iz at ion over

a certain .sequence {fP) of functions where bup O.} = a.
— i

• In 'he proofs below we will use implicitly a number of elemen

tary facts about the arithmetic of ordinals, and also the Normal

Form Theorem for ordinals less than cu°: any ordinal OC < glP+1 for

some n, 0 < n < O), may be written

~ n n -1 o cx = cp • a + O) • a , + • • • + a) • a
n n-1 o

where 0 < a, < a) and the a^ are unique. See, for example, Suppes' book [27]

(3.3) Definition. For CX = of-a + • • • + 0) -a an ordinal, write
n o

/ X m-l
t (a = S. a.
m 1=0 i

for each m< n+1; if m > n + 1, t = t (a). Also,
— m n+lv ' '

t, (a) = t n (a) if a < a)n+1.
60 n+1

j

Notice that tQ(cc) = 0 for all CC. The next lemma collects most

of the information we require about the functions f^.

(3.4) Lemma. For all x; p e N, CU, p < of0:

(i) f-^x) = 2x + (1-x)

(ii) f^p+1^(x) = 2p.f1(x) > 2p+1-x

(iii) f2(x) = 2X

(iv) fa(o) = 1

(v) fa(X) > X + 1

(\
(vi) faP (x) is increasing in p, x

(vii) if a = p+aP, then f (x) > fft(x) for x > t (P)
ct p — n

(viii) if a > p, then fa(x) > f^(x) for x > t^P)

(ix) 2.f^(x) < 4P+l)(x) for a > 1, x + p > 1

(x) (4P)(X)) 2 < 4P+2)(x) for a > 2, X+ p > 2.

Proof, (i) If x = 0, f.^0) = ?Q°\l) = 1 = 2-0+ (lA0).

f-j_(l) = 41}(D = 2 = 2*1+ (l-l). If for x > 1 f^(x) = 2x,

f^x + l) = f0fx(x) = 2x + 2 = 2(x+l) + (l-(x+l)).

(ii) Immediate for p = 0. 4P+1\x) = f^f^^x)

= 2-f^(x) = 2P-f1(x) > 2P+1•x.

(iii) f2(0) = 4°)(l) = 1. fg(x +1) = f[X+1^(l) = 2X-f1(l)

= 2X+1 by (ii).

(iv)-(vii) These will all be proved simultaneously by induction

on a and x. All are immediate for CC = 0 by definition.

©
t ̂

(01
If a = p + 1, then f a(0) = (l) = 1 proving (iv). Also,

f a(°) > 0, yielding (v). Now fQ(x+l) = f^f a(x) > f a(x), using (v)

for fp. Then f^P + 1^(x) = f af^(x) > f^p \x), proving (vi) . Also,

f a(x + l) = fpf a(x) > (x+l) + l , proving (v).

Now in (vii) , n must he 0 since Ct is a successor. Since

f a(x) > x+1, f^f a(x) > f^(x+l), using (vi) for f^. But f^f a(x) =

f a(x+ 1) so f a(x +1) > fp(x +1) for al l x > 0 = tQ(P), proving (vii) .

The next possibil i ty is that S is a l imit ordinal: let Ct =

P +0) where n > 0 and P is the least such ordinal. Then f a(x) =

f n (x) . N o w f ~ (0) = f f t (0) . = 1 , p r o v i n g (i v) . A l s o ,
P-Kd x u P

y**1 ' - VoiW)'"""1 1

"hJi , . ,]" l '< v ,)

> f _ (x) b y (v i i) s i n c e t ((3 + C D n x) = 0
~ Mx n

= f a(x)

Then (x) = f^f^^x) > fy^(x),proving (vi) . Also,

f a(0) = 1 > 0 + 1 and f (x+l) > f a(x) > x + 1 proving (v). Finally,

write f3 = P'+T where tn +-^(f3 ') = 0 a n < t T < (dn + \ Then Ct = £+ ao1*"*"

= £3' + (dn + 1 , and by choice of (3' , f~,(x) = f n (x). Since T < GL>n + \
a P ' W x

if x > t -^ (IR) then GLPX > X• So, using (vii) for (3' + en x and P'+ T,

fa (x) = f R , n (x) - f R , (x) = Vx)
P +00 X P' +R P

if x > t (t) . But x > t n _ l l (r) > t (r) , proving (vii) . This com

p l e t e s t h e p r o o f o f (i v) - (v i i) .

1

(viii) If a > p there is a T > 0 so a = £+ y. Write

r = 03n+ aon-gn + ... + 03° .gQ = 0)n + r' , soa= p + af+r1. By re

peated applications of (vii) we have f_,(x) > f (x) for all x,
u P+OJ

since t O+o/1) = 0. Also by (vii), f _(x) > fft(x) if
n P-KL ~ P

x > tjP) > tnO). So fa(x) > fp(x) for x > tjP).

(ix) 2-f^p)(x) = < 4P+l)(x) if a > 1 and x + p > 1

by (i) and (v i i i) s i n c e f ^ p ^ (x) > 1 if x + p > 1.

(x) Trivially, z2 < 22 = f^2\z) for all z. Then

(4P)w)2 < f22) 4P)W < faP+2)(x^
if x+ p > 2 by (viii), since x + p > 2. implies f^p^(x) >2. This

completes the proof of (3.4)

(3.5) Definition. A function g: N™ -*• N is bounded by f:

N -> N whenever for all x, we have g(x) < f(max{x }), where
ni m — m

max(x } is the largest member of x .
m - . m

(3.6) Bounding Theorem. Let P be a program in L^. Then

there is a number, p, which can be found effectively
/ \

from .P, such that fQp bounds Tp, the running time

of P.

Proof. The proof is by induction on a and Definition (l.l). Say

P G La' let Z use k regis"ters > and let m be an abbreviation for

max(x^) where x^ are the numbers initially in Reg (p). There

are four main cases corresponding to the clauses of (l.l).

j

Case 1. a = 0. Then P has no loops and so Tp is identically

equal to the length of P; if p > 0 is this length, then

V\) = p - foP)(°) < foP)(£)

by (3.4.v), (3.4.vi).

Case 2. P e LQ by (l.l.ii), so that P € with P < a. By

the induction hypothesis we have have q so Tp(xk) < f^(m). But

by (3.4.viii), if we let p = tjP) and if x > p, then fa(x) > fp(x).

By (3.4.v), 4p)(m) > m+p, so 4P+q)(x) = f£p)f£q)(x) > T^).
/V

Case 3. P e LQ, by (l.l.iii), so that P is Q concatenated with

R and Q, R e Lg. By the induction hypothesis, let and f^
qi ct

bound and TR respectively. After execution of Q, let the registers

of P contain x^. Then Tp(xk) = + TR(x£); we have

5 + ̂ ^ (maxfxjJ)

But after execution of Q, the largest integer in any register is at

most m + f^^(ni), since each instruction execution can increase the

largest register by 1 at most. But by (3.4.v) and (3.4.ix),

- + *<2^ W 5 faq+1^W since a > 1, q > 1. Thus

Tp(5k) < 4q)(m) +4r)4q+1)(»)

< 2-4q+r+l)(m) by (3.4.vi)

< 4q+r+2)(m) by (3.4.ix)

Case 4. P e L_. by (1.1. 'v), so that P is L,a

LOOP(n + 1) X

Q

END

for some Q, £ where oc = P-f co'. n > 0. We use the following

(3.7) Lemma. If Q £ LR and Tn is bounded by then

the program P =

L00P(n + 1) X

.0,

END

has T_, bounded by f'T * ' , where b = t (P).
P 3+oP n

Proof of Lemma. The proof is by induction on n. For n = 0,>t 0)= 0

- 'T (a) -

for all P. Then the lemma reduces to: if Q, £ and T^(x^) < f^ (m),

then P =

L00P(1) X

Q

END

has T (x.J < fQ^4/(m). There are two possibilities; first take
P k p+1

{3 = 0- Then T is identically equal to the length. A, of % and the

running time of P is exactly fx + x + 2,, where x is the initial con

tents of X, by (2.8.ii). But since by definition X < m,

1

44

T (x ^ = £ -? 1)x + 2 < (i + l')m+2
P r ' ~ ~

< 2 -m + 2

< fjA r2 (m) by (3.4.ii) and (3.4.v)

< f^t+^(m) by (3.4.vi)

Now if 0 b < a-L, assume that is bounded by . If x is the

number initially in X, P is equivalent to

3 ^

g
Q

By the same argument as for Case 3 of the theorem, the first exe-

•es at i

.(3q+ 4)

cution of Q requires at most f^qy(m) steps, the second f^2q+2'(m)

steps, the third f^qfi'(m) steps, ... , and by the obvious induction,

(xf Q+2NI-2) the x-th requires at most fA " (m) steps. Thus, if m > 0

T (5) < f hi;q+2)"2)(m) +2 P k — i=l p —

< x-f
(m (q+2) -2) , (m) + 2

< fW(D+2

< m.fi2(q+3))(l)

= m-fa (m • (q + 3))

£12-% ff q+X)(2)

. v q+2)
h it

ja < m • H" / (m)

< ̂ q+4)«

by (3.4.vi)

by (3.4.v)

by (3.4.v)

by (3.2) since OC = (3 + 1

by (3.4.ii)

by (3.4.vii)

by (3.4.x)

But even if m = 0, = 2, so Tp(x^) < f^ ^(m) for all x^»
r^, r>-/

This concludes the proof for n = 0.

Now we assume the lemma for some n > 0, and prove it for n +1.

P is then

L00P(n + 2) X

Q

END

which is equivalent to

L00P(n + l) X

L00P(n+l) X

Q
<x/

END

END

where x > 1 is the number initially in X. If x = 1, Tp is bounded

by if x = 2, Tp is bounded by since tn(P+ of) = 0;

and by the obvious induction, for each x > 1,

T (5J < f(<1+b+4x)(m)
I k ~ -

< f (q + b +5m + l)
~ P-KiPx+l

< f
P+oJ1 (X+l)

(q + b +5m +1)

< f (q + b + S m + l)
~~ P+C0TX q+b+5m+l)

by (3.4.vi) and (3.2)

by (3.4.vii)

by (3.4.vii)

t

Now if P = 0)% + • • • + oon+1"b + coS + • • • + 03°b , let P' =
m n+1 n o

03% + • • • + 03n+1b , . Then P + 03n(q + b + 5m+l) =
m n+1 v ̂ —

P' + 03n(q + b + bn + 5m + l) and furthermore Pl is the least ordinal

with this property. Thus by (3.2),

W < fftl n+i(q+t+b +aj + l)
£ ^ p' +03

= f ^.-.(q+b+b +5m+l) by definition of PT

P+to n -

(q+b+b„+l)
< f n+1 (5m) by (3.4.v)
~ P+03n+i

^ f^2li1+1)4S)(a) by

5 fg^+1" ̂ **

(q+b+bn+4)
But even if m = 0, Tp(x^) = 2 < M by (3.4.v). Since

^n+1^^ = ^n^+bn = ^ + ̂n^ -Lerama Prove(i> concluding Case 4.

Since in each of the four cases the p such that f!^bounds T_ ci r

was found effectively, Theorem (3.7) is proved. We also have imme

diately

m (3.8) Corollary. Let P € LQ, be a Loop program, and let

be the largest number initially in Reg (P). Then

there is a number p so that f^\m) bounds all the

numbers left in the registers of P by execution of P.

Proof. Since each instruction execution can increase the largest

register by 1 at most, the numbers left in Reg (P) are all bounded

by m + Tp(xk) < m +f^(m). If OC > 1, by (3.4.ix) m+ f^(m)

< f^+1^(m). The proof for ot = 0 is obvious.

J

§4. If a set of registers is designated for input arid output, a

Loop program defines a function.
t

(4.1) Definition. Let X be distinct register names, and let P be
' m

a register name which need not be distinct from X . If P is m ~

a Loop program, the (m+2)-tuple (P, X , P) is called a program

with input and output, X being the input registers and P

the output register. The function f: -* N is computed by

(P, X , P) providing f(x^) equals the contents of P after

execution of P when X initially contain x , and all other ~ m m

members of Reg (P) initially contain zero.

For example, if P is the program of Example (1.3), then (P,X,Y,X)

computes x-y; (P,X,Y,1' computes the projection p22(x,y) = y.

(4.2) Definition. Z for 0 < a < is the set of functions
' a -

computable by programs in L with input and output.

z = u m z .
a<a> 01

Obviously, if a > p then Z => Za by (l.l.ii) of the definition a — P

of L . It is the task of this section to prove that if a > (3 the
a

containment Z zd Zn is nroner. a P "

(4.3) Definition. Let F be the program

X = X+jL

X = X+ 1

and if £ is the least ordinal so a = P+ con; let

F^ be the program

LOOP(n + 1) X

F R ~P
END

It is immediate that F G L by Definition (l.l). <-̂ cc ot

(4.4) Lemma. Let ? be the function computed by (F^X,X). Then

if x > 0, fQ(x) > fa(x). Also, fQ €

Proof. fQ (x) = x+2 > fQ(x) for all x by definition. Say that

a = P+ lj then is

LOOP(l) X

F b
END

which is equivalent, when x > 0 is in X initially, to

F b
F b

b
So f„(x) = fpx)(x) > fypX_1)(x) > • • > fpX_l)?p(x) - fpx)(x)

a
> hx)(l) = f fx) if x > 0.
— p Co

n+2_
Now if p is the least ordinal for which a = £ + CD and if

x > 0 is in X, then F_ is equivalent to "O!

LOOP(n+ 1) X

LOOP(n + l) X

F

END

END

But this is exactly the program So if x > 0, fa(x' =

f n (x) > f _ (x) = f (x); this concludes the proof of (4.4)
0-KJLJX "" P+ai x ot

(4.5) Theorem. For a > 1, f € £- • v — a a

Proof, f-^(x) = 2x+(l-x) is in "the program F =

L00P(1) X

G = G +1

G = G+ 1

END

F = F +1

LOOP(l) X

F = G

END

where (F.X.F) computes f,. For a > 2, we defer the proof until
" _L —

Chapter IV. The only facts we will need for the remainder of this

chapter are given by Lemma (4.4). It is possible to construct a

program for f in L , but a surprising amount of labor is involved.

(c)
(4.6) Lemma. If a > S, then for any constant c, f^(x) > fp (x)

for almost all x.

Proof. If a > f3, then a > (3 +1. First we establish the result

for fp+1 and fp-

Wx)
= fpxi

(1); for x - Wx)
= fpc)fpx"c)(1)'

But for large x, f0X"''(l) = f„+1(x-c) > x by (3.4.ii) and (3.4.vlli

.(c)
•p+lw " Thus f^.n(x) > fV"'(x) for large x

But now if a > £3+1, for large x f (x) > f (x) by (3.4.viii); — Ct p-r_L

this yields the lemma.

(4.7) Hierarchy Thecrem. If a > f3, £p-

Proof. As remarked above, if OC > j3, zp £p by definition. If

/s
1 = £Q, the function f of Lemma (4.4) would be a member of
OC OL P

but for all c, f (x) > f (x) > L'(x) for almost all x by (4.6) and
' a - a £3

(4.4). Then by (3A7), f^ £ £p • This proves (4.7).

The Bounding Theorem (3.6) and the Hierarchy Theorem (4.7)

together provide the rigorous justification for the claim that the

simple measure of the complexity of syntactic structure of a Loop

program by Definition (l.l) is also an adequate measure of the power

of the program; for the Bounding Theorem implies a maximal complexity

on the functions of £ by bounding the number of steps the computation

of each such function can possibly consume'. The Hierarchy Theorem

yields a minimal complexity for by exhibiting £ functions which

cannot be computed in fewer steps than the number implied by the

structure of their programs.

It is convenient to introduce at this point a property of

the classes £ which follows almost immediately from its definition,
a

(4.8) Definition. The operations of substitution consist

of the following methods of obtaining a function f

from given functions g, h:

. (i) Substituting a constant: obtaining f from g

where f(x*) = g(x ,c) for some number c;
n n

(ii) Permuting and identifying variables: obtain

ing f from g where f(xn) = an(i

each i., 1 < i < m, is one of the x.;
1 — — I

(iii) Composition: obtaining f from g, h where

f(x) = g(x } h(x))• \ n / n / /

Also, if C is a class of functions, C is closed

under substitution whenever any function f obtained

from functions in C by substitution is also a member

of C.

(4.9) Theorem. For all a < aP, is closed under sub

stitution.

Proof. Say (G,X ,H,G) computes g, (H,X^,H) computes h, and f(xn) =

g(xn> h(x^)). We assume .that Reg (G) H Reg (H) = {X^^H} and that

neither G nor H uses registers Z . These conditions can of course

be brought about by changes in names of the registers used by G

and H. Let F be the program

G
/v

Then (F,Xn,G) computes f. This proves that is closed under com

position; proofs for the other possibilities, substitution of a

constant and permutation and identification of variables, are

entirely analogous and are omitted.

§5. The preceding section showed that £ contains some very large

functions -- in fact, functions larger than any in £Q if 3 < a --
P

but it is not yet at all clear that Loop programs can do anything

much but run for a long 4- '.me and eventually halt with rather large

numbers in the regist rs. This section will demonstrate that even

L0 programs can perform quite complicated operations, and will lay

the groundwork for showing among other things that each contains

very small functions more complicated than any functions in Z^ if

p < a.

In particular, (5.1) shows how to construct programs which

simulate Turing machines; (5.2) shows how to construct Turing ma

chines which simulate Loop programs. Theorem (5.1) is useful in

relating Loop programs to other formalisms for computation, as is

done in Chapter IV. Combining (5.1) with (5.2) yields Loop programs

which simulate other Loop programs; §6 leans heavily on this possi

bility .

We assume that the reader is familiar with the elementary ca

pabilities of Turing machines as discussed, for example, in Kleene

[12] or Davis [j. Our theorems would be true using any of the various

formalisms for Turing machines; for definiteness, we give an infor

mal definition of computation by Turing machine much like that of

[12].

A Turing machine 3ft is determined by a finite set Q of quin

tuples {(q. ,s.,s. ,d,q0)}, where d is either "L" or "R", and such i ;i k h

that no two quintuples of have the same first two components.

The first and last components of the quintuples of comprise the

states of SRj the second and third components comprise the symbols

of 9K-. One of the states, q , is distinguished as the initial state,

and one of the symbols, s^, is called "blank" and is also written

B . Associated with the Turing machine is a tape, which consists

of a two-way infinite sequence of squares; each square has printed

on it one of the symbols of SR . If the symbol printed on a square

is sQ, the square is blank, and at any time almost all of the squares

on a tape are blank.

One square on the tape is scanned by ®. A situation consists

of a particular printing of the squares of the tape, a particular

square on the tape (the scanned square) and a particular state; the

machine is in that state.

Given a situation, w may perform a step as follows: if the ma

chine is in state q^ and the symbol on the scanned square is s., and

if Gg) e then the symbol on the scanned square is

replaced by s^, the scanned square moves one square to the left or

right according as d is "L" or "R", and the machine goes into state

q£ . If no quintuple of begins with q^ s_. then no act is per

formed and the machine has halted; in this case the situation is

terminal.

The Turing machine is used by choosing some situation in which

to start it; the machine then successively performs steps until it

halts, and the contents of the tape in the terminal situation determine

the output. Specifically, let be the symbol "1". Represent the

natural numbers 0, 1, 2,... by "1", "11", "111",..., so that in the

representation of x there are x + 1 occurrences of "1". Also, re

present an n-tuple x^,...,x by juxtaposing the representations

of the x^ separated by "B" so that the representation of (0,2,1,3),

for example, is "1B111B11B1111".

A Turing machine computes the (partial) function f: Nn -> N if

when the Turing machine is started in state q^ with the representa

tion of x^ on its tape, which is blank otherwise, and with the square

just to the right of the representation of x^ the scanned square, then

the Turing machine eventually halts with a total of) "l"s to

the left of the scanned square in the terminal situation, providing

f(xn) is defined. If f(xn) is not defined, the Turing machine does

not halt.

