DRAFT

Program Structure
and

Computaticnal Complexity

Dennis M, Ritchie

**' A

)

SYNOPSIS

The major purpcse of this thesis is to show that when the
language in which computations are described is restricted suitably,
there can be an effective relationship between the complexity of a
program and that of the computation it describes. We give two
examples.

The first example is that of Loop programs. A Loop program is
a finite sequence of instructions for manipulating non-negative, un-
bounded integers stored in registers; the instructions allow incre-
menting registers by unity, setting registers to zero, and moving
the contents of registers. The only control instructions consist of
Loops; there is a kind of Loop for each number n > 1. A Loop with
n = 1 causes the execution of a portion of the program to be repeated

a predetermined number of times equal to the current contents of a

register. Loops may be nested, one inside another, to any fixed depth;

but Loops with n > 1 are defined so as to make a Loop of type n+ 1

‘equivalent to a variable depth of nesting of Loops of type n.

. . . @
Each Loop program is assigned an ordinal &, where O < a < w,
which is inftended to be the measure of complexity of the progran.
The ordinal assigned to a program depends effectively on the progran,

and meagures the depth of nesting of the various kinds of Loops.

7y

The idea of Loop programs whose only Loops have n