For example, if a Turing machine computes x+y, when started

in the situation

... B111B1111B ...
t

where no quintuple starts with q^, B. The notation for situations

should be obvious.

%

it may halt in the situation

... B1B111B1BB111B ...
t

(5.1) Theorem. Let TO he a Turing machine which computes

the function f: Nn -* N. Then there is a Loop pro

gram with input and output (TM ,X ,S,P) where TM e L0
* ~~TO N ' —TO 2

n+]_
which computes a function TM : N -* N with the

^ TO

following property: if s exceeds the number of steps

required to compute f(xn) using TO, then f(xn) =

Proof. For simplicity, the theorem will be proved only for the case

n = 1, and for ® a 2-symbol machine with symbols (B,l). Exactly the

same methods apply when n and the number of symbols of TO are unre

stricted.

The heart of the construction is an L^ program Steg^ which in

effect carries out a single step in the Turing machine computation.

Steg^ uses several main registers Q, T^, Tg, T^ which contain re

spectively the number of the current state, and representations of

the tape to the left of, on, and to the right of the scanned square.

Suppose the non-blank portion of the tape is

. . . B S S , ... S _ S n . . . S , S B . . . -u -u+1 -10 1 v-1 v

where each is "B" or "1" and S^ is the scanned square. Then T^

contains

t -2U_1 +t , -2U~2 + ... + t .2°
-u -u+1 -1

where each t. is 0 or 1 according as S. is "B" or "1". Likewise T_,
i l S

contains t and T contains
U K

That is. T, , T0. 1L contain numbers whose binary representations L o' R

are images of the corresponding pertions of the tape.

Also suppose register Q -ontains a number i, where 0 < i < :

ai.d hi has m + 1 states ; , ...,q }. Consider the program Decode

coo
0

II 1—1
o

o
 0

C10 = 0 •

C11 =
0

"mO = 0

Cml =
0

coo coo +1

LOOP('l) Q

Lm0 Cm-1,0

m-1, ') = Cm-:

"10 ~
n
"00

c =
00

0

E.'d'i

L00P(1) T
s

"01 A 00
c ~
00

0

c
"11 " C10

"10 "
0

Cml "m0

Cm0 ~
0

END

It is easy to see that if Qcontains i and TQ contains j, then
b

Ci j ~ 1> but cy = 0 f°r i / k or 3 f & >

Now let the quintuples of TO be {rru ,... ,m }. Let Quints be
1 r »

the program

Decode
m

L = 0

R = 0

&
Jfe

M
~r

Here if rn. is the quintuple (q ±) and d is "L" then

M_^ is the program

L00P(1) C..
ij

TS = sk
L = 1

Q = I

END

If d is "R", M is the program

L00P(1) C..
ij

T„ = s
S k
R = 1

Q = &

END

Here we use the obvious abbreviation "T = s " for
S k

Ts - 0

if sR = "B", and

Tg = 0

Ts " V1

if s, = "1". Likewise, "Q = i" is an abbreviation for
K.

Q = 0

Q, = Q + l

Q = Q + 1

Thus if the number of a state is in register Q, and the contents

of the scanned square are in register Tg, Quints^ causes the next

state to appear in Q, and the new symbol for the scanned square to be

placed in T^. Quints sets registers L and R so that L = 0 and

R = 1 if a rightward move is to be made, while L = 1 and R = 0 if a

leftward move is to be made. If the situation is terminal, Q and Tg

remain unchanged and L = R = 0.

Given the interpretation above for the numbers in TL' V TR'
the effect of a rightward move of can be reflected by replacing

Tl by 2 *Tl +Tg, replacing Tg by rm(TR,2) and replacing TR by TR/2.

Here we use "T,", for example, to refer both to the register and its
IJ

contents. Also, rm(x,y) is the remainder upon division of x by y,

and x/y is the integral quotient of x and y: the greatest integer z

so z«y < x. Arbitrarily, we set x/0 = 0.

These functions can be carried out in L^. Consider the follow

ing program KM ("rightward move").

J 9

LR
LOOP(1) m

L̂
T =
~ LR ILR
T =•
LR RLR

END

•f 1

LOOP! 1)

T LR
END

T' - 0
oR

T + 1
LR

T' SR
T' +1
SR

TSR ~ °

LOOP:I)

T = T
SR
m 1
SR

T" - T
"SR

"SR

END

T - 0
RR

T' - 0
RR
LOOP(l) ' T_,
T = T + 1
RR RR
T - T,

RR
1 t
RR

"RR
= T:

RR
T

END

T 2 • T
LR L

TSR «-M(TR,2)

rp m jo
XRR V

RM places 2-T + T«, in 11R, rm(TR,2) in TgR, and TR/2 in

but does not change Tt, Tc, T„. Of course there is a corresponding
L o n

program LM which puts 2-TR + in TRR, rm(TR/2) in and TR/^ in

T without changing Tt, Tc, Tp and which thus simulates a leftward
"LL " " L o.K.

move.

Now let Step be

Quints^

T = T
R RL

END

LOOP(l) R

T = T
L LR
T = T
S SR
T = T
R RR

END

Step is an l, program; given the number of a state in Q, and a
1

tape configuration in Tr , Tc, TR, execution of Steg^ leaves the

next state in Q and the next tape configuration in T^, Tg, TR. But

then if an initial situation is in Q, TR, Tg, TR, the L2 program

Result =

LOOP(l) S

Step

END •

leaves in Tt. T^, T„ a representation of the tape configuration after
i-i S R

s steps of ̂ , where s is the nuiriber.in S; if s exceeds the number of

steps required for W to halt, the final tape is left in TR, Tg, TR.

Thus the only remaining tasks are to find a program which, when given

an input number, produces the corresponding initial situation, and

to find a program which-, given a tape situation, yields an output

number from the final tape representation.

According to the formalism agreed upon above, if the input

number is x, the tape representation is a string of x+1 "l"s just

to the left of the scanned square; in other words, we want T t to
L

x+1
contain 2 - 1 and Tg, TR to contain zero. The job is done by the

program Input:

Q = 0

t l = °

Ts = °

TR = °

X = X+ 1

L00P(1) X

L00P(1) T, \ T <-2X+1- 1

tl = tl + 1

END

TL " V 1

END

Next, the output number is to be the total number of "lns OC'

curring in the binary expansion of TR. The L2 program Ou££u& =

P = 0

LOOP(l) T t 1j
T <-rm(TL,2)

TL -V2
L00P(1) T

P = P + l

END

END

P +T

leaves in P the correct number. We have used, for example,

"T •«- rm(TT,2)" as an abbreviation for a program which puts rm(TT,2) IJ

into T without destroying the constants of T . The necessary pro-
L

grams appear as part of the program RM above.

Finally, let TM be the L0 program '—371 2 °

Input

Result

Output

Then (TM^,X,S,P) computes TM^ with the properties required, and

Theorem (5.1) is proved. v

(5.2) Theorem. For each n > 0 there is a Turing machine £pn

which computes a function LP : N -* N with the follow-
n

ing property: if (P,Xn,P) is a Loop program with input

and output which computes f: Nn -*• N,- then there is a

number e so that LPn(e,x^) = f(x^). Furthermore, if Tp

is the running time function of P, then there is a con

stant c so that the total number of tape squares ever

scanned in the computation of LPn(e,xn) is no more than
- — *Z

c*(e+max{x }+T (x)) .
n P n

Proof. We will not actually construct £Pn, but we will give enough

details so that it should be clear to anyone with some familiarity

with computation by Turing machines that £Pn exists. Actually, the

first part of the theorem is immediate from the intuitive computa-

bility of functions defined by Loop programs.

64

vGr each (P,X .P) there must be an e so if (P,X ,p) computes n ~ n

: . then LP - (e, x) = f '• . thus e should somehow encode (P,Xn,P).

en this is the 'ase. it is usual to say thai e is a •gbdel numb - ...

if (p,x ,p:.
~ n

The encoding can b<• done In a variety of waysj the one suggested

here is particularly simple. First, we may as well assume that

peg (p) {x }, that the input registers are X^, and that the output

register is X . since clearly for any Loop program with n input
-1 1

registers and an output register, there is another progiam in the

desired form. (The new program is obtained merely by making the

proper changes in the names of the registers and possibly adding an

instruction ,1X = X, ' to put thd answer into X, .) t>o we need, onlj
Ik .

consider pr grams like (P,X ,X^) where Reg P) = {X^}. how, using

an eight-symbol alphabet:

L E = X 1 / + 0

rewrite P by placing '/" between the instructions,by changing

"LOOPfn)" to "LI ... 1", that is, to "L" followed by n "l"s, by

changing "X: " to "XI ... 1", that is, to "X" followed by k "l"s, and
K-

by changing "END" to "E". Thus the program P =

X0 - 0

L00P(1) X

X0 = X0 + 1
2 c

END

XI = Xn
c

would become

Xll - O/LlXl/Xli = X11+ l/E/Xl = Xll

Since 8 different symbols can appear in this representation, the

representation of any program P can be interpreted as a base 9

number; take "L" to have digit value 1, "E" to have value 2,...,

"0" to have value 8. We will let the blank "B" have digit value 0.

Thus given any program P there is a unique number e associated

with it, and if e is written in a base 9 notation P is recoverable

immediately. On the other hand, not every number e has a corres

ponding program; for example, all those numbers which contain signi

ficant zeroes in their base 9 expansion.

Now we proceed to describe the operation of £Pn. Recall that

£Pn is given an (n +l)-tuple (e,xn) consisting of e+1 occurrences

of "1", followed by "B", followed by x^+ 1 occurrences of "l"

followed by "B", followed by x + 1 "l"s. We write this initial tape as

. . . B e B x n B . . . B x B . . .
— —1 —n

where the underlined letters x represent a string of x + 1 "l"s.

£p performs as follows: first go to the representation of e and
n

rewrite e as its base 9 representation (which, as explained above,

is an image of P). Call this sequence of symbols e. Of course, the
~ i

length of e is no longer than the.length of e; in fact the replace

ment can be done using no more tape than is consumed by _e itself.

The tape thus becomes

66

... e E X| B . B xn B ...

Then £Pr, checks e to make sure it represents a permissible Loop

program; the civ- -king consists of examining each instruction uo

make sure it is a legal i istruction, and verifying that LOOPs and

EILDs are nested properly. If e does not represent a syntactically

correct Loop program, TJPn erases its whole tape and stops. Thus,

in effect, every number e will be associated with some function;

those numbers e which cannot be associated with a syntactically

correct Loop progran will all represent the function which is iden

tically zero.

If on the other hand e represents a syntactically correct Loop

program, £Pn examines e to determine the registers Xr it uses, and

then changes the tape to

... E e B x B ... B xn B 0 B ... BOB ...

which represents e followed by the r-tuple (x^,0,..•,0); that is,

the initial contents of X since X^ , . .. ,Xf are zero. Continuing,

£Pn produces the tape

B e B xn B ... B x^ B 0 B ... BOB 1 B 0 B

1 _L 2 3 4

which, for convenient reference, we have divided into five regions.

Region 1 contains e, which represents the program P being simulated;

regions 2-5 together represent the initial state (x^,l,0,[0)) of P*

£Pn then ready to begin simulating P. In general, just before

beginning a. step in the' simulation, ZPn will have on its tape the

following sequence of symbols, if the current state is (x^,i,£,p).

.. .Be

1

The representation of the state used in region 2-4 is obvious. The

contents of region 5, which represents the pushdown store, are inter

preted as follows. The object at the top of the pushdown store is

(a]_q> a21'' ' *' ak-^l) * M°re generally, the object at the m-th level

of the pushdown store is (a^, a?m,... >a^). Tuples on the push

down store are separated by double blanks, and members of a tuple

are separated by single blanks.

What is the length of this representation of a state? The length

of region 1 is no more than e+ 1. Suppose the simulation has run for

s steps, and let m be an abbreviation for maxCx^}, that is, the largest

number initially in the registers. Then each of the x^ in region 2

is no more than m + s. So the length of region 2 is no more than

r*(m+s+2). But according to the encoding we have chosen, r is cer

tainly less than e. So region 2 has a length of less than e«(m + s+2).

Again, the number i represented'in region 3 corresponds to the in

struction about to be executed, which is a number certainly less

than e, so region 3 has a length less than e+ 2 squares. The t of

region U is either 0 or 1, and so the length of region U is 3 at most.

Bxn B. . . Bx Bi BI
—1 . —r

2 3 4

BBa.,Ba^,B. ..Ba^ ^BB. . .BBa^ .Ba^ .B. . .Ba^ .BB<
—11—21

Whenever a tuple is placed on the pushdown store, all its members

are bounded by the largest number in any register. Since nothing on

the pushdown s ore ever becomes greater than the largest register,

any single number anywhere in the pushdown store is bounded by m+ s.

The largest tuple on the pushdown store has at most e components,

since the number of components is a function only of P; the depth

(number of tuples) of the pushdown store cannot exceed s, the number

of instruction executions taken so far. Therefore region 5 has a

length bounded by s*(i+e»(m + s+ 2)).

Each of regions 1-5 has its length bounded by a polynomial of

degree at most 3 in s, e, and m. Therefore, the sum of the lengths

of regions 1-5 is bounded by c*(*e + m+s)' for some constant c.

The discussion so far has been fairly rigorous, except for the

claim that the string of "l"s representing e could be turned into

the string e.' The main portion of the construction whose details

we will omit is that of showing that r Pn can transform the representa

tion of a state as specified above into the representation of the next

state, without using any tape squares other than those already used.

We leave to the reader the task of convincing himself that this is

possible, with the reminder that £Pn may use a large number of extra

symbols to mark tape squares in which it has a special interest at

some moment. We may also remark that all the theorems in the sequel

which use this theorem would be unaffected if the polynomial bound

c•(e + m + s) were replaced by any exponential in e, in and s; and

finally that the encoding we have chosen is actually rather inefficient

and that by using a binary encoding of the numbers making up a

state, the present theorem would remain true with a bound on tape

consumption of d*log^(l+ e +m+s) for some constant d.

Granting that is able to replace the representation of

a state by the representation of the next state without using more

tape than is consumed by the states themselves, the theorem fol

lows immediately. For ZPn simply keeps simulating P until a final

state is reached, then erases all of the tape but the portion con

taining x^ and halts on the rightmost square of the representation

of x1> Thus £Pn has computed (P,Xn,X1); and since the program runs

for Tp(xn) steps by definition, the total tape consumption is bounded

by c• (e + m+Tp(xn)) = c•(e+ max{xn}+Tp(x^))3. This concludes the_

proof of (5.2).

(5.3) Theorem. For each n > 0 there is an £_ function M :
2 n

n+2
JN -> N so that for any Loop program (P,X ,P) which

11

computes f: Nn -> N, there is an e such that M (e,x ,s) =
n ' n

f(x) provided s > T (x).
n — P n

Proof. By (5.2) there is a Godel number e for (P,X ,P) so that
~ n

L^n^e-,Xn^ = f^Xn^ and LPn is comP^able by a Turing machine £Pn

whose total consumption of tape is no more than c-(e+max(x }+T (x))'
n Px n '

squares. For brevity let this number of squares be t. Now say £^n

has q states and uses k symbols. Then the total number of distinct

tapes appearing in the computation is no more than kt, since each

IT ̂

tape square can have printed on it one of the k symbols. At each

situation occurring in the computation the Turing machine is scan

ning one of the at most t squares, and is in one of the q states;

therefore at most q-t-k^ different situations can arise in the com

putation. If one of these situations is ever repeated, the whole

computation must be caught in an endless loop; but this does not

happen, so the Turing machine must halt within q«t«k^ steps, that

is, within a number of steps

- - 3
, c*(e+max{x }+T (x))

q-c-(e + max{x } + T-^x)) »k n ~ n
n P n

= B(e,xn,Tp(xn))

Remembering that q, c, and k are fixed numbers, it is easy enough

to show that B is actually a member of Alternatively, it is

easy to show

(e+Xp+••-+xn+Tp(xn))

B(e,x ,T^(x)) < 22 \ > n' pv n —

for large enough arguments. Since f (x) = 2X and fg(x+l) > fg(x),

there is a constant b st>

B(e,x ,T (x)) < (e +x + • • • + x +T_.(x) + b)
n P n - 2 1 n P n

= B1(e,x ,T (x))
7 n P n

/v

But B' is a member of since it is obtained by substitution from

members of f ̂. The function x+y, for example, is in via the

program A =

0

LOOP(l)- X

Y = Y+ 1

END

where (A,X,Y,Y) computes x+y.

Recall that the Turing machine ZPn of (5.2) is a particular,

fixed machine. Apply (5.1) to this machine to get an function

™£Pn so that if z exceeds the number of steps required for ZPn

to halt,

TMnro (e,x , z) = LP (e,x)
£Pn n n n

Then take Mn(e,xn,s) = TM^p (e^^B'(e,xn,s)). By the fact that B'
n

is increasing, the proof of (5.3) is complete.

!

§6. All the investment in labor of §§2-5 now begins to pay off.

We have several easy theorems which characterize the classes £^

for a > 2 in three ways, and which show each class £ for a > 2 — a —
has two important closure properties. Finally, ^as a universal

function for £ , and £ _ has a very small function not in £ .
a' a+1 OL

(6.1) Theorem. For a > 2, a function f: Nn -+ N is in £

if and only if there is a program (P,X ,P) which com-
r** n

putes f such that Tp is bounded by f^p^ for some num-P u

ber p.

Proof. The "only if" part is simply the Bounding Theorem (3.6).

Conversely, if Tp(xn) < f^ (max{xn)), then Tp(xn) < f^ (xp+ ••• + Xq+ 1).
/-s-/

This latter function is in £ . Then by (5.3) there is an e so a
f(xn) = Mn(e,xn,f^p^ (xp + ••• + xn+l)). Since Mn € £g, by substitu

tion f e £ for a > 2. a —
This theorem is interesting because it shows that if we have

any program P which computes f, no matter how deeply the loops of
/ \

£ are nested, so long as the running time of P is bounded by f^p

then P can be rewritten as an Lq program.

(6.2) Theorem. For a > 2, £^ is_ the class of functions which

are computable by a Turing machine where either the

running time of the Turing machine or its consump-
/ \

tion of tape is bounded by for some number p.

Proof. Immediate "by (5.1), (5.3), and the argument of (6.1).

Theorems (6.1) and (6.2) provide further evidence for our

basic claim that the complexity of a function can be measured by

the ordinal assigned to its Loop program. In particular, (6.2)

assures us that the hierarchy of sets Z^ does not arise because

of some peculiarity in the definition of Loop program, but that

in fact if some function f is in £^ but not in £^ (where cx > P)

then f is more difficult to compute than any function in £Q even
P

if the computation is done by the familiar Turing machine.

(6.3) Theorem. The n-argument functions of £q are pre

cisely the functions expressible in the form

f(xn) = Mn(e,xn,f^P^(max{xn)))

for some numbers e, p, and where is a particular

function in £ .

Proof. That each f is expressible in the required way is an imme

diate consequence of (6.1) and the Bounding Theorem (3.6). The

converse follows from Theorem (4.5) and the closure of £ under

substitution.

Theorem (6.3) characterizes £q in a purely arithmetic manner,

without reference to Loop programs or Turing machines. Notice,

however, that we have not yet proved Theorem (4.5) which shows

that f e £ ; thus to avoid circularity we will refrain from using

(6.3) until (4.5) is proved. Theorems (6.1) and (6.2) do not de

pend on (4.5).

S

(6.4) Definition. A class C of functions is computation-

time closed if whenever f e C, there is a function

€ C such that sf point/wise bounds the number of

steps required to compute f on a Turing machine,

and if conversely whenever there is an sf € C

which bounds the number of steps required to com

pute some function f, then f e C.

(6.5) Theorem. For a > 2, £ is computation-time closed.

Proof. Immediate, using (6.2) and the fact that f^ e £ and ^(x)

> f (x) for x > 0.
- a

It can be proved that every class of functions which is closed

under substitution, computation-time closed, and containing a suf

ficiently large function is also closed under the operation of limited

recursion defined below; we will use another, more direct method

to show each £ is closed under limited recursion. The proof
a

yields a corollary which indicates the power of the classes

for a < 0).

(6.6) Definition. If f obeys the conditions

f(xn,0) = g(xn)

f(xn,y+l) = h(xn,y,f(xn,y))

then f is said to be defined by primitive recursion from

g and h.' We allow the case n = 0, so that g may be a

function of 0 variables, that is, a constant.

n 11
(6.7) Definition. If f: N -* N is defined by primitive

recursion from functions g and h, and if in addition

we have f(xn,y) < b(x ,y) for some function b and all

xn, y, then f is said to be defined by limited

recursion from g, h, and b.

(6.8) Theorem. For a > 2, is closed under limited

recursion. That is, if f is defined from g, h,

by limited recursion, then f e £ .

Proof. We have • •

f(xn,0) = g(xn)

f(xn,y+l) = h(xn,y,f(xn,y))

t(xn>Y) < b(xn,y)

where g,h,b 6 £ . Let (G,X ,G) be a program for g where G € L a ~ n ° ^ q

and G does not destroy registers Xn and Y. Let (H,X ,Z,F,H) be

a program for h "where again H € L and H does not destroy the

contents of X , Z, F. We also assume that the registers of G
II

ii ̂ "° nô overlap except for X . Such programs are easily

found given any programs for g and h. Then let F be the program

G

F = G
Z = 0
LOOP(l) Y

H

F = H
Z = Z + l

END

76

' her . (F, X > Y ;F) computes f . For say y = 0; then the instruct ions
n

within the Loop are not executed, and af ter execution F contains ,

g(x) = f (x ,0) . If y > 0, af ter the f i rs t execution of the in

s t r u c t i o n s i n t h e L o o p t h e c o n t e n t s o f F a r e h (x , 0 , g (x ^)) = f (x , l) ;

by induction, af ter the y executions of the instruct ions within

t h e L o o p , t h e c o n t e n t s o f F a r e h (x n , y - l , f (x ^ , y - l)) = f (x n , y) .

By counting the steps required to execute F^,

TF (Vy) = Tg(L} + ^=0 [2+VVz ' f (Vz))] + y + 4

By the Bounding Theorem (3.6) , i f we le t m = maxlx^},

T (x , y) < f : ' (m) + ? ; y [2 + f (m a x { m , z , f (x : , z) })] + y + 4 F n - a - z=0 a - n

By (3.8) s ince b e £ ,

T (x , y) < f , p \ m) + Z y [2 + f ^ q / (m a x { m , z , f ^ r ^ (m a x (m , z }) })] + y + 4
F n — a . — z=0 a - a -

< ' f^(m) + y * t2 + f^q \max{m,y,f^ r^(max{m,y})})] +y+ 4

Then by using Lemma (3 . 4) repeatedly, exactly as in (3 . 7) , there

is a number s so that Tjx ,y) < ff(max{m,y}). But then by (6.1) ,
in — ot

f e £ • This concludes (6.8) . a
The method yields two corollaries.

(6 . 9) C o r o l l a r y . I f f i s d e f i n e d b y p r i m i t i v e r e c u r s i o n

from g £ £ a + 1 , h e ^ then f e Z^+ 1>

Procf. If f is defined from g and h exactly as in the theorem,

except that the requirement f'(x ,y) < b(x ,y) is dropped and we

now allow g e > then the program for f given in the proof of

(6.8) still works; by Definition (l.l) of L . , F € L _ . v ' Q+l ~ Ctf+l

(6.10) Definition. P, the class of primitive recursive

functions. is the smallest class of functions con

taining the successor function s(x) = x+1, the iden

tity function i(x) = x, and closed under substitution

and primitive recursion.

(6.11) Theorem. The class U £ contains the primitive
d <10

recursive functions.

Proof. £ contains s(x) and i(x). By (4.9) and (6.9), each primitive

recursive function is in £Q for some Oi < CD.

(6.12) Theorem. For each OL > 2, £a+-, contains a universal

2
function for £._,: that is, a function U *. N -»N so CL O!

that if f: N N is a function in £ , there is an e

so L:a.(e,x) = f(x), and conversely for each fixed e,

Ua(E,X) is an £ function.

Proof. Given a function g, its iterate g^y^(x) is defined by a

special case of. primitive recursion (see Definition (3.1)). Thus

in particular the function f^?^(x+l) is in £a+^. Take

Ua(e,x) = M1(e,x,f^e^(x+ 1))

For each fixed e, € £r< • Also, each function in Za must have an

infinite number of Godel numbers; for example, an arbitrarily large

number of (useless) "X = X" instructions may be prefixed to any pro

gram. Thus by (6.1), for every f € Za, there is an e so f(x) = Ua(e

Notice that although we used (6.9) in this proof, the theorem

follows essentially from the computation-time closure of Za and the

fact that i!tXfl contains a function which bounds every function of Za

(6.13) Corollary. For each a > 2, £ contains a charac

teristic function (that is, a function whose range

is {0,1}) which is not in

Proof. It is immediate that the*function 1-x is in and hence in

,Fmi- Take g(x) = l-UQ,(x,x) . Then by Cantor's diagonal method, if

g e J^, g must have a Godel number e: g(x) = UQ(e,x). But then

].-Ua(e,e) = g(e) = Ua(e,e)

which is absurd.

III. MULTIPLE RECURSIVE FUNCTIONS

§7. This chapter studies the theory of the multiple recursive

functions. Many of the results in this theory have exact counter

parts in the theory of Loop programs developed in Chapter II; it

also turns out that the.methods of proof of the corresponding

theorems are often quite analogous. In large measure the similar

ity in the development of the two theories occurs simply because

the theories are, in fact, very similar; it is also due to a con

scious attempt to draw the appropriate parallels. This attempt is

made in the belief that both the author and the reader benefit from

the technical economy achieved by using a few tools rather than a

large collection. Finally, we believe the methods used here and

in Chapter II are of great utility in the characterization of sets

of computable functions; support for such a claim can only come

from successful use of these methods.

The theory of Loop programs may be regarded as an attempt to

examine the result of" restricting the notion of program in such a

way that the structure of a program controls the complexity of the

operations the program performs. The theory of Loop programs is

thus in the tradition of the Turing-computable functions: those

functions computable by Turing machines. Here we take "Turing

machine" in the broad sense of referring to all the various theo

retical machines which serve as models for digital computers. But

it is well-known that several quite different ways of defining

"effectively computable" all lead to exactly the same class of

functions. Chief among these alternative approaches is the defini

tion of functions by Herbrand-Godel-Kleene recursion equations.

We summarize this approach, following Kleene [12, §54].

Imagine a formal language built up from several basic symbols:

= (equals), ' (successor), 0 (zero), (,) (left and right paren

theses),, f, £, h, f , h_L,..., (function letters), x, z, x±,

^ , z ,..., (variables for natural numbers), and , (comma). From

these symbols are constructed several kinds of formal expressions.

The numerals are 0, 0', 0",...; these stand for the natural numbers

0, 1, 2,... . The formal expression which is a numeral for a number

x we write v(x). Terms are 0, any variable letter, expressions of

the form t' where t is a term, and f(t^,..•,t^) where f is a function

letter and t^..•,tR are terms.

Next we have equations of the form t = s where t and s are

terms. Systems of equations are finite sequences e1>---.»en of

equations. The systems of equations are the basic objects of study.

A system of equations may have a principal function letter:

the first (left-most) function letter of the last equation of the

system. From a system of equations formal deductions may be made.

The deductions are precisely analogous to deductions in formal

logic from a set of postulates. There are two rules of inference:

(RI) From an equation containing a variable letter,

we may pass to the equation obtained by substituting

a particular numeral for every occurrence of

the variable letter.

(R2) From an equation of the form f(v(x^), ...,v(x))

= v(x) and another equation r = s, we may pass

to the equation which results by substituting

v(x) for one or more occurrences of f(v(x^),...,v(x))

in the equation r = s.

Then a deduction of an equation e from a system of equations E is a

sequence of equations, each of which is either one of the equations

of E or obtained from one (or two) of the earlier equations of the

deduction by an application of R1 (or R2)..

A system of equations E defines the function cp recursively when

ever the following holds: f is the principal function letter of E,

and for all x^...,xn the equation f(v(x^),...,v(x)) = v(x) is

deducible from E if and only if cpfx^ .. . ,x) = x. If a (total)

function has a system of equations which defines it recursively,

the function is calle'd general recursive. Kleene shows that the

class of general recursive functions is precisely the same class as

the functions computable by a Turing machine.

The class of multiple recursive functions may be defined in an

analogous way; we will instead use a slightly different approach,

and then discuss its relationship with the Kleene formulation.

(7.1) Definition. For some n > 1 and m > 0, suppose

the function f:Nn+m -» H satisfies the 2n equations:

f(0,...,0,ym) = F]_

f(o,...,o,xn + i, ym) = f2

f(0,...,0,xn_1+l,0,ym) = F3

f(x1 + l,...,xn+l,ym) = Fgn

where F ,...,F n are formulas built up from constants,
1 2

variables x , ym, and functions by sub

stitution. Suppose also that F^ contains no occurrences

of f, and in each other equation

where each t. is either "x.+ 1" or "0", each occurrence

of f in F. has a k, 1 < k < n, sof appears in the context

f(h'---'lk-l'Xk'Tk+l'""Tn'§m) Where 5k is "V1"' and

T ,...,T ,S are terms (i.e. fomulas) built up from
k+1 n m

variables y and those x. for which I. = "x + 1" by ap-m 1 ± j-

plication of g^,...,gr and f. Then f is said to be

defined by n-recursion from ...,gr«

(7.2) Example, f is defined by 2-recursion from

if f satisfies

f(0,0,y) = g1(y,3)

f(0,xg +l,y) = f(0,x2,g2(y))

f(.x1 + l,0,y) = f(x1,g3(f(xI,x1,y + l)),ĝ (y))

f(x +l,xg +l,y) = g5(f(x1,f(x1 + l,x2,y),y))

I ' .

i 0
(7.3) Definition. For each ordinal cl < oP, £ is the least

class of functions satisfying

(i) If cc = o, contains the successor function

s(x) = x + 1 and the identity function i(x) = x

(ii) If

(iii) £^ is closed under substitution

(iv) If & = P+a)n for some n > 0, and f is de

fined by (n +1)-recursion from ĝ ,...,ĝ e £̂ ,

then f e R̂ .

We will call £ = U m £^ the multiple recursive functions.
CL <03 -

Also, for each n > 1, U £ is the class of n-recursive
a<o) u •

functions.

It will be seen that if a function f is defined by n-recursion

from well-defined, total functions g^ .. .,jg , then f is in fact a

well-defined, total function. The proof is by induction on the

well-ordering of n-tuples of integers under the lexicographical

ordering.

(7.4) Definition. The n-tuple x^ is lexicographically less

than the n-tuple yn (in symbols, (xn) < (y)). whenever

there is a u such that x < y and for all i < u, x = v •
u u l i

Notice that this relation is a well-ordering of order type

^ by the mapping

(x) <—» oP 1-x + ••• + a?.x
n 1 n

m-s

(7.5) Theorem. If f is defined from total functions

by n-recursion, f is a total, well-

defined function.

Proof. We have the equation f(0,...>0,y) = By the definition,

F^ cannot contain any occurrences of f; so f(0,...,0,ym) is uniquely

defined for all y. Now suppose f(zn>ym) is uniquely defined for

all ym and all zn with (zn) < (xn). Then f(xn,ym) = Fy where F ̂

is a formula built up from (some of) g^,...,g^ and occurrences of

f of the form f(T ,S) where T^... JT^S^... ,Sm are terms and, by

definition, (T) < (\) • Thus is uniquely defined.

Now by Definition (7.3) each function f € is defined by a

sequence of equations, each of which defines a new function used in

the definition of f. The initial equations in the sequence define

functions from the initial functions s(x) and i(x); and each equation

in the sequence is either an instance of substitution which defines

a new function from functions defined earlier, or part of an instance

of the schema of n-recursion from functions defined earlier. These

equations can of course be translated into the formal equations of

Kleene; this is really nothing more than a one-for-one replacement

of the informal symbols of the defining equations by the formal

symbols of the recursion equations. Conversely, it should be ob

vious that each system of formal equations which obeys a few purely

syntactic rules defines a multiple recursive function. The rules

are: each equation e is either of the form f(|.^, • • • ,£-n) = T, where

T is a term containing no function letters, or is of the form

f(£,,. • • ,£) = T where ̂ is either "0", "x.",

or "x. + l", and where T is a tern containing function letters de

fined by earlier equations (formal substitution), or is part of the

(formal) scheme of n-recursion corresponding to the (informal) De

finition (7.1). We also require that each system of equations be

consistent: that it not define the same function letter twice, nor

use the same function letter with varying numbers of arguments.

Again, this restriction is purely syntactic. We may also attach

an ordinal OL to each function letter used in such a restricted

system of equations: if a function letter f is defined by (formal)

substitution from function letters f_,...,f , attach to f the
1 r

ordinal ct = max {OA ,... ,CL } where CL ,OL are the ordinals attached
1 r 1 r

to f^,...,fr; or if r = 0, so f is defined by substitution from the

empty set of functions, & = 0. Also, if f is defined by (formal)

(n +l)-recursion from g ,...,g , assign f the ordinal Ct =

max(o:^, . . . ,a^} + cJ1. Then assign to a system of equations the or

dinal of its principal function letter, and let Ra be the set of

those systems of equations with ordinal less than or equal to Ct.

The point is that the systems of equations in Ra have a purely

syntactical definition; furthermore, given a sequence of formal

symbols, we can effectively test whether the sequence is in R .

Finally, each member of RQ is a system of equations in the Kleene

sense, so deductions may be made from such a system in exactly the

same way as they are from the more' general systems of equations.

It should be clear that a function f is in ̂ if and only if there

is a system of equations in which defines f recursively.

Other writers use definitions of n-recursion somewhat differ- f

ent from ours. Peter [19, 21], for example, uses a slightly less

general scheme in which f obeys

f(x ,v) = g(y) if x_ • ... • x = 0
v n^irf &VJV 1 n

f(X.. +1, • • . ,x + l,y) = F otherwise
1 n m

where each occurrence of f in F has the form

f(xn +l,...,x. + l,x. _,T ,...,1 ,y). Our development could just
J. 1 l-rl 1 -tu II III

as easily have been carried out in this way. Robbin [25.] uses a more

general scheme.

f(x ,y) = F if (x) = (0,...,0)
v n m o n

f(x ,y) = F if (x) ̂ (0,...,0) x n m n

where F is a formula not containing f, and every occurrence of f
o

in F is of the form f (T^, . . .,• . . ,Sm) where T.^ . ..,T^S.^ .. . ,Sm

are formulas and for all (xn) ̂ (0,...,0), (Tn) < (xn)• Th6 oniy

problem with this scheme for our purposes is that given a pair of

equations in the above form, it is not clear from their syntactic

structure that f is properly defined, because the condition (T^) < (xn)

is not a syntactical property, but depends on the values of the functions

involved. In fact, given a pair of equations like the above, it is

effectively undecidable to determine in general whether the condition

(T).< (x) is met. All of these approaches have the common property
n n

that a function is defined by induction on the lexicographical well-

ordering of n-tuples. As we will discover, all the variations are

equivalent in that they lead to the same classes of functions.

UJ-?

§8. This section corresponds to §§3-4 of Chapter II in that it

establishes the rate of growth of the largest functions of each

class ft • There is a Bounding Theorem for ft . much like Theorem
« . ~ a , }

(3.6), showing that each function in ftQ is bounded by f^ for

some pj and a Hierarchy Theorem for ft^, which proves the inequality

ft^ =5 ft., for a > 3 by demonstrating that f1+a € ftQ for a > 1. Thus

the Bounding Theorem for ft^ is different from that for in that

the former limits the size of the functions of ft^, whereas the latter

bounds the computation time of functions of £ . The bound on the

functions of came as a corollary to the bound on computation time;

the reverse will be true of ft^.

(8.1) Bounding Theorem for ft . If fiN11 -* N is a function
/ \

in ft , there is a p such that f(xn) < f^ (max{xn});

p depends effectively on the recursion equations de

fining f.

Proof. Like that of the Bounding Theorem for Loop programs, this

proof is by induction on Definition (7.3) of ft^. There are four

cases corresponding to the four clauses of (7.3) which exhaust the

ways by which a function f may be a member of ftQ.

Case 1. f(x) = x + 1 or f(x) = x. We have immediately that

f(x) < fQl}(x) < 4l}(x).

Case 2. f € ftQ and P < a. Then we have a p so that f(x) <
p n

f^(max{x }) by the induction hypothesis for ftL and (3.4.viii).
1+a n P

Case 3. f is defined by substitution from functions

The theorem is immediate by Lemma (3.4).

Case 4. f is defined by (n+ l)-recursion from functions

cr in ft„, where a = £ + This case is proved by induction
1 r p

on n. Suppose F is a formula built up by substitution. We define

the depth of F by induction on its structure as follows: the depth

of a variable or a constant is one; the depth of g(F^,...,Fm) where

F, ,... ,F are formulas is max{depth(F .) }+ 1.
1 m J

Now consider the base of the induction, n = 0. Then CC = 1

and f is defined by 1-recursion from g^,...,gp e ftp. We have

f(°,ym) =

f(x + 1,ym)-F2

Let a be the greater of the depths of F^ and F^, and. let b be suf

ficiently large so f|^ bounds each of g^>-''>gr> and also all the

constants occurring in F^ and F^. Then

f(0-ym) 5

Suppose for each z < x where x > 0 we have

/, z+1^
f(z'ym} 5 fl+p (max{Z,ym))

By definition, f(x+l,y) = F^. But since each occurrence of f in

F9 is of- the form f(x,Tm), by the increasing property of and

the hypotheses on F^ and f,

.k'V\ il h : m tif.tr- tfr V i ?W- i% : ;of •• -*• • •• u iVd"'1 M n$. -v* vfctf-W . • ; -4.1 • •. ••

qp

/, x+2,
f(x+l,ym) < f[+p j(raax{x + l,ym})

Thus, if we write m for max{x,y },
— m

f(x>ym) < 45)(2}

(ba-+1) f (m) / >,
- 1+P 1+^ ;

- Wba-+1+^

< 4S*2)<!)
We have thus proved the following for n = 0:

gl,...,g , and if the greatest depth of the formulas

(8.2) Lemma. If f is defined by (n+ l)-recursion from

h o
/ -u\

. ,F^n+]_ defining f is a, and bounds all of

g ,...,g as well as all the constants of F..,•.•,F n+]_;
i. r ±2

then f is bounded by , where CL = |3 + co1 and
x+QJ «

t = t (p).
n

Proof. The basis n = 0 has already been done, so we will assume '

the lemma for some n > 0 and prove it for n+ 1. Thus, a function
—. 9

f(x,x^,...,x ,y) is being defined by (n+ 2)-recursion. For each v 7 0 n m

fixed x, let f (x) (x07 ' ' ' 7V^ = fl* * ' ,xn'^m' ' °n exajnining

the 2n+2 equations defining f, it is found that -the first 2n+"L of

them constitute a definition of f^ by (n +1)-recursion, for these

nf-'x

i i *

iv

equations specify the value of f(x,x^,-. . . ,xn,y) when x = 0. Thus

by the induction hypothesis, f, ,(x ,. . . ,x ,y) < f^ba+t+2^(m)
0 n m - 1+p+Qji

where m is max{xQ, .. . jX^y^} and t = • Suppose for some x

that

„ / - . f(ba+t+2)X+^/
(x).(V—W ̂ flW(x+l) (2)

Again, by the definition (7.1) of n-recursion, is defined by

(n + 1)-recursion from g.^ ...,gr and f(x). The depth of the defining

formulas is still a, and by (3.4.viii) and the induction hypothesis

for)'' •)) the function

((ba+ti-2)X+1)

l+P+oJ^x+l)
f

bounds all of g^,...,g^, • Thus, now letting m be

maxCx +l,x0,...,xn,ym),

. , - , f(ba+t+2) X+"L • a+t+2)

^ f1+P+af(x+2) (2)

< i'-r1"!-)
~ l+p+aP(x+2)

Thus, we have shown where m is max{x,x ,...,x ,v)
~ 0 n '•'m

f (x , x , . . . , x , y m) < f ^ a + p ! ' 2 ' ^ (m)
0 n m — l+p+oJ1(x+l) ~

< f((ba+t+S)2 + m)

~ l+P-KiPfin+l) 1 '

5 f, n a(a) where A = (ba +t + 2)-+2
1+P+OD -A '

in-*

• " • v • M , f .

Now if p = coS *bg + ••• + ̂ n+1-'bn+1 + + dP-b^-let =

2 v n+1 •
03 -bg + • • • + 03 •1?n+1- Thus P' is the least ordinal so a = £'+ a) ,

and 1 +p +co -(ba +t + 2)- ' = 1 + p' + u)n-. ((ba +1 + 2)- +bn). Then

f(x;x0)...,xn,ym) < flifp..^,(JW>n)(A + bn)

= flw,((ba + t + 2)-+2+bn)

(ba+t+b +2)
n w

But since in+-^(P) = t +bn by definition of t, this proves Lemma (8.2)

and thus Theorem (8.1).

Unfortunately, the somewhat more attractive conjecture that f^^
a

bounds the functions of fails. This matter will be discussed

after (8.3).

(8.3) Theorem. For each a > 1, f € & .
- 1+a a

Proof. Consider the function h^ : Nn+2 -> N defined by (n + 2)-

recursion from f •
P

hp,n<' ̂0'''ti'0' ~ 1

hpjn(0,...,0,x + l) = fp(x+l)

hp,n(e0'""' ?n-l'xn+1>x+1> = hp,n(50'"""' Sn-1'Vhp,n(50>'" " 5n-l'xn+1'x)>

hp,n(50'-"'?n-2,xn-l+:L'0'x+1) = Vn(50'"'''ln-2'xn-l'x+1'x+1)

hp,n^X0 +1'0' '• • ,0,x + l) = hp>n(x0,x + l,0,...,0,x + l)

m -' t

:

<\h

Each equation containing a £ is schematic'in that it represents all

the equations obtained by replacing by "x. + 1" or "0" . We show

that when (3 is of the form f3 = (3* + a/1 for some (3' , then

,x) = f0 (x) where y = aP-x^ + ••• + aP-x . The in-
p,n 0 n7 ' p+yx ' r 0 n

duction is on y. If y = 0, so x = ••• = x =0, then hn (0,...,0,x)
' ' 7 o .n 7 £,nv 7

= fc(x) by the first and second equations. If y is a successor, so

7=6+1 where 6 = oP• x^ + • • • + oP•xn, the third equation applies:

h (£_....,^ , x +1, x+1) = h (• • • > ̂ ,hQ -i jx D, x))
f3,n' 07 n-1 n 7 ' p,nN 0 n-1 n7 p,nv 0 7 n-17 n 7/7

By the induction hypothesis for 6 and the first equation, we have

' ' *%.

hM(x0-"Vi'\ + 1'0) = 1 ;

he,n(V""Vl'V1'x+l) " WVn(V-'->Vl'xn+1>x))

But for fixed xQ,...,x^, these are the same equations defining

= Definition (3.2). Finally, if 7 is a limit, so 7 = 6 + of"111

, . , c n . n-m+1 , n-m . where M < n and 6 = 00 *x _ + • • • + GO *X , + CD -x , we have
0 m-1 m

h (x_,...,x _,x +1,0,...,0,0) = 1
(3,nv 0 7 m-1 m 7 7 7 7 '

hQ (x_,...,x _ ,x +1,0, ...,0,x+l) = hQ (x_.,...,x ,x ,x+l,0, . . . ,0,x+l)
(3,nv 0 m-17 m 7 7 7 7 ' £,nv 0 m-1 m7 7 7 7 7 '

Combining the equations and using the induction hypothesis for 5,
0

hp,n(x0'--->xm-l'xm+1'0<--->°'x) « fp+s+a)n-m-l ,x«

= fp-c/x'

by Definition (3.2)

Now consider the equations

f(0,y) = y + 1

f(x+l,y) = f(x,f(x,y))

which are. an instance of 1-recursion. We show that f(x,y) = y + 2X.

This is clearly true for x = 0; if it is true for x,

f(x+ l,y) = f(x, f(x,y))

= f(x,y) + 2x

= y + 2X+ 2X

* = y+ 2X+1

So f e and f(x,0) = *

Now let cl be an ordinal, 1 < cc < CD*3, and assume that f_ ft e £o
1+P p

for 1 < P < cc. if a is a successor, OL = P+l, then f is obtained
±-K̂

from f^+p ̂ iteration (Definition (3.1)), which is a special case

of 1-recursion, so f±+̂ e If a is a limit ordinal, let P be the

n~f"l
least ordinal so cc = P+co . By definition, n is obtained by

(n + 2)-recursion from an<l so by the induction hypothesis,

hl+P,n e \M+r ™ h+P,n(x'0''' • >o>x) = flrftaP.x(")-Wx).

so by closure under substitution, f e &a. This concludes (8.3).

The rather unpleasant need to use f to bound &a, rather than

fa, stems from the difference between 1 -recursion and primitive re

cursion. The equations above,

^6

f(0,y) = y + 1

f(x+ l,y) = f(x, f(x,y))

which make f(x,y) = y+ 2X, are not an instance of primitive recursion,

because in the latter scheme the parameters must remain fixed, not

variable, in the defining formulas. In other words, the schema of

primitive recursion may be written

f(°,ym) - f1

f(x+l,ym) = F2

where F^ does not contain f, and where every instance of f in F^ is

of the form f(x,y); here 1-recursion would have f(x,T) where T
m x ' nr m

are formulas. The difference is between "nested" and "unnested"

formulas. This matter will be discussed more fully in Chapter V.

Notice, incidentally, that if a > to, 1 +a = a.

The above results give

(8.4) Hierarchy Theorem for If a > p, ^

Proof. Immediate by (8.1), (8.3), and (4.6).

ID -17

§9. The task of this section is to establish the computation-time

closure of ft for each a > 2. The path we take is essentially the

same as that followed for Za'. show that the computation- time of

each function in ft is bounded by another function in ft , and then Cx d-

find a function in ft,., which mimics the actions of an arbitrary

Turing machine for a given number of steps. We base the proof

for the first half of the result on the use of deductions from the

formal recursion equations defining a function in ft, . This method
UL

tv

is by no means the only way to carry out the proof, but it seems

to offer the fewest technical difficulties and will be applicable

as well to later work.

(9.1) Theorem. For each & < 0) , if f then f can be

computed by a Turing machine in such a way that the

number of steps required to compute f(xn) is bounded
/ \

by f^^(max{x^}) for . some p.

Proof. We will show that for each f e there is a set of equations

E defining f recursively and a number q so that f|^(max{x }) bounds

the number of equations in a certain deduction of the equation

f(v(x^),..-,v(x)) = v(x) from E. Then we will arrange for a

Turing machine to perform the deduction and conclude the theorem.

If f e R , then f(x) = x. + c or f(x) = c for some constant
o n i v n

c. Thus f is definable by one of the equations

or

f(x) = 0" • • •'
n

A deduction of the equation f(v(x^),...,v(x^)) = v(x) simply con

sists of the n + 1 equations which start with the original defining

equation and have the variables x^,...,x^ successively replaced by

v(x_L) ; . . ., v(x) . Thus the number of equations is bounded by a con

stant, n+1, and a fortiori by f^n+^^ (maxlx^}) .

Now suppose f € where 0C > 1. If f e because f €

with p < cc, the claim is trivial by Lemma (3.4.viii). If f is de

fined by substitution from functions in 6^,, the proof follows from

arguments similar to, but simpler than, those used for the next

case. We omit the details.

There remains the case in which f is defined by n-recursion

n 1 from functions in where oc = {3 + cjo for some n > 1. We have
P ~~

the 2n equations

f<4>4) = v
where each equation is obtained by allowing each to be either

"x.+ 1" or "0". The functions g^,...,g appearing in the formulas

F. are all bounded by f°r some q by Theorem (8.1) . Define for
J n1
each i, 1 < i < r, a function :N -* N such that (x , ...,xn.)

— — ©i 6i l l

bounds the number of equations in the deduction of the equation

gi(v(x1),...,v(xni)) = v(x).

in:

HQW do we deduce the equation f(v(x); v (y^).) = v(x)? (We have

written v(x^) for v(x^);...,v(x).) First select the applicable

equation on the basis of which x^ are.zero:

f('I ,y) = F.
n m j

and then substitute the desired numerals for the I to get n °

f(v(x), v(y)) = v(F .) \ \ n/ \ J m / \ j

where v(F .) is F. with a numeral substituted for each corresponding
J J

variable in F . • This requires n + m+1 equations. Then replace one
J *

of the innermost function letters by the numeral which is its value,

This will require a subsidiary deduction of the proper equation.

Then, similarly; replace one of the remaining innermost function

letters by making a second subsidiary deduction; continue until

all the function letters are removed from v(F.): we then have
J

v(*n)> v(ym)) = v(x)

for v(x) a numeral. Thus the total number of equations is no

more than

n + m + l + Z[^ (T ;...;TS) + l]
K K

equations; where the sum ranges over all literal appearances in F^

of a function letter h. in the form h, (Tn,...,TQ) and where Tn,...,Ta k k 1 sk 1 ; sk

are formulas. Notice that we include f itself in this census of

function letters; so terms- of the form (T^;...;Tn+m) will appear

«P* •*« ms? <. J H- m i'.

in the expression above; this function letter represents the number

of equations required to deduce f.

Thus we arrive at the 2n equations

lAi ,y) = 2.
f n m j

These define the function b_^ by n-recursion from ,... j,

b , ...,b , f, and addition. Each S. is a formula n+m +1 +
gq gr J

2[t-h (TV...,TS)+ 1] like the one derived above. Now consider the'
k k

following modified equations:

££(£ >y) = 2*
n n70m n

Here 2* is the formula arrived at by replacing each occurrence of
° (q<)

g.(Tn, . . .,T .) by f (T,+ ••• + Tc), where q. is chosen so the 1 -L °i' -L+P -L bi 1

latter function bounds the former; likewise, t„.(T, ,...,Te.) is re-Si 1 si
(Pi)

placed by its bound f1+^ + ••• + Ts<). That such bounds exist

is guaranteed by Theorem (8.1) and the induction hypothesis for

b~ , ...,b_ . Finally, replace each occurrence of f(T,,...,T) in
&1 &r . 1 n+m

Z. "by b*(T^, • . . .>Tn+in) • By the way in which the formulas 2* were

defined, b* is thus obtained by n-recursion from the functions x+ y

and f Q; so by Lemma (8.2), bj is bounded by f^^ _ n for some q.
1+P f I+PW1"1

m — ^ » » mm i

But we also have b (x ,y) > I (x ,y) and bjx ,y) > f(x ,y), for
f n m - f n m f n m/ — v n m

b^ is defined from increasing functions which bound those defining

b^ and f, and the formulas defining b* are of equal or greater depths

Thus the deduction of f(v(x), v(y)) = v(x) contains no more than
\ \ n wm / y v '

f^ r,_i (max(x ,y }) equations.
1+P+n 1 n m H

lU'i

i' •• • »«> s! sp m ~ ̂ ̂ im mh mi :Hi - Mi ii mi jii" i

n0 \0

Next, it should be clear that there is a c so the t-th equation

t+max{x.y }
in the deduction will contain no more than c characters.

For substituting a numeral v(x) in an equation can increase its

length by at most d-v(x) for some fixed d; and each numeral which

is substituted is either one of the x^, y or already appears as

part of an earlier equation. Since fV>(x) = there is an s so

the total number of characters in" a deduction, namely

(a)

is bounded by fysl J l+a

Now a Turing machine can certainly carry out the deduction

we have outlined. Given input xr, y , it simply forms the equation

f(xnj>ym) = Fj, and proceeds to derive the succeeding lines of the

deduction exactly as suggested above. Even if none of the deduction

is erased from the tape, the total number of tape squares used

need be no more than

xl+ • • • +xn + n + y1+ • • • +ym + m + f[^(max {ir ,ym))

Then by exactly the same argument as that given'in .(5.3), the total

number of steps required is no more than f^^(max{x ,y }) for some
l+u n n

p, so long as Q > 1. Even if a = 0, the theorem remains true; for

suppose f(xn) = + c. Then f can be computed as follows: move to

the left over the representation of x^,...,x^, erasing the tape,

until x^ is reached; pass over x., and then add c - 1 "l"s to its

T0'Z2

left. Continue to the left, erasing Then move right

again until x^ + c has been passed, and stop. The total number of

steps is no more than f^(maxf^)), for suitable p. This con

cludes .the proof of Theorem (9.1).

A fuller discussion of the use of Turing machines to carry

out deductions from recursion equations is given by Kleene [12, §69];

readers who mistrust our sketch of such mechanized deductions should

consult this work.

Theorem (9.1) constitutes half of the proof that ft , a > 2,

is computation time closed; the other half follows from the next

theorem.

(9.2) Theorem. Let TO be a Turing machine which computes

the function f:Nn -*• N. Then there is an function

TM :Nn+1 N with the following property: if s exceeds
TO

the number of steps required to compute f(xn) using TO,

then f(xR) = TM^(xn,s).

Proof. This proof can be made by giving a direct construction of

TM , but a simpler method is to show that ft => £ for a < d>, and
gjf ci u

then use Theorem (5.1) to conclude (9.2).

As we have remarked, = ftQ, for each function in both classes

can be written in one of the forms f(x) = x^+ c or f(x^)= c for

some constant c . Now suppose :o £ for some ct, 0 < Q: < co, and

let P € L be a Loop program with Reg(P) = {X1,...,Xn).

\0 :v

For each i, 1 < i < n, let f^N -> N be the function computed

by (P, X , X.). By definition, each f. e £ .. Now consider the J n 1 1 Ct

function

fi(V0) = xi

f*(i ,z+l) -

which is defined by 1-recursion from f^, . . • >?n* "by "the hypothesis

on f. ,. . . ,f , f* e £ ... Let P* be the program
1' ; n' i a+1 ~

LOOP(l) Z

P
V

END

Now we assert that f*(x ,z) is the function computed by (P*,X ,Z,X.). i n n i

This is certainly the case when z = 0; for then P* is equivalent to

the empty program. If the assertion is true for initial contents of

Z = z, let the initial contents of Z be z+ 1, and the initial contents

of X be x . P* is thus equivalent to
n n ~

P ~z
} 2

The program P leaves ^(xn) > • • • ^"n regi-sbers X^,...,X^; and

by hypothesis, if the contents of X^ are y^ at the beginning of the

execution of the program P above, then P leaves ft(y, ,•••,y ,z) * ° «~z ~z ll n

in register X.. Thus when the initial contents of Z are z+ 1, P*
i ~

leaves f*(f, (x),...,f (x),z) = f*(x ,z + l) in register X.; so
1 1 n N n i n - I

(P*, X ,Z,X) computes f*(xn,z). If register Z is one of the X^,

say Z is register X., then(P*,X ,X.,X.) computes f*(x ,x.) . o ~ 7 n j i l n i

The foregoing establishes our claim that £ c: for a <
. OL — OL

for the functions of £ computed by programs of the form

LOOP(l) X

- £

END

When we have a program of the form

P

Q

the claim follows from the closure of ft under substitution.
CK

Thus for a < ̂ , £ c. ft ; in particular by Theorem (5.1), the

desired function TM € ft„ and Theorem (9.2) is proved.
TO 2

Theorems (9.1), (9.2), (8.1) and (8.3) give immediately

(9.3) Theorem. For each a > 2, ft is computation-time

closed.

IV. IDENTICAL HIERARCHIES

§10. The following very important result is now straightforward.

(10.1) Theorem. If 2 < Q < 03°, 6̂ =

Proof. If f G (ft , the time required to compute f using a Turing

machine is bounded by for some p. By (4.4), f^^(x + ••• + x +l) j_+ci x+ot j_ n

> f^^(max(x)), and f^-f2(xi + ••• + x + 1) G £ . Then by the com-— x-r*-4 n jl+o- x n x+cc

putation-time closure of L f G £ rv. Conversely, if f e L , 1+G* 1+G* X+Gt

the computation time of f is bounded by Zor some q; but

C n)
fp+a(xl + *•* + x) G so by the computation-time closure of

f € <?a.

Notice that this gives

Proof of Theorem (4.5) concluded. We showed f^ G directly;

f^ € Zg follows by (6.9); (8.3) and (10.1) give fQ G for a > 3,

yielding the theorem.

Theorem (10.1) follows from just two important characteristics

of each £q+a an<^ ̂ a: First, each class (for <2 > 2) is substitution

and computation-time closed; second, the two classes contain functions

of the same size, in that any function in the one class is bounded

by some function in the other. Thus it appears that any class of

functions which has these two closure properties is essentially

characterized by the size of the functions it contains.

JOC-

105-

This same approach using computation-time closure is applied

he'low to three examples of other hierarchies mentioned in the •

literature; we show that each of these hierarchies is identical

to a portion of the hierarchy. Not all the theorems are proved

solely on the basis of computation-time closure -- sometimes ad hoc

methods are easier -- but mostly we make use of this powerful closure

property.

A hierarchy similar to the hierarchy where a < 03 was de

fined by Axt [2]. We have

(10.2) Definition (Axt). For each 0L} 0 < a < co, let Pa

be the smallest class of functions satisfying

(i) The successor function s(x) = x+ 1 and the

identity function i(x) = x are in p^,

(ii) If a > P, Pa

(iii) Pa is closed under substitution,

(iv) If f is defined by primitive recursion from

functions g,h e P^, then f e where & = P + l.

It is obvious that p, the class of primitive recursive functions,

is precisely

U Pa
a < en

See Definition (6.10). The difference between the hierarchy for

a < GO and the PQ hierarchy is that where is defined using 1-

recursion, Pa is defined using the less general schema of primitive

recursion.

It should be clear intuitively that the function TM^ which

mimics Turing machines is primitive recursive. In fact, this re

sult follows from proofs of the Kleene Normal lorm Theorem; see,

for example, Kleene [12, §58] or Davis [7, p. 63]. This fact alone

would put TM in Pa for each cc > 0^, where is a fixed ordinal

less than (JO. The next lemma, therefore, is of interest only be

cause it shows aQ to be no greater than 4.

(10.3) Lemma. The function TM of Theorems (5.1) and

(9.2) is inP;[. Also, e^ch function used in the
/ \

definition of TM is bounded by for some p.
TO &

Proof. The proof of the lemma consists merely of an enumeration

of the defirfl-tions of various functions, concluding with that for

TM * this together with a verification that the function so enumer-

ated have the properties ascribed to them. The verification is left

mostly to the reader. Instead of giving the details here we segre

gate them in §11, since, as remarked above, the real content of the

lemma is already obvious: that TM^ € Pa for some a < u>, and there

fore that TM can be defined using functions bounded by f^P^ for

some a and p.

(10.4) Theorem. For 4 < oc < CD, = Pa-

Proof. By Corollary (6.9) and the closure of Za under substitution,

£a 3 PQ for all ol > ax On the other hand, since f € and

is defined from f by a special case of primitive recursion,

e ^or each a > 1; thus by (6.3) and (10.3), Pn 3 £-, for CC C£ — U — u*

4 < a < en.

We remark that the first half of this proof, that

could have been shown as follows: prove that each function in P^ is

bounded by f^P^ for some p. Then by Lemma (8.2), each function in
/ \

Pa is bounded by f^ for some p. Finally, Theorem (9.1) applies,

a fortiori, to Pa as well as 6^, since primitive recursion is a

special case of 1-recursion; thus each function in Pa can be com-
/ \

puted in fewer than fa steps. Then by the computation time closure

of ZQ, Za

Other hierarchies may be obtained by starting with a fixed set

of functions and closing under substitution and limited recursion.

The next example is essentially the one studied by Robbin [25]; his

x initial function was 2 rather than f^, but otherwise he used functions

like fa.

(10.5) Definition (Robbin). For each ordinal a, a <

let 8q be the smallest class of functions satisfying

fi) 8 contains the successor function, the function x ' a

rnax(x,y), and f ,

(ii) 8 is closed under substitution,
a

(iii) 8 is closed under limited recursion. v ' a

(10.6) Theorem. For 2 < a < d)Q*1, £ = £ .
v ' - a a

Proof. Say a > 2, Then £ contains all the starting functions of

£ , and by (6.8) and (4.9), £ is closed under limited recursion
a' v a

and substitution. Thus £ 3 £ . Conversely, if f e £ , by Theorem
LX 4X LX

(6.3) f may be written

f(x) = M (e,x , f (max(x, , . . . ,max(x . ,x)...))) v n' n^ ' n' a 1 n-1' n'

for some e and p. Since M is obtained by substitution from TM.
* n

for some % by closure under substitution and Lemma (10.3), TM^ e £p;
/ _ \

for all the recursions defining TM in (10.3) are bounded by f9 .
9)t &

Then by (6.3), f e £q.

Grzegorczyk [9] studied a similarly defined hierarchy

G x
{£^: a < ,0)}. His starting functions, however, are somewhat different

(10.7) Definition. For each a, 0 < a < ̂ , let g^ be the

function defined as follows:

60(x,y) = y+1

g1(x,y) = x+ y

g2(x,y) = (x + 1) - (y+ 1)

For a > 2,

ga+l(0'y) = sa(y + 1>y + 1)

ga+l(x + 1'y) = sa+l(x'ga+l(x'y))

We remark that these functions were somewhat simplified by R. W

Ritchie [24].

(10.8) Definition (Grzegorczyk). For each a, 0 < a < CD,

G
let £ he the smallest class satisfying vJc

G (i) £a contains gQ and g ,

(ii) is closed under substitution,
KJL

G
(iii) is closed under limited recursion.

(10.9) Theorem. For 2 < a < a), £ =
— a a+1

Proof. By definition,

g3(0,y) = (y + 2)

g (x+ l,y) = g^(x,g (x,y))

Abbreviate (y+ 2) by k(y). Then we assert that

;(x,y) = k^2 ^ (y)

The equation holds when x=0; if x > 0,

g,(x + l,y) = g3(x,g3(x,y))

= ̂ (^(y))

(2X+11 = J(y)

2 4 Now k(y) = (y+ 2) <y if y > 2. Therefore,

p x

, (x) / n . 4 (y) < y s

< 4 5) ' (X + y) i f y > 2

Then \x + y)> k ' " \y) for a l l x , y . Thus £ £g, for i t

is def inable by l imited recursion (in fact l imited i terat ion) from

funct ions in £ . Then e Zn by closure under subst i tut ion.

Now for 3 < a < d), g i s obtained from g by 1-recursion. - a+1 &a
By Theorem (10.1) and the def ini t ion of ^q+1 € ^CC'

Q.
immediately proves Z 3 S _, s ince Z contains the s tar t ing a - a+l a

_G funct ions of and has the same c losure propert ies .
(x)

Now we show g , r ; (x ,y) > f (y) for 1 < OL < d) . For
QI+ • OL

g 3 (o , y) = (y+2) 2 > ' f (0) (y) = y

g 3 (x+l ,y) = g 3 (x ,g 3 (x ,y))

> 4X^(g 3 (x ,y))

> 4 2 x) (y)

> f(X + 1) (y) i f x>l

Even i f x = 1 , g 3 (. l ,y) = ((y+2) 2+ 2) 2 > f jh(y) . For 1 < a < u>,

ga+3 (0> y) = ga+2 (y + 1 ' y + 1) t 4 y + 1) (y + 1) > f£l (y)

ga+3 (1 ' y) = ga+3 (0> ga+3 (0 ' y)) ? 4Y + 1) (y) * fS (y)

ga+3 (x + 1 ' y) = ga+3 (x ' ga+3 (x ' y))

> f (x) f (x) (y) - a+l a+iv,y;

> f (y) i f x > i - a+l -

\U

So in particular,, g ^(x,l) > f^(x). Since clearly sa+i(x,y) -
G

max(x,y), there are functions in S-^+q: which bound f^(max(x,y)).

But since by Lemma (10.3), TM e S„, by using Theorem (6.3) we have

n zd Z for 2 < a < CD; this concludes (10.9).
a+l - a -

§11. The major purpose of this section is merely to prove Lemma

(10.3), which proof is, apparently of necessity, somewhat long-

winded. A minor purpose is to demonstrate that a few other functions

are in various c3asses IP , so that these functions may he used in a
the sequel without further proof'of their claimed properties.

Proof of Lemma (10.3). The construction is conceptually identical

to that of (5.1), except that there a Loop program was written, and

here a primitive recursive function is defined. The approach here

constructs TM directly, in contrast to that of Theorem (9.2), which

showed that 1-recursions could perform the functions of L00P(l) in

structions, and concluded the theorem indirectly via (5.1). We

remark that this latter method may, in fact, he used successfully

to prove (10.3), hut that without some complexities it succeeds only

in showing that TM e lPc .

The following functions are all in

x + 0 = x

x + (y +1) = (x +y).+ 1

For each fixed n, n-x = x + • • • + x

0-1 = 0

(x + l)1! = x

p(x,0) = x

p(x,y + 1) = 0

1-x = p(l,x)

We also wri^eosg(x) = 1-x and sg(x) = sg(sg(x)).
•5. •

% - ^

Now if g ,. . . ,-g , lu,. . . >hr+- &re given functions such that at

most one of g^,...,gr is zero for any argument, the function f de

fined as follows is obtained from the given functions and x+ y,

sg, and p by substitution:

if gi(.in) = 0

f(x) = \ h (x) if g (x) = 0
ri \ r n rv n'

h -,(x) otherwise
r+lK n

Here f is said to be defined by cases. We have

f(xn) = p(h1(xn),g1(xn)) + • • • +p(hr(xn),gr(xn)) +

p(hr+l(xn),sg(gi(xn))+ * * * + sg(gr(xn)))

Thus P for a > 1 is closed under definition by cases. The following
a -

functions are all defined by a single recursion and substitution from

functions already defined, and thus are inP^:

x-0 = 0

x- (y + 1) = x-y + x

x-0 = x

x-(y+ 1) = (x-y)-l

|x- yI = (x-y) + (y-x)

2
f(x,3ft) = (x +y) + x

For each fixed n > 0,

° 1
n = 1

x+1 x n = n -n

The following functions are all defined "by a single recursion from

functions already defined, and thus are in

rm(0, y) = 0

| 0 if | rm.(x,y) +1- y | =
>y) = S

= o

rm(x + 1

0/y = 0

(x + l)/y

n/o = 0

I x + 1 =

rm(x,y)+l otherwise

:/y +.1 if |(x/y + l) *y - x - 1J

x/y otherwise

Jx + 1 if | (n/x + l)2 - x - 11 = 0

otherwise

7T-, (X) = X - ("J'x)C

7^2(x) = S^X " 7r1(x)

The functions t, 7t^, are pairing functions with the proper

ties t(tt^(z), tt2(z)) = z, TT-^ (t(x, y)) = x, 7T2(T(x,y)) = y. Define,

using substitutions from already-given functions,

.

(x)Q=iri(x)

(x)L = V^x)

(X) S = V27r2(x)

(x) = ir2irZirZ (X)

E(X1,X2,x3,X̂) = t(X1,T(X2,T(X3,X̂))) •

These last five functions provide the basis for the function

about to be defined which mimics a Turing machine. If x , xT, x ,
Q, L S -

x^ respectively represent the state of the Turing machine and its

tape to the left of, on, and to the right of the scanned square, then

E(XQ,xL,Xg,x^) will represent the whole current situation. Conversely,

if z represents a situation, (z) represents the state in that situ-

ation; similarly for (z)^, (z)g; ̂ z^r* ^e Turing machine have

u symbols so>'"'su_i anci v states • • • > \ y as before, the tape

will be represented by a number which, in a base u notation, is an

image of the corresponding portion of the tape.

Now let Q (z) be that function, defined by cases, which is j

whenever the quintuple (q(z) > s^z) , sfc, d, q.) is a quintuple of
Q, S J

Q^(z) = (z)Q if such a quintuple does not appear. Likewise let-S^(z)

be the function which yields the next symbol to be placed on the
0

scanned square, and let D (s) be 0 if ̂ has halted, and 1 or 2 re-

spectively if 3R moves left or right. It should be clear that for

each machine TO, Q.^, S , and are defined by cases, and hence by

substitution, from functions already given. Now define

$

f
z if D (z) = 0

TO

Step (z) = /E(Q (z),(z) /u,nn((z) ,u),u-(z) + S (z))
v)(vx u Li I\ yj(

if D (z) = 1
TO

IE(Q5ji(Z),U-(Z)l +Sjz),nn((z)R,u),(z)R/u)

if D (z) = 2
TO

Thus Step e IP,. an(t it z is the representation of a situation,

Step (z) is the representation of the next situation. Now say

Result (z,0) = z
TO ' '

Result (z,s+ 1) = Step (Result (z,s))
TO ^TO TO ' ''

Then Result^(z,s) e ip^i it is the situation resulting after s steps

have been performed by TO when started with z. Define for a parti

cular u

Ones(b,0) = u-b + 1

Ones(b,x +1) = u-Ones (b,x) + 1

Ones € when Ones(b,x) is written in base u notation, it con

sists of the digits of b followed by x+1 "l"s. Now let

Inputn(xn) = Ones(u-Ones(•••u-0nes(0,x1),...xn ^,x)

so that, for example, Inputg(x1,xg) consists, in base u notation, of

xx+l "l"s, followed by 0, followed by x^ + 1 "l"s. Then say

Initial (x) = E(0, Input (x), 0, 0)
nn n n

,>4*** JIM *!!*>, .'MIMI r'H

\1

Initialn(x) is the encoding of the initial situation of with in

put x .
* n

Then define

0utput*(z,0) = 0

(1+Output*(z,x) if |rm(z/ux,u) - 1| =

Output*(z,x) otherwise

Output(z) = Output*(z, z)

Output*(z,x + l) =

Output e IP , and Output (z) is the number of "l"s occurring in the

base u representation of z. Finally, define

TM (x ,s) = Output((Result (lnitial(x),s)))
vJc n n Jj

TM is the desired function. It should be obvious that all the

functions used in the definition of TM^ are bounded by for some

p except perhaps Result . Even this is bounded, however; for Result

is in each case an encoding of four numbers. The encoding is a poly

nomial in the numbers encoded, and the numbers themselves represent

tapes. But by the representation of a tape we have used, the size of

the encoding of a tape is exponential in the length of the tape; and

this- length is linear in the number of steps taken. Thus Result
3n

grows exponentially at worst; this makes it straightforward to show

Result^ is bounded by for some p, since f^(x) = 2X. Finally

TM e so (10.3) is proved.

\R

118

§12. Summarizing Theorems (10.1), (10.4), (10.6), and (10.8), we

immediately

(12.1) Theorem. For 3 < a < CO, CQ+1 = ̂ = Pa+1 = 'Sa+1= f£+2 (

For 2 <a <ao:u, £q+1 = «a= Sa+1.

Therefore each of the theorems of §6 discussing £ applies, mutatis

mutandis, to the other classes as well. The following characteriza

tion is also interest.

(12.2) Theorem. For a > 2, £ is the closure under substitution v ' — a

of the (finite) set of functions {M^, T, 77^, tt^, f }.

Proof, t, 7?^, 7r^ are the pairing functions defined in §11 with the

properties t(tt (z) ,tt2(z)) = z, 7T1(T(x,y)) = x, 7r2(x(x,y)) = y. §11

shows these functions are in 64, and thus in £ for a > 2. Also, M, 2 a — 1

and f are in £ by Theorems (5.2) and (4.5). Therefore, the closure a ci -
ot these functions is included in £ . Now if fiN11 -* N is in £ , there

\JL LX

is an f*:N - N so f* e £ and f(x)= f*(x(x , t(x_, .. . ,t(x ,0)...))); Cc ri -L £ n

simply take f*(x) = f(ir (x) ,tt 7Tg(x),. .. ,7r17T2n~1^(x)). Then by Theorem

(6.3),

f(xn) = M1(e,x(x1,.. .,T(xn,0)...),f^P\x(x1,...,T(xn,0) ...))

for some e and p, since x(x,y) >max{x,y). This concludes (12.2).

Theorem (12.2) answers in the affirmative the. question posed by

Grzegorczyk [9, p. 4i] whether his classes fiP were definable by sub

stitution from a finite set of functions.

. V

(12.3) Definition (Csillag-Kalmar). The class £ of

elementary functions is the least class such that

(i) S contains x+y, x-y,

(ii) £ is closed under substitution,

(iii) £ is closed under the operations of limited

sum and limited product: the operations which

take g:.Nn+1 -• N into s:Nn+1 -*N, where

s(in,y) = £=0 s(xn,i)

and into p:Nn+^~ -* N where

p(Vy) " J0 g(in'i)

Grzegorczyk. was able to show that his class £^ is identical to the

elementary functions [9, Theorem 4.4]. Thus, immediately,

(12.4) Theorem. = £•

Although the foregoing theorems show that all the hierarchies we

have defined eventually become identical, we have not discussed much

the relationships of the various classes at the bases of the hier

archies. Figure (12.5) depicts the known set-theoretic inclusions

among these classes. The figure is to be read as follows. A vertical

double line between two sets indicates that the set higher on the page

is known to include properly the lower set, and that the proof o± the

inclusion is either given explicitly or follows immediately from ex

plicit proofs. A double line one of whose members is dotted means

w

+1)'

that there is a proper inclusion "between the two sets but that we

withhold the proof. The only such situations which require much

thought are to show S| 3 and => p , especially the latter. A

single solid line means an inclusion shown to exist but not known

to be proper.

The horizontal dashed lines separate the- sets into strata ac

cording to the functions whose rate of growth characterizes the sets

in a stratum. Since each set in the stratum of f includes f, and

each function in such a set has a p so f^-^ bounds that function,

it is impossible that a set in a lower stratum should include, proper

ly or not, a set in a higher stratum. However, the inclusion relation

ships not explicitly indicated among the sets of a given stratum are

uncertain. I conjecture that all the sets shown in the figure as

incomparable are in fact incomparable, except that it seems likely

that ̂ c •

Granting that sets in different strata cannot be equal, why are

all the sets in a given stratum not identical? The answer, of course,

lies in their failure to be computation-time closed. This failure

comes about in two ways, corresponding to the two parts of Definition

(6 A). First, a function may fail to be in a class although the class

contains a function bounding its computation time. This occurs be

cause the particular functions TM are not in the class; such is the

case with, for example, lf^, !f^, and (perhaps) P^. Second, there

may be a function in the class whose computation time is not bounded

in the class; this occurs with and

122

Conversely, given that above a certain point all the classes

become computation-time closed, why should the hierarchies eventual

ly become identical? After all, 1-recursion, for example, seems a

considerably more powerful operation than primitive recursion: as T*e

X
showed, with a single 1-recursion the function 2 can be defined,

while any function defined by a single 1-recursion is bounded by a

linear function. This fact might lead us to suspect that one

1-recursion was worth two primitive recursions,and thus to the con

jecture that £> = ft for a > OA. The reason this does not occur
J 2-ot a - 0

is that while 1-recursion is more powerful than primitive recursion

in terms of the size of functions definable, the functions definable

by 1-recursion are larger by a fixed amount -- in fact, only exponential

ly larger. Once the class ft is reached, functions of exponential

growth are available and the advantage that 1-recursion has can be

overcome by using substitution.

As we remarked in §7, there are variant definitions of the schema

of n-recursion. Robbin [25] would allow a function f to be defined by

f(x ,y) = F
s n m 0

f(x ,y) = F v n rn

if (xn) = (0,...,0)

if (xn) i (0,...,0)

so long as each occurrence of f in F has the form f(T^,), where

T , S are formulas and (x) > (T). We rejected this scheme be-
n m n n

cause it is in general impossible to determine by examination whether

(x) > CT) holds. On the other hand, perusal of Theorem (8.1) indi-
x n v n

cates that the only fact actually used about the occurrences of

123

the function "being defined is that demanded by Robbin's definition:

namely that the n-tupie of values occurring as the arguments of the ,

definiendum on the right-hand side should be lexicographically less

than its arguments on the left. Thus Theorem (8.1) holds as well

if the definition of £ is modified so that Robbin's, rather than a
our, use of the term n-recursion is meant. Theorem (9.1) likewise

does not depend on the particular form of our definition, but goes

through as well with the more general one. (Actually, (9,1) needs

to be supplemented with a little more argument, but we omit the de

tails.) It follows that the modified is identical to the actual

& , at least for a > 2. (in order to make recursion possible at all,
a —

the initial function x-i, at least, has to be added. Otherwise it

would be impossible to get off the ground, since there is no function

r e such that x > r(x).)

On the other hand, neither do more restricted definitions of

n-recursion affect the results. For example, we have allowed what Peter

calls "replacement of parameters". In other words, in the schema

of n-recursion f(x ,y) may be defined in terms of f(T ,S); the v n"nr J v n' m

parameters y^ need not remain constant. It would make no difference

if we required the occurrences of f on the right to be of the form

f(T ,y); for in Theorem (10.3), TM , 7T-. , tt0 , t were defined without al-\ n"" rp x ' ' l7 2

lowing replacement of parameters, and by Theorem (8.3), f may be

defined without using parameters at all. Then by (12.2), the class

where n-recursion takes place without replacement of parameters is

identical to the original & . We could also require that on the right

-

\^A

hand side of the schema of n-recursion, the function letter being

defined should not be nested within itself below the second level --

that is, that the defined letter, say f, may appear as part of an

argument of f, but that these inner occurrences of f should not

themselves contain f. Since in the proof of neither (8.3) nor

(10.3) did we need to violate this condition, once again the classes

would not be changed if the condition were imposed. However, we

will show that the situation is different if no nesting whatever is

allowed.

By Theorem (6.2), £ for a > 2 is precisely the class of

functions computable by a Turing machine in a number of steps
/ \

bounded by f for some p. Consider any device or formalism what

ever for computing functions, so long as this device has a notion of

"step" which can be related to the steps of a Turing machine: in

particular, that there are functions k^(x,s) and kg(x,s) so that

if this device is given input x and halts within s steps, a Turing

machine can produce the same output in k^(x,s) steps; and conversely,

if some function is computed by a Turing machine, and if the function

is computable at all by such a device, then when the Turing machine

takes s steps for input x, the function can be computed by our de

vice in no more than k^(x,s) steps.

It should be clear from the foregoing arguments that if © is

the class of functions computable by such a device within f^ of its
a

steps, we will have the theorem = Z for a > aQ so long as k^ and

k2 are bounded by some multiple recursive function. It seems unlikely

that any formalism for computation could be put forward seriously

to which these considerations would not apply.

This reasoning above provides some justification for not giv

ing in full detail the proofs of Theorems (5.2) and (9.1). The

former theorem showed how to construct Turing machines to simulate

the Loop programs, and the latter how to make Turing machines carry

out deductions in the Herbrand-Gbdel-Kleene formalism; in both cases,

an unproved, though not unsupported, assertion was made that the

simulation could be performed within a certain time. The essential

content of each theorem is simply the fact that there is only a

fixed time loss involved in transferring' from the one formalism to

the other, not what this loss factor actually is; thus verification

that it is at most exponential is merely an interesting detail.

The original problem which motivated this thesis was that of

relating the complexity of a program to the complexity of the function

it computes. A final theorem will complete the investigation of the

main question.

(12.6) Theorem. Say a > 2. Given a program in L , or a .

set of recursion equations in R , it is effectively
0 cc

impossible to decide whether there is a (3 < a so that

the program (or the equations)could be rewritten so as

to give the same result, and yet be in (or R^).

Proof. A trivial modification of the constructions of §11 or Theorem

(5.1) yields a function C (x,s) which is one if Turing machine wtwith

input x halts in fewer than s steps, and is zero if it does not.

Consider the derivations (in R) of the functions uv for each y_,
a *o o

where

u (x) = C (y ,x)*f (x)
yQv ' w 0 1+a

Let ̂ he a Turing machine such that the set H = (y^:® halts with in

put y } is non-recursive. If y. e H, u,r is f_ ^ almost everywhere;
U U j o -L+Q;

thus Uy^ ̂ (Rp for P < cc. if yQ ^ H, Uy^(x) = 0 for all x, so Uy^ € &0

Then if we could decide whether the function Uy-^ was in we could

decide whether vn halts with input y , and so H would be recursive,

contrary to hypothesis. Clea.rly the same methods work also for

programs in 1^.

We have thus established the following statements about Loop

programs.

(1) Loop programs can compute a broad and interesting class

of functions, namely the. multiple recursive functions.

(2) Given a program, we can effectively find the least oc for

which the program is in LQ,. *

(3) For every program in LQ, we can effectively find a p so
/ \

that with inputs x , the program halts in fewer than f-y (max{x }) n ct n

steps.

.(p) (4) There are some programs in LQ, which actually do run f

steps.

•V

"but this is not very satisfying; since the whole point of the kind

of analysis we have been doing is to avoid ad hoc methods and use

a general method instead.

There is one further problem. Suppose examination of a program

has revealed that the program with input x will halt within f,_(x)

(say) steps or seconds or whatever. We are interested in inpu^ 17

and therefore insist on inquiring as to the value of f5(l7). To

put it in recognizable form, we must compute f,_(l/) but to do this

in fact even to write down the answer -- requires a time which is

essentially f (17) again'. We would, have been beoter off running uhe

program itself) at least it had a chance of halting immediately.

V. RELATED TOPICS

§13. At the end. of the last section several variant possibilities

for a definition of n-recurs-ion were mentioned and it was argued

that all were essentially identical, in the sense that all would

yield the same classes ftQ. This section studies two operations

based on n-recursion which are strictly weaker than n-recursion:

•unnested n-recursion and limited n-recursion. We will be able to

strengthen results of Peter on the two operations and to answer a

question of Grzegorczyk on the latter one.

(13.1) Definition. The schema of unnested n-recursion is

the same as the schema of n-recursion with the fol

lowing additional restriction: if the function f is

being defined, no occurrence of f on the right-hand

side of the defining equations has another appearance

of f in the formulas constituting its arguments.

Peter was able to show [21, p.74] that the operation of unnested

recursion does not lead out of the primitive recursive functions;

that is, that the class P is closed under this operation. Our ana

lysis will confirm the result by showing in what class a function

defined by unnested n-recursion from g.^, ...,gr must lie if

n+2_
(13.2) Definition. Call a 1-1 function ER:N -» N

satisfactory for ct> c if E. is monotone increas

ing in each variable, and if for each i, 1 < i < n,

and all x , y the following inequality holds:

En(x!'''',xi-l'xi+1,xi+l'''''*n'y)

> Er(x1,...,x._1,xi,b,...,b,y)

where b = f^C^(max{xn,y})•

Such an encoding E„ provides to a certain extent an order-

preserving map from N* into N for each value of the parameter y.

Of course, En for n > 1 cannot be perfectly order-preserving, be

cause the order type a? for n > 1 is strictly greater than the order

type co. A perfectly order-reserving map would have b arbitrarily

large in Definition (13.2).

(13.3) Lemma. For each n,c > 1 and a > 2, there is an

E f £ n so E is satisfactory for a,c.
n a+n-1 n

XV
Proof. Induction on n. If n = 1, take E^(x^,y) = 2 -3 > and the

lemma is immediate. When n > 1, let E be satisfactory for QL, c+ 2

and assume >max{xn,y); this is certainly the case when

n = 1. Since En € Ejx^y) < f^.^maxCx^y)) for some

number q, by Theorem (8.1). Take d = q+c + 3, write + x for

x, +x,...,x +x, and define
1 7 7 n

x V V\+X+y'y- t ̂t(E (x +X+y,y))
K ,(x,£ /,) = 2 -3y-5 11 . , o+n-l n n
n+1 n

Clearly Ej +.(x,xf ,y) > max(x,x^ _ ,y], E^ is monotone increasing,

and E _ is 1-1; also E e £, since is obtained from n+1 ' n+1 a+n a+n-1

f by iteration. Let b = f'v (max{x,x ,y}). For 1 < i < n, a+n-i - a ' n'J ' - - >

the inequality

(*) E _(x,x. _,x.+l,x. _, . . . ,x ,y) >E _,(x,x. ,,x.,b,...,b,y)
n+1 ' i-l' i i+l ' n' u n+1 ' i-l' i-'

holds. For let x be fixed. Then by hypothesis,

En(xi _]_+x+y,x. +x+y+l,xi +1+x+y,. . . ,x^+x+y,y)

> E (x +x+y,x +x+y,b*,...,b*,y)
n i -1 l — —

where b* = f^C+^ (maxfx^+x+y)) > f^" ̂ (max{x,xn,yj) + x + y. By de

finition of b and the monotonicity of E ,

En(Xi_i+x+y,x.+x+y+l,x.+1+x+y,.•.>xn+x+y,y)

> Ev(x_. _1+x+y,xi+x+y,b+x+y, . . . ,b+x+y,y)

Then by the m notone dependence of E 2_ on E^, (*) holds for 1 < i < n.

It remains to be shown that

(**) En+i(x+1+^n'y) > En+l^X'-'*'* '-'y^

holds as well. By definition,

„ ' , - . x+1 y En(VX+y+1'y) 7fa!n-l1))(En(Vx+y+1'y)) En+l(x+1,xn,y) = 2 *3 *5 -V

x ,y En(Vx+y'y) /a«-lfa+n-l(En(Vx+y+1'y))
> 2~-3y-5

Now for all z , x, y n

E (z +x+y,y) < f ̂ .(maxfz +x+y}) nv n J ' - a+n-1 n J '

< f^q+2^(max(x,z ,y})
- a+n-1 n

Therefore, if b = f^ (max{x,x ,y}), putting b for z.,,...,z , we
— a + n - 1 n — i n

have

2-E (b+x+y,b+x+y,y) < 2-f^q+C*2^(max{x,x ,y})
n — — . — a+n-1 n

< f^q+C*3^(max{x,x ,y})
a+n-1 n

using (3.4.iii). But since by definition d = q + c + 3, and max{x,x ,y} n'

< En(xn + x +y + l,y),

2-En(b+x+y, . ..,b+x+y,y) < f^_l(En(xn+x+y+l,y))

So by the above,

E (x +x+y,y) f£dx'(2-E (b+x+y,...,b+x+y,y))
E .(x+l,x ,y) > 2 -3y-5 n -5 a n~ n+lv ' n,J '

> 2X-3y-5
En (b+x+y, ...,b+x+y,y) (En(b+x+y,..., b+x+y;

= En+1(x,b,...,b,y)

which is the inequality (**). -Therefore. En+^ satisfies Definition

(13.2) and (13*>3) is complete.

(13. 4) Lemma. Let E be the encoding function of Lemma
\ / n

(13.3). Then for each i, 1 < i < n, the function

irU, where I

7ri^En(4'y)) = Xi

is in £

Proof. Grzegorczyk [t, p. 13] showed that the function (x)y i-s

mentary, where (x) is the exponent of the y-th prime in the prime-

power decomposition of x. The 0-th prime is taken to be 2, so, for

example, (2x-3y)0 = x, (2X'3y)1 = y. Then by Theorem (12. 4) ,

(x) e £ . Now 7n(z) = (z)Q since E3(x,y) = 2X-3y. If
.y

n
•1Tn y

are all in Z0,

7T^+1(z) = (z)Q

for 2 < i < n + 1, Tr^+ J"(z) = (TT_1((Z)2) - (z)1) - (z)Q

n+1 , . n, So 7r. is also in £0. 1 2

(13.5) Theorem. Say a > 2. If f is defined by unnested

n-recursion from functions in then f € ^a+r•

Proof. The function f satisfies the 2n equations

f (I >y) = F . v n ^m j

where for 1 < j < 2n, F^ is a formula. Each occurrence of f in one

of the formulas F, is of the form f(S ,T), where §n, Tm are formulas
0 >

not containing f. Thus these formulas represent functions in

(c)
Let c be great enough so f " "bounds all appearing in any for

mula F. in the context f(S ,T). Then by Lemma (13.3) choose an
J n m

encoding satisfactory for a, c, and let •.•,Wn be the decod

ing functions for E ̂. Now consider the function f satisfying

f (0,y) = 0

f F if TT^(x+l) = ••• = 7T^(x+l) = 0

F if Th(x+1) = ... = 7T^_1(x+l)= 0, /j(x+l) >0

f(x+l,y) = \
hi

F _ if TL(X+1) >0 ,TT̂ (X+1) > 0
211

Here for each j, 1 < j < 2n, F. is the formula which results from F — J J

by replacing each occurrence of x. , 1 < i < n, by IT. (x + l) - 1, and

replacing each occurrence of f(Sn,Tm) by

f(min(E (S , max{y }) + l,x),T) x v n n ^m m

Here, of course, min(a,b) is the smaller of a and b. We assert that

A

these equations define a unique function f, and that

f(x ,y) = f(E (X ,max{y } + l),y) v n m n n m m

The first half of the assertion is immediate by the form of the equa-

/\ — ^ —
tions. For f(0,y) is defined outright, and f(x+ l,y y is defined

m ni

in terns of known functions and values of f of the form f(z,T) where

A

z < x+1, since on the right-hand side the first argument of f is

always min(E,x) for some formula E, and min(E,x) < x.

135

The other half of the assertion uses the fact that E^ is satis

factory for a, c. We have

f(E (0,...,0,max{y]) + l>ym) = F

Since* F^ contains no occurrences of f nor of x. for any i, F^ = F^

as a function of v , so the assertion is true for (x) = (0,...,0).
" m n

Sav for some I the assertion is true for all (z) < (I) where each n n n

?,. is either "x. +1" or "0". Then
~ i I

f(En(In,max{ym})+l,ym) = F

where 1 < j < 2 ' 1 .

Now for all those L for which S, = "x +1", 7T. (E (I ,max{y }))-l= x ;
1 .x. A. -L XI XI "i -t-

so F . is the same formula as F., except that
J 0

f(min(En(Sn,max(ym)) +1,En(In,max{ym))

is substituted for f(S ,T). But since each S., as a function of x , y , n m 1. n m

is bounded by f^c\ and since by definition of n-recursion S < I ,
Ct n n

and finally since E^ is satisfactory for cl, C, we have

En(Srfma^t^m)) < En(In,max{ym))

Thus those instances of f on the right might as well be of the form

f(E (S ,max[y))+l,T) v n n m m

but since (S) < (I), by the induction hypothesis the occurrences of
n n

/\

f have the same value as

f(S ,T) x n m

Thus f(E (I ,max{y }) + l,y) = f(x ,y) which completes the trans-
n n m m n m

finite induction proving our assertion.
/N

The schema of which the definition of f is an example is called

course-of-values recursion with replacement of parameters. In the no-

parameter case course-of-values recursion differs from primitive re

cursion "by defining f(x+l) not merely from the immediately preceding

value f(x), but also using several earlier values f(r^(x)),...,f(r^(x))

where r (x),...,r, (x) < x. The term "replacement of parameters" is
1 K

used because f(x + l,y^) is defined using not only f(r^(x),y^) where

r^(x) < x, but values of the form Sj_(x,ym) y • • * •'gm^x,yin^' S°

the parameters y do not stay fixed.

Peter [21, §3, §5] shows how such kinds of recursions can be re

duced to primitive recursion. The essential idea for course-of-values

recursion can be demonstrated by an example. Let p be the y-th prime,

where the 0-th prime is 2; as mentioned in the proof of (13.4), (x)

is the exponent of the y-th prime in the prime-power factorization of

x. Say

g(0) = a

g(x + l) = h(x, g(r(x)))

where r(x) < x. Define a new function g* as follows:

g*(0) = 2a = p*

h(x,(g*(x)) , J

g*(x+ 1) = g*(x)-px+1

Thus g* is defined by primitive recursion. It should be clear that

•(x) = p^(0)-pf(l) • ••• • P®(X)

and thus that

g(x) = (g*(x))
X

Therefore if a > 2, and g is defined by-course-of-values recursion

from functions in £ , g e £^,n • a cc+l

A similar argument can be applied when replacement of param

eters takes place. Thus the function f defined above is in ̂ a+n?

since it is defined by course-of-values recursion with replacement

of parameters from functions in £ n This completes the proof

of Theorem (13.5).

(13.6) Definition. If f is defined by n-recursion from

g ,...,g^ and if in addition there is a function

g , so f(x ,y) < g ,,(x ,y), then f is said to &r+l n m - tor+lv n m

be defined by limited n-recursion from g ,...,g^,

gr+l *

Peter showed that limited n-recursion, like unnested n-recursion,

does not lead out of the. primitive recursive functions [21, p.113; 20]

(13.7) Theorem. Say a > 2. If f is defined by limited

n-recursion from functions in £ , then f € £ , . a CH-n

Proof. In the proof of Theorem (9.1), which showed that each function
/ \

f in could be computed by a Turing machine within time we

arrived at the following intermediate result: if f is defined by n-

recursion from g,, ...,g^, the number of equations required

to deduce the equation f(v(xJ, v(y)) = v(x) is given by another n-
n m

recursion as follows

b(| ,y) =2.
fv n m; j

where each 2. is a sum of the form
J

n +m +1 + 2[bh, (T, ,. . . ,TSi) +1]
K. -L

and the sum ranges over literal appearances of function letters h^

in F.. Now all the functions g 1 , - , g ^ } b~>•••ŷ c > f in each 2
J 1 r Si Sr J

are bounded by f^^ for some c, so each function \(Tp> • • * >Tsk) oc~

curring in each 2 may be replaced by + ••• + ̂ s^.^ * Here

h. ranges over g , ...,g , b ,... ,b , f; the function f can be in-
k. 1 r &p

eluded because of the bounding condition. But now observe that the

function b* which results bounds b^, and b* is defined by an unnested

n-recursion from functions in if a > 2. Then bj is bounded by

f^d' for some d, by Theorems (13.5) and (8.1); the rest of Theorem
CH-n

(9.1) goes through unchanged, and if q > 1, f can be computed by a

(e)
Turing machine in time f; ' for some e, so f € Z, and Theorem

\JL"t" 11 LX i 11

(13.7) is proved.

It might be thought that Theorems (13.5) and (13.7) are pessi

mistic; although we have shown that if f is defined by limited or

5 -It
k

urines ted n-recursi on from functions in £ , then f G ^a+n' perhaps

n fact we always have f t. Z • This is not the case. \JC

(13.8) Theorem. Say a > 2. Then for each n > 1 there is

a function T Z - Z such that T is definable a iu.iuux.ai X .. ^a+n a+n-1

by a single instance of limited, unnested n-recursion

from functions in £ .

Proof. Recall from Theorem (5.2) that M^(e,y,z) is the function

computed by the Loop program with Godel number e, when the input is

y and the program halts in fewer than z steps. € Zr, by Theorem

(5.2). Now define by unnested n-recursion from sg, M^, f^:

T(0,.. • ,0,e,y,z) = sg(M-L(e,y,z))

T(in_-^xn + 1 >e,y,z) =

T(f-2'xn-l+1'°'e'y'z) = T("5n-2'xn-l'z'e'y,1)

T̂ n-3'Xn-2+1'0,0'e'y'2' = ''U'V!'1'0'6'''1'

T(x1+ 1,0,...,0,e,y,z) = T(x1,z,0,...,0,e,y,l)

As usual, the equations containing a £ are schematic: represents

all the r-tuples obtained by letting each £^ be either x^ +1 or 0

Then it is easy to verify that

(x) (x2) (xn)
T(xn,e,y,z) = sg(M-L(e,y,fa+n_1 fa+n_2 fa (z)))

We omit the details. Now, recalling that sg(0) — 0, sg(x+ l) - 1>

we have T(x ,e,y,z) < 1; so this is an instance of limited n-recursion.

Now let

U(e,y) = T(e,0,...,0,e,y,l)

= sgtM^e.y^.^y)))

Then;, by the argument of (6.12), U is universal for the character

istic functions of £ _ ; so U and hence T cannot be members of
a+n-1

£ , . But T e £ by Theorem (13.5) or by Theorem (13.7). This
a+n-1 a+n

completes (13.8).

Grzegorczyk [8, p.4l] posed the question: does the operation of

limited 2-recurs.ion lead outside the class Since £ = n, a+l a a+l

Theorem (13.8) answers the question affirmatively.

Theorems (13.5), (13.7) and (13.8) have to be modified slightly

when n-recursion takes place without replacement of parameters, and

since this restriction is imposed by Peter and probably is implied

by Grzegorczyk, the situation is worth some discussion. However, de

tailed proofs will not be given.

In the case of limited n-recursion, the constructions may be

modified as follows.

(13.9) Theorem. Say a > 2. If f is defined by limited

n-recursion without replacement of parameters from

functions in £ , f e £ , , ; and for n > 1, there a a+n-1'

is an f so defined such that f e £ , , - £ 0• a+n-1 a+n-2

: |

6'

Proof. The f: ret naif follows by observing that the function f oc

curring in th proof of Theorem (13.5) is defined, in this case, by

a limited oourr of values recursion without replacement of param

eters from fun -tIons in £ , • This can be converted to a limited
Ct'+n -1

recursion from functions in ani^ we ^now already by Theorem

(6 8) that £ is closed under this operation. It follows that
v " "1 ' Q+tl-1

f € £ • a+n-l

On the other hand, in the proof of Theorem (13.8) only the

parameter z (the last argument of T) is subject to replacement.

Thus the definition of T can be regarded as an (n + l)-recursion

without replacement of parameters, simply by considering z a re

cursion variable rather than a parameter. Thus for n > 1 the function

T can be defined by limited n-recursion, and T € ^a+n-2' ThlS

completes (13.9).

The same method can be adapted to show

(13.10) Theorem. If for a > 2 and n > 1 f is defined from

functions L1
% • o-i >

€ £ by unnested n-recursion
a

without replacement of parameters, then f G ^a+n-1'

and there is an f so defined such that f € ̂ Q-+n_p~"^Q+n_2 *

The proof is omitted. The requirement n > 1 must be included since

unnested 1-recursion without replacement of parameters is essentially

primitive recursion, which is known to be capable of defining functions

in £ - £ from functions in £ . a+l a ot

W'. ii ' - aii

§14. The study of the several hierarchies carried out in Chapters

II-IV depended heavily on the properties of computation-time closure,

closure under substitution, and in some cases closure under limited

recursion. Since the same classes arose again and again in spite of

the various ways in which the hierarchies were defined, it is natural

to wonder to what extent the closure properties alone characterize a

set of functions. Might it be, for example, that every class of

multiple recursive functions with the above closure properties and

containing (say) must be either one of the or the whole class

of multiple recursive functions? This possibility seems, if anything,

enhanced by the existence of two ways of refining the hierarchy

studied by R. W. Ritchie and by Cleave.

Ritchie [24] defines a hierarchy {F±:i e N] whose union he calls

the predictably computable functions, and which turns out to be pre

cisely the set of elementary functions; that is £^. F^ may be taken

to be the linear functions; then is defined as the smallest

class of functions computable on a Turing machine whose consumption

of tape is bounded by a function in F^. The input and output of the

Turing machine are by Ritchie's convention in a binary encoding; it
v

can be shown that 2X e F ± - F , 22 e Fg - F ±, etc. The term "predicta

bly computable" arises from the fact that if a function is in F^, it

can be computed using an amount of tape bounded -- that is, predictable

by a function in F_. which in turn is predictable by a function in

F^ g, and so forth.

In characterising his classes F^, Ritchie showed, that each

class had the property of computation-time closure. Each,class F^

is closed also under "explicit transformations" -- equivalent to

Definition (4.8), parts (i) and (ii) -- hut, as the example above

indicates, F^ fails to be closed under composition. However, F^

is closed under a. certain limited form of composition which is suf

ficient to prove the desired results. The F^ individually fail also

to be closed under limited recursion, although of course their union

is closed.

An analogous hierarchy tE^ra < ̂) "was considered by Cleave [5].

He considers a kind of simple computer, the "unlimited register ma

chine" of Shepherdson and Sturgis [26]. The classes E^ arise by re

stricting the number of "transfer" or "jump" instructions carried out

in a given computation. Thus E^ is the class of functions computable

in such a way that the number of transfer instructions executed is

bounded by a constant; given EQ, Eq+1 is the class of functions com

putable in such a way that the number of transfers is bounded by a

function in E . The analogy here with the predictably computable

functions is evident. At limit ordinals, the functions obtained so

far are collected:

E t _ v = U E
co-(r+l) _ T orr+s v ' s $ N

Thus at limit ordinals, the effect is that of defining a new machine

whose elementary operations consist of those functions definable in

a class with a smaller ordinal.

Cleave is able to show that if the basic arithmetic operations

of his machine allow addition, multiplication, and testing for zero,

_G then E^>s = <?g+2 for each s e N, s > 1; that is, Thus,

part of the £ hierarchy appears again; but «uce more the classes E LX Qf

fail in general to be closed under limited recursion and substitution.

For a fixed s, the classes E , are analogous in several ways to CD- s+r

the Ritchie classes Fr, but apparently it is not true that R̂ . * Er-

The work of Ritchie and of Cleave tends to reinforce the natural

ness of the in two ways. First, certain of the £Q classes reappear

in each of these contexts; and second, both methods Of refining the

hierarchy result in classes which fail to have the attractive closure

properties of the £ .

Nevertheless, the hierarchy £q can be refined in such a way that

the closure properties of £̂ are retained. In fact, we will demonstrate

the existence of an almost embarrassing richness of classes which are

closed under limited recursion, substitution, and have the property of

computation-time closure. There are several preliminary definitions

and theorems.

We recall some useful notation common in the literature.

(l4.1) Definition. If to is a Turing machine, let e be the

Godel number of TO. Then T̂ N11 •+ N is the (partial)

function computed by TO with input x̂ , and • sN11 -* N

is the(partial) function giving the exact number of

steps required for TO to-halt with input x. . Also,

say that e is the index of f when f is the function

v
This definition assumes an arithmetization of Turing machines

which has not been carried out. However, the task has often been

performed in the literature; see the remarks following Theorem (14.3).

(14.2) Definition. If P is a predicate, we will say that P is

a member of a class of functions if a representing

function for P is in the class; that is, a function f

so f(x) = 1 if P(xr) is "true, f(xn) = 0 if P(xn) is

false. If P is a predicate [P(x)] will denote the

representing function of P.

Then, for example, x = y is a predicate in because

[x = y] = sg|x - y| = 1 - |x - yj .

(14.3) Theorem. The predicate given by [$e(xn) = VJ

is in as a function of e, x^, and y; there is

an 14, function so if z > $e(xn), ̂ n(e'xn?z) =

cp (x) .
^e n

Proof. As we have mentioned, to consider statements of this type

requires an arithmetization of Turing machines. It is well known,

however, that there exists a Godel numbering of Turing machines such

that for each n, T e £ , where T^(e,xn,y) = 1 if the Turing machine

with Godel number e, given input x , halts in precisely y steps, and

T (e,x ,y)' = 0 otherwise. Then, of course, t$e(xn) - yl- "n(e^Xn'"^'

Likewise U £ Zr. } here is precisely analogous "bo "the function »

of Theorem (5.2). See, for example, Davis [7, pp.56-62]. Davis

notes only that his construction yields primitive recursive functions,

but since it is readily shown that all the recursions are bounded by

fg"^ some p, it is immediate that T^ and are in Z^• Kleene

fl ,§§56-57] carries out a similar arithmetization for recursion

equations.

A property of certain functions which is very important in the

sequel is

(l4.4) Definition. A recursive function f is honest

whenever the number of steps required to compute

f is bounded by an Z0 function composed with f;

that is, if f(xR) = Un(e,xn,r(xn,f(xn))) for some

number e and some r e Z,̂ .

The term "honest" is used because if f is honest, the value of

f(x) accurately reflects the difficulty of computing f(xn)• No dis

approval of functions which are not honest is implied. In fact highly

dishonest functions, for example complicated characteristic functions,

are rather more interesting than honest functionsj much of the time

required to compute an honest function is spent merely in writing

down the result.

We note that a somewhat broader definition of honest was used

by Robbin [25].

Although we have called computation-time closure a closure

property, it differs from other such properties, for example,

closure under limited recursion, m an important sense. When we

speak of the least class of functions containing given functions

and closed under limited recursion, we refer to a well defined

entity, namely the intersection of all classes of functions which

contain the given functions and which are closed under limited re

cursion. That this intersection is indeed closed under limited

recursion follows from the fact that given three functions there is

at most one function defined from them by limited recursion.

On the other hand, it is not clear that there must be any

smallest class containing given functions and having the property

of computation-time closure. For if a function is in such a class,

the class is required to contain also some bound on the computation

time of the function. But there are many such bounds, corresponding

to many ways to compute the function, and there is no guide to se

lecting which bound should be included in the class The problem

is quite real; indeed, one of the results in the sequel implies

that there are sets of functions such that there is no smallest

computation-time closed set containing the given set.

qhg next theorem relates the notions of computation-time

closure and closure under limited recursion; thus it allows us to

generate computation-time closed classes having desired properties

without encountering the problem just discussed. The theorem also

'I--- nrr-Ai-a J; •;J . 7 /p

€ • % ! '

provides an alternative proof of the closure of the classes £q under

limited recursion.

(14.6) Definition. If a class of functions is such that

every member of the class is bounded by an increas

ing function in the class, the class is called

monotone. Also, for brevity, a class which is

closed under substitution and is computation-time

closed is called fully closed.

(14.7) Theorem. Let C be a class of functions containing

Then f is monotone and fully closed if and only

if C is the closure under limited recursion and sub

stitution of a set of honest functions.

Proof. First assume C is monotone and fully closed, and say

f(*n>0) = g(xn)

f(x.,y+l) = h(xn,y,f(xn,y))

f(x,. ,y) < b(x ,y)

where g.h.b e C. Define

f*U,xn,0) = min(b,Un(eg,in,b))

f*(t,xn,y+l) =
n

f*U;Xn?y) < I

. ;• > t'•'t' '• <'w • •

where e and. e, are indices for g and h, and and <tu are bounded
g b eg eh

by functions in (*. Notice that f* e Z^. Now by the hypotheses on C,

let b'(xn?y) > b(x^,y), and say b' is in C and increasing. Likewise,

t(x ,y) > <De (x,y,b' (x ,y)), and b(x ,y) > b(x ,y) . Then it is easy
n — n n n — n

to show that f(x ,y) = f*(b(x^,y),x^,y), so f e C. That is, C is

closed under limited recursion; in fact, C is the closure under sub

stitution and limited recursion of its honest functions.

Conversely, let C be the closure under limited recursion and

substitution of any set of honest functions. If f e C, e C where

This function has the property that f(xn> mf(xn>y)) no^ less "than

any of f(x^,0), . . . ,f (x^,y); so f(*nMf (xn,y)) + y is in C-, is strictly,

increasing in y, and bounds f. By applying the same technique to

the other variables of f, one finds a function in C which bounds f

and is strictly increasing in each variable; thus C is monotone.

Now since C contains Z^, all the honest functions of C have

computation times bounded by functions in C. It is easy to show

that if f is defined by substitution from functions whose computation

times are bounded in C then the computation time of f is likewise

mf(xn,°) = 0

mf(Vy) otherwise

mf(xn,y) < y

bounded in C. There remains the case in which f is defined by

limited recursion from g, h, b as above.

Given x , v, there is an obvious method for using a Turing
n

machine to compute f: first compute g(xn) = ^(xn>0); use this re

sult to compute Mxn> 0, f(x^,0)) = f(xn,l); continue until f(x^,y)

has been computed. If e^ and e, are indices for g and h, the num-
g n

ber of steps is bounded by

$ (x) +/=1 (xn,i - l,f(xn,i -1)) + f^(max(xR,y}')
eg n 1 h

where the last term is added to cover the cost of bookkeeping.

Since C contains £0, and , 3>e, , and f are bounded by monotone
2 eg eh

functions in this number of steps is less than some function of C.

By the containment of in C, C has the function for each

thus C is computation-time closed. (A more detailed discussion of

the use of Turing machines to compute functions defined by limited

recursion is presented by Ritchie [24].)

(14.8) Theorem. If f is honest and increasing, the

(v)
iterate f (x) is also honest.

Proof. Define

y z k(y,z) = II pt

That is,

/ \ z z z
k(y,z) = P0-P1- Py

152

Then let

y
It(y,w) = ft [f((w)._,) = (w)i]

i=l

Then

(~y1 ̂)
[f(y-(x) = z] = Sg t ' U(wL = x]-[(w) = z]-It(y,w)}

w=0 u y

which shows [f(y)(x) = z] is in and f(y)(x) is thus honest.

(l4.9) Theorem. Let f be a recursive function. Then

there is an honest increasing function h so

h(x) > f(x); and if a > 2 and f e Z-a, h can be

chosen so h e f^-

Proof . With our conventions for input and output, if cp^ is any re

cursive function,

cp (x) < $ (x) + x + 1
— e

Let e be an index of f; then use the construction of Theorem (14.7)

to find an Z0 function m so $> (m(x)) is not less than any of
2 ®

$ (0), $ (1) (x). Take h(x) = $ (m(x)) +x + 1; h is increasing,
e e s

and

[h(x) = y] = [y > x] • 2 ([z = m(x)]-[<D (z) = (y-x)-l]}
z < x

so h is honest. Moreover, if f e' £Q, e can be chosen so i>e e La-

(14.10) Definition. If f is any strictly increasing

function, f:N N, then the inverse of f,

written f"1, is the function defined by: f 1(x)

is the largest y such that f(y). < x if such a

y exists; f_1(x) is 0 if y does not exist.

(14.11) Theorem. If f:N N is a strictly increasing

function, f"1 has the following properties:

(i) f ̂ is nondecreasing, f f(x) = x, and if

x > f(0), ff_1(x) < x;

(ii) If f is recursive, f"1 is recursive;

(iii) If f is honest, f 1 e &2•

Proof. If x > f(0), there exists a y so f(y) < x, by taking y = 0.

Since f is increasing, there are at most finitely many y so f(y) < x,

so f 1 is well-defined. Now f f(x) = x, since f f(x) is the largest

y so f(y) < f(x); by the increasing property of f, x = y. Also

ff~^(x) < x if x > f(0). For in this case there is a y so f(y) < x;

ff "'"(x) < x is immediate by definition. Also, f is nondecreasing;

for by definition, f(f ̂ "(x+l)+l) > x +1 • But if f "'(x+l) + l< f (

since f"x(x) < x we have a contradiction. This completes (l4.11.i).

If f is honest, [f(y) = x] is in . Say

f_1(0) = 0

if [f(f_1(x)+1) = x+ 1]
f_1(x + l) = < 1

f (x) otherwise-

f_1(x) < X

nv

b ~ £

Since f 1 is defined by limited recursion from functions in J*2,

f e . We omit the proof that f so defined in the inverse of

f. Even if f is only recursive, [f(y) = x] is recursive and the

above limited recursion defines f"1 effectively, so f'1 is recursive.

This completes (l4.11.ii) and (l4.11.iii).
• O •

(14.12) Definition. Let r be an increasing, recursive

function, and let f, g be functions. If for all

y and x, x > r(y) implies f^(x) < g(x), write

f <T g. If there exists an r so f <T g, we will

also say f < g.

It should be obvious that.< is a partial ordering on functions.

It is easily shown that fQ fQ+1 where r(y) = 2-y+ 1. If f and g

are recursive, it is an interesting question whether the proposition,

"for all y, g majorizes f^^", implies the existence of a recursive

r so f g

The next lemma shows -< provides a dense ordering on the multiple

recursive functions; it is basic for the major results of both this

section and §15.

(l4.13) Lemma. Suppose f and h are increasing, honest

functions and f < h. Then there exists an in

creasing, honest g so f < g <h.

iProof. Say f <r h. By Theorem (14.9), take s honest, increasing,

and such that s(x) > hr(x2). Let t = s 1 and observe that t(x) <

v (r 1^ ̂ (x)) . Now define g:

(ftcWbd vaa Ut cjLmq vvrft j •>

6

;(x) = f(t(x)+1)(x)

Since t is nondecreasing and f is increasing, g is increasing; g is

honest since t e £ by Theorem (l4.11.iii) and [f^(x) = z] e £
u 2

by (l4.3).

Next, f .< g via r, = s . For if x > s(y), t(x) +1 > y so

f ̂ (x) < g(x).

For typographycal convenience, write F(y,x) for f^y\x). We

assert that

£"}+1\x) < F((y+ l)*(tg('y^(x) + l),x)

J 9 '' *3 d* o o 1 o -L --3 1*1 d. o i. mmediate by definition of g. If y > 0,

assume the assertion for y; then

g(y+2)(x) = gg(y+1)(x)

= F(tg(y+1)(x) + l,g(y+1)(x))

< F(tg(y+1)(x) + l,F((y+l)-(tg(y)(x)+ l),x))

< F(t,g(y+1)(x)+ l,F((y+l)-(tg(y+1'(x) + l),x))

= F(tg^/+1'(x) +1 + (y+ 1)-(tg'y+1'(x)+ l),x)

= F((y+2).(tg(y+1)(x)+ l),x)

and the assertion is proved. Take r2(y) = r((y + l)2); now f^(x) =

^ = g^(x) < h(x) if x > r(0). Since rg(0) > r(0), g^(x) < h(x)

if x > r2^0^'

if g^(x) < h(x) whenever y > r2(y), by substitution in the

inequality asserted above

7 jft 156
7 $

g(y+1^(x) < F((y+ 1) *(th(x) +1), x) for x > rg(y)

< F((y+ 1) •(•>/"(r-1(x)) + l),x)

< F(r_1(x),x) for x >r2(y+l)

= f(r-1(x))(x)

The third line follows since it is easily shown that (y+ l)•(^(r"1(x))+l)

_ 1 g
< r (x) when x > (y+2) ; but since r is increasing, r2(y+l)' =

2 2 — 1
r((y+ 2)) > (y+ 2) . Then since rr (x) < x if x > r(0), and since

for all y r„(y) > r(0), f^r 1^x^(x) < h(x) by the assumption on r.

Therefore g^(x) < h(x) for x > rp(y); that is, g <r h. Lemma
eL *2

(14.13) is proved.

(14.14) Theorem. Say 2 < P < Ot < <p°. Then there is a

family D of classes of functions such that £

(i) If D e D, L c D c

(ii) D has a dense, linear ordering under set

inclusion; i ,

(iii) If D e D, 0 is fully closed and closed

under limited recursion;
*»!

(iv) If 0 , £)9 e D and <= £>2, fig contains a

universal function for fi^. «
Proof. By Theorem (l4.9), choose an honest, increasing function

(x)
t^ e so tp(x) > 'fp(x). Let tQ(x) = t£ (x); then ta is increas

ing, tQ e £a, ana, by Theorem (l4.8), ta is honest. Finally,

^r ta via = y+i-

Then by Lemma (14.13), there is a. set T of honest, increasijp;

functions, all of which bound tp, all of which are in S^, and which

has a dense, linear ordering under < . For each function t e T wi£h
I

t /ta and t f tp, put £>t in D, where £>t is the closure under sub

stitution and limited recursion of {t, s, max); here s is the suc

cessor function, s(x) = x+1. Each 0^ e D is fully closed by Theorem

(c)
(14.7). Clearly every function in is bounded by t for some

fixed c, so by definition of <, if < tg then 0^ C thus^jl'is

densely ordered. Finally, if £> e D, ilp c D c ̂ and for each t e T,

tp < t.

Finally, if 0tg e D and 0t]L c 0t2, t± < tg; thus

U (e,x,t?(x)+ e) is universal for the one-place functions of 0^, by

exactly the same arguments as Theorem (6.12). This proves (l4.l4.iv)

VV

(14.15) Theorem. Say 2 < P < a < 03°. Then there is an

infinite family I of classes of functions such

that

(i) If <7 e I, c= 3 c fa;

(ii) The members of I are pairwise incomparable

under set inclusion;

(iii) If <7 e I, <7 is fully closed and closed under

limited recursion;

(iv) If =7, , <7^ e I and 4 <?2> there is a charac-

teristic function in <7^- <7^.

r - •" .

''4V#v . . -U;:

6 - 1

Proof. The construction of Theorem ^l4.l4) yields an infinite set

T of functions al l of which are honest and increasing, and such

that T is l inearly ordered by •<; a lso, T c L and each member of v '

T increases faster than any member of

For each t € T, let d^_ be the function

Jt(x) if x e range t

otherwise
d t ̂ x ̂

Each d f is honest , for

[d t(x) = y]
([t(x) = y] if Z.=0[t(i) = x] ^ 0

\

[y = 0] otherwise

Then for each i... e i , let the set a7+ be in I , where is the closure

under l imited recursion and substi tution of {d^, f^, max, s}. As

before, s is the successor, function. (l4.15.i) and (l4.15.iii) are

immediate.

t
Now consider a set e I . We assert that each function f e a7

(b f) ,-j
nas constants a f and b f so that n_^(y) < f^ t (y), where n^(y) is

the function giving the number of n-tuples (x) with max{x } < y and
(af) n n

such that , f(x f i) > f^ (y). That is , n f(y) is the cardinali ty of the

set

r~ r — . . (a f)
[xn : max(xn) < y & f(xn) > fp (y))

Such constants certainly exist for f„, max, and s; and the cardinali ty

of

159

{x: x < y & d t(x) > f f l(y))

is no more than t"1(y) +1 < fgt_ 1(y)- If f is defined by l imj |ed •|3

recursion from functions for which the assert ion above holds, the

assert ion holds for f immediately by the bounding condition. If

f is defined by substi tution, f may be writ ten

f(xn) = h(g1(Jn) , . . . ,gm(5n))

and where we may assume there are suitable constants

b^ so that the assert ion holds for h, §;}y** ,->£ r iy ^ taking s j^ e of

g , . .^g^ to be constant or identi ty functions, any instance of sub

st i tution may be writ ten in this form.

Let a = max{a1 , . . • ,a }, b = maxO^,. . . ,bm) , and say a- = \m a-g-

If max{x t } < y, f(x r) > f£ a \y) only if al l of g^x^, • • • ̂ (x^ a r e

bounded by fg ° (y) but h(gj_(x n) > • • • • '§ r I /x n^ ^ "^p (y) > o r o n e o r

(a)
more of g (x l) , . . - exceeds fg § (y). In other words, the

number of n-tuples (x^) with max(x^} < y and such that f(x^) ^-^p (y)

is no more than n f(y), where

n f(y) = fp^' t"1 fp " g ' (y) + 4=1 4 l v x(y)
>\i- l S^e), , J1 Jb i t"l ,

Now by examination of the construction of the function t € T in

Lemma (14.13), for each .such t there is a non-decreasing function

r so t(x) = f i r^x))(x). Then for any c,
P

4 ch (x) = 4 c + r (x))(x> ^

(c+rff ' (x)) . .
< f P (x)

= tfgC ̂ (x)

By applying t "to both sides of this inequality,

t"1 f^t(x) < f^(x)

Putting t-1(y) for x,

t"1 f^c)(y) < fpC)t_1(y) for y > t(0)

By choosing b sufficiently large, then

t"1 fp g)(y) < f^t'ty)

But then , .
(b +b) (b) (l^.) _-i

nf(y) < f^ t (y) + m-fp t (y) < f^ t (y)

for suitable b^; this concludes the proof of our assertion. The

next step in (l4.15) is to show that if t, u € T and t < u, there

are no numbers a, b so nd is bounded by fi ^u ; we conclude tftt
u

d t <? • Because fc < t, for each number a there is a constant c
t T u P

so the cardinality of

[x: x < y & dt(x) > f^Cy)]

(2)
is greater than t (y) - c. Given any b, choose yQ so u(yQ) > t

+ c and t(yQ) > this is possible because f^ < t < u. ̂Then

ndt(u(y0)) > t-1(u(y0))" c

> t(yo) + c - c

> 4b)(yo>

= f^u~1(u(yo))

ft1) — 1
Therefore; for no a, b is nd^ "bounded "by f u ; hence d^ ^ 7^.

(c)
On the other hand, every function in 7^ is hounded by t, for

(c)
some c; but if t < u, d^ is not bounded by tv for any c. Thus

d t <7 ; and so 7 and 7 are setwise incomparable, proving (jfc.15.ii)
u i t u z w

(l4.15.iv) will follow immediately from the next theorem, which is

interesting in its own right.

(l4.16) Theorem. Let C and £> be fully closed classes

containing £0 with C - D -j 0. Then there is
I I '

a characteristic function in C - D.

Proof. Pick an arbitrary constant a and let f*(x,b) be the silliest

number k so k is unequal to all of U-^(0,x,^8"^ (max(x,b))),

U1(l,x,f^a\max(x,b))),. . .,U1(x,x,f2a')(max{x,b))). It should be clear

that f* e and f*(x,b) < x+2.

Now take any function g e C - D, and let he C be a bound on

the computation time of g. Then put f(x) = f*(x,h(x)); f e C by

closure under substitution. We assert that if e^ is any index for

f, $e^(x) > ft (max{x,h(x)}) for almost all x. For if this ̂

false, there is an. x > e1 so $e (x) < (max{x,h(x)}); then

f(x) ̂ U (e., ,x,f^(max{x,h.(x)))) by definition of f, but f(x) =

U1(e1pc,fla^(max{x,h(x)})) by the properties of U^. This is a .contra

diction.

Now let c(x,y) = [f(x) = y]; c e C is immediate. Consider the

following procedure for computing f, given c: successively compute

162

[f(x) = 0], [f(x) = 1],...,[f(x) - x + 2]; one of these must yi^d

1 as a result. Let f(x) be the y for which [f(x) = y] = 1. If* e^ ,

is an index for c, the number of steps required is bounded by

f^(max{x, Z <5e (x,y)))
y < x + 2 2

for some fixed d. Then if ®e (x,y) < h(x) for infinitely manyx,

the number of steps required to compute f is less than

f^ (max{x, (x+3) -h(x)}) for infinitely many x. But we showed above

that any machine for f must require at least f^a^ (max(x,h(x)}) ̂steps

for almost all x, where a was arbitrary; we conclude by this reductio

that every index eQ for c has $e2(x,y) > h(x) for almost all x. Then

if c e 2), a function bounding h would also be in D by the full closure

property of D, and hence g would be in £>; but g e C- D, so c ^ D.

Then also c* e C- D where c*(x) = C(TT1(X) ,7T2(X)), for c(x,y) = c*(x(x,y)),

which proves (14.16).

Theorems (l4.l4) and (l4.15) may reasonably be interpret£ as

casting doubt on the naturalness of the classes For if, as im

plied by Theorem (l4.l4), there is a dense, linearly ordered hierarchy

of classes of functions whose union is the multiple recursive functions

such that all the classes have the same strong closure properties as

the the themselves no longer seem so significant. For example,

given the dense hierarchy, we can find a subordering of any denumera-
m

ble order type we please. Theorem (l4.l4) even implies the existence

of uncountably many fully closed classes of multiple recursive functions

with a linear set theoretic ordering. Likewise, Theorem (l4.15) can

b ' ^

be extended to yield uncountably many incomparable classes 'which

are fully closed.

One development is possible which would restore the importance

of the classes . Suppose C is any fully closed class of multiple

recursive functions. Say C[0] = Cgiven C[a] for a < 0)°, let

C[a+aJJ] for n > 0 be the closure under substitution of C[a] and

all functions obtainable by (n + l)-recursion from functions in C[a].

Then it seems possible that for any such C, there are a, (3 < (J0° such

that C [a] - that is, by applying multiple recursion several times

to any "in-between" class C, eventually one of the classes is

reached. This possibility has not been seriously investigated except

by trying the few examples whi'ch suggested it.

§15. Blum has recently published some remarkable results on the

complexity of recursive functions [4]. One of his theorems is the

following.

(15.1) Speed-up Theorem (Blum). Let r be a total recursive

?
function, r:N -> N. Then there is a total recursive

*
characteristic function f with the property that to

every index i for f there corresponds another index

j for f such that for almost all x, 0.(x) > r(x, $.(x)).
-L J

Blum's theory is machine independent. For example, he does not

demand of the step-counting function $.(x) that it actually give the
J

steps used by the j-th machine with input x, but merely that for each

j and x that <J>.(x) converge if and only if cp.(x) converges, aifl that
J. 0

the predicate [0.(x) = z] be recursive. As we have seen, if 3>
0 - <J

measures the actual number of steps taken by a Turing machine,

[*,(x) = z] is in , that is, an elementary predicate.
J 4 "

The Speed-up Theorem implies, for example, that there is a re

cursive function f so if cp^ computes f, there is another index j for

<Xu (x)
f so that 4v(x) < 2 x for almost all x; that is, given any machine

for f there is another machine which computes f and halts in ^Ly

about the logarithm of the number of steps required by the first ma

chine. However, as Blum shows, the faster machines cannot in general

be discovered effectively.

Blum also proved a more powerful version of the Speed-up Theorem

which shows that the r of Theorem (15.1) can be as large as <$>. itself. i

15.2) Super Speed-up Theorem (Blum). Let g be a total

recursive function. Then there exists a recursive

characteristic function f such that

(i) If i is an index for f, (x) > g(x) for

almost all x;

(ii) To any index i for f, there corresponds an

index j for f such that <D. (x) > 4>-M for

almost all x.

This theorem has the Speed-up Theorem as an immediate conse-

quenc e. ^

It might be thought that the function f whose computation can

be sped up must be enormously*more complex than the r of Theorem

(15.1) or the g of Theorem (15.2). By agreeing that $j(x) has its

natural interpretation, the methods of Lemma (14.13) may be adapted

to prove a stronger version of the Super Speed-up Theorem in which

f is> in a reasonable way, only slightly more complex than g, and
»

that there are functions lying very low in the hierarchy whose

computation can be sped up quite considerably.

(15.3) Theorem. Let g be an honest, increasing function

with g(x) > 2X, and r be an unbounded, nondecreas-

ing. recursive function. Then there is a recursive

characteristic function f such that:

(i) If i is any index for f, <£.(x) > g(x) for

almost all x; Iff

(ii) There is an index j for f such that

<t>.. (x) < g(r(x))(x) for almost all x; •
J

(iii) For each index i for f, there is smother

index j for f such that for all c,

$.(x) > 4A^(x) for almost all x.
i J

Proof. 'The proof consists of a main Lemma (15.4), which is a strengt
h

ening of Blum's lemma for the Super Speed-up Theorem [4, p.330], then

the construction of f, and finally several lemmas on the properties of

f. Two of these latter are slightly modified versions of Lemmas 1 and

2 used "by Blum [4, p.327].

(15.4) Lemma. Let g and r satisfy the hypotheses of Theorem

(15.3). Then there is a function q (x) such that Q

(i) For each s and all x, q(x + l)>q (x); m s s

(ii) For each s and all x, q ,n(x) < q (x); SH--L S

(iii) For all s and c and almost all x,

44(x) < is(x)i
(r(x))

(iv) For all s and almost all x, g (x)

> <ls(-x') > g(x)'»

.(v) As a function of s and x, q„(x) is honest.

Proof of Lemma. By (l4.9), choose an honest increasing function "b

so for all x b(x) > x2, b(x) > g^(x), b(x) > g^ r(x)+1) (x), and

such that b ^"(x) < r(x) for almost all x. Then let t (x) = b*"2s+2^(x)

As a function of s and x, t (x) is honest by Theorem (l4.1l). Then

t-1(x) is in where by t~J"(x) we mean the greatest y so t (y) <
s i s &

if y exists; t/~(x) = 0 if it does not. Then say -1

's

q„(x) = gv s v • '(x)
(t~ (x)+l)

s
J#

Parts (i), (ii), (iv), and (v) of the Lemma are immediate. Now if

x > t,(y), g^(x) < g(y+1^(x) < qs(x); thus g «<t qg. Since
s o

2
t (x) = hht (x) = bt b(x) > q t (x), by the argument of Lemma
s+1 s s — s s

(1^.13),

q < i Hs+1 r s S

p
where r (y) = t ((y+l)"). This proves part (iii) and thus Lemma

S S y&C'-
%

(15.4).

The proof of (15.3) now continues with the construction of f

First we define a function f and an associated set K^v each of

which depend on the input x. Given x, compute f v(x) Kuv(x)

as follows.

Set K (-1) = 0
uv r

If x > 0, find the smallest k, k < x,

so that all of the following are true:

(a) x < v, or x' > v and k < u;

(b) $R(x) < qk(x);

(c) k K (x - 1) . v ' T uv

If such a k exists, set K (x) = K^(x-l) U {k},

and put .f v(x) = 1 - \(x); if no such k exists,

put Kuv(x) = Kuv(x- 1), fuv(x) = 0.

168

Then the function f of Theorem (15.3) is fn. We can also construct
uu m

f more formally, so that it is clearer that it has the properties *
uv

we ascribe to it. To simplify the presentation, we will use certain

notations not yet introduced. If P(x^,y) is a predicate, the pre

dicates (3 y) _P(x ,y) and (Vy) P(x ,y) are obtained from P
x n ^ x n

"bQun^-e(^ quarrtification; the meaning of the former, for example,

is (3 y) (y < x & P(x ,y)). The predicates of Z9 are closed under n u

bounded quantification; this follows immediately from the closure of

Zn under limited sum and limited product. The predicates of Z^ are

also closed under the Boolean operations &, v and Finally, Z,̂

is closed under limited minimization: obtaining [ik^. ̂ P(x^,k) from a

predicate P, where the notation means the least k such that k < x and

P(x ,kj is true; or zero if there is no such k. The closure of Zn n ' d

under this operation follows directly from the closure of Z^ under

limited recursion. Grzegorczyk discusses all these operations more

fully [9]-

Construct functions c, K*, f* as follows.

c(u,v,b,K,x) = pk< (((x < v) v (x>v&k>u))

& (3 y)<b([qk(x) = y] & (3 w)< y[*k(x)=w])

& (Vi)< x [(K). 4 k + 1]

v [k = x + 1]}

-)
f 1 if c(u,v,b,l,0) = 1

L
K*(u,v,b,x) if c(u,v,b,K*(u,v,b,x),x+l) = x+2

K*(u,v,b,0)

otherwise

K*(u,v,b,x+l}=r

KMu,v,b,x).p^(u'v'b'K*(u'V'b'x)'X+1) otherwise
-v •

X X+l
K*(u,v,b,x) < II p.

i=0 1

f*(u,v,b,x) =
0 if (K*(u,v,b,x)) = 0

x

- U, ((.K*(u,v,b,x)) - l,x,b) otherwise
f x

fuv(x) = f^U^q^v) + qjx^x)

If, in the informal algorithm, K (x) - \v(x" l) = we will say cpk

is spoiled for x in K_. Notice that if cp^. is spoiled for x in K^,

then f (x) = 1- eg (x) ̂ cp (x) . (Blum uses the term "cancelled".)
UV A K.

It is clear that f* defined above is elementary. It is not so

clear that f(x)=f*(u,v,v) + qu(x),x); nevertheless, we will omit

the detailed proof. The representation of K used by K* is as fol

lows: if cp. has been spoiled for some y < x in K , then the prime
ly — U.V

k+1
power decomposition of K*(u,v,q^(v) +q^(x),x) contains a factor p^r

and no other prime in the factorization has an exponent k+1. If cp^

has not been spoiled for any y < x in , the prime-power factoriz

ation, of K*(u,v,q^(v)+q^(x),x) contains no prime with an exponent of

k+1. The crucial fact which assures that f* has the correct proper

ties is that in the calculation of f^ for u < v, we are called upon

to know the values of q^(x), <lu+]_^x^r•* " ' ,c^x^X^ ^ X ^ V' an<^

q (x) , q (x) , . . . , q r (x) i f x < v . I n v i e w o f (1 5 . 4 . i) a n d (I 5 . 4 . i i) ,
0 """1 x

all of these are bounded by QQ(v) + < 1 u (x) = ^ ' T h e n s i n c e k < x , t h e

truth value of (dy)< = y] & O w)< yl\(x) * wl) is the saine

as that of \(x) < \(x) •

(15.5) Lemma (Blum). For each u there exists a v such

that f = fnr = f•
uv 00

Proof. For each u there are only finitely many k with k < u, and in

particular there are only finitely many cp^. with k < u ever spoiled for

any x in KQn • Choose v > u so v bounds all x such that k < u and cp^

is spoiled for x in KQ0.

Now K (-1) = K (-1) = 0; assume x > 0 is the least number so
00 1 uv ' r ~

K (x) 4 K (x) . T h e n c l a u s e s (b) i n t h e d e f i n i t i o n s o f K n (x) a n d
00 ' u.v uu

K (x) h a v e i d e n t i c a l t r u t h v a l u e s f o r e a c h k j l i k e w i s e f o r c l a u s e s
uv

(c) . B u t t h e n i f i K ^ (x) 4 ^ 0 0 ^ X ^ ; m u s ^ x — v a n c ^ t h e r e

is a k < u so <tR(x) < q f c (x) and k \v(x -l) = KQ0(x -l). But then

cp^. is spoiled for x in KQQ(x), and by choice of v, if k < u and cp^. is

spoiled for x in KQ0 then v > x. Since by construction of v., x > v, we

have a contradiction. Therefore, we have shown K^^(x) = ^00^X^ "^°r

all x, and thus f = fQ0-

(15.6) Lemma (Blum). If qb = then 1l (x) > qt(x)

for almost all x.

Proof. Suppose for contradiction that there are infinitely many

x = x , x, such that 0.(x.) < q.(x.). Since i is a fixed number
or i j - i a

there are only finitely many k with k < i; therefore, there

must be a number x which bounds all those y for which there exists a

k < i such that cp, is spoiled for y in K0Q. If is the least of

xr , xn , . . • which exceeds this x, the conjunction of clauses (a), (b)

and (c) in the definition of f.^ = f is true for x = k = i and

for no smaller k. Thus cp. is spoiled for xr. But then cp^x^ ± f(xn

a contradiction.

(15.7) Lemma. There is an increasing function h so for each

u, there is an index j for f such that

hqjx) > 4.(x)

for almost all x.

Proof. Recall that f (x) = f*(u,v,qQ(v) + q^x) ,x) and f* € .

By the.honesty of q and q^, there are Z^ functions tQ and t^ so

the computation times of q and q^ are bounded by t0(v,qf(v)#

t.1(u,x,qu(x)) respectively; also, the computation time of f*(

is bounded by tf(u,v,z,x) and tf is in Z2. Thus there is an'-T^.

function t so t is increasing and t(u,v,q„(v)+ q^(x),x) bounds the

computation time of f*(u,v,q^(v)+ q^(x),x). Let h(z) = t(z,z,2»z,z)

Given u, use Lemma (15.5) to find a v so f^ = f^ = f, and let j

be the index of f . Then uv

4

t(u,v,qQ(v) +qu(x),x) > $j(x)

for all x. But for large x, lu(x) exceec

therefore for large x,

h(qu(x)) = t(qu(x),qu(x),2-au(x)"j

> t(u,v,qQ(x) + q^(x),xj

> 0 .(x)
J

which completes Lemma (15.7).

Proof of Theorem (15.4) (concluded)

index for f then for almost all x,

.(x) > q,(x)

Iif i is

%\

By Lemma (15.4.iii), for every d and all

».(x) > q^>(x)

Since hy hypothesis q.. +. >2 , if h is any

large enough so

i[!i(x) > t+ih vih • • • %+ih(3f|
In particular, if h is the function of Lemma (15.5|

to find an index j for f such that h(q_.+1(x)) qaBi

x; then

>. (x) > $>f.C^(x)
1 cJ

for each c and almost all x. This c

follows from Lemmas (15.6) and (15.4

Lemmas (15.7) and (15.4.iv). Thus (

Theorem (15.3) is stronger than

in two ways: first, as mentioned, we

hie of being sped up lie low in the

by taking g(x) = 2X in (15.3). 3econ<
(

have an index j for f so SuU) >

x; Blum's theorem had a so $u(x

Thus, as an example, lefcgC

exists an f so if i is any inde^j

j for f such that all of the in|;

4 .(x) < '%• ^(x)
3

$. (x) < (x)

$. (x) < (x)
J

hold for almost all x. Also, f €'
y- . -

decreasing, recursive, unbounded func

creasing, then f can be computed in a

[1]

[2]

[3]

M

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Ackermann, W.,J
Math. Anna]

Axt, P., "itel
Math. Soc.i

, "Em

,

%

Zeit. f. m
pp. 53-65.

Blum, M., "A
recursive
pp. 322-336®

Cleave, J. P., f
Zeit. f. mal
pp. 331-345]

Cobham, A., "Tl
Proc.. 1964 ,1
Science, Njj

Bavrs, M.,
York (19J

Godel, K.,
Mathemati
u. Physil

Grzegorczyk,
Rozprawy

Kartman,'I. ar
plexity of a'H
(1965), pp. 2<|

Kleene, S.C., "C^
Math. Annals

Princeton,

functions

Meyer, A. R.,:
Notices Ami

*-i

• W m
r.:

*< * •' t.-7 f

• f.
• Ifliikv All*

f. '

•V"

'' k
•*. «Js

m.

1 ? "

. I mkfA

' " '

• " l-.iy '-fe-
• v A*' .i>

. . •• ao ' ••

a a v-

• B® <
: ;'l <i,.y • j-

" k ,]

A. *4

[15]

>6]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Meyer, A. R.
and. progrx

programs
Thomnsoii-

Minsky, M.
Prentic<

Myhill, J.
60-165,

Peter, R.,
113 (l<

Ac kerne
Matheme

London
Funk til

Ritchie,
functll
12, 3

Ritchie,
Trans.

on Acke!
pp. 102;

Robhin, J. w
Princetoi

Shepherdson,
functions',!

Suppes, P:

Turing, A.M.
the Ents<
42 (1936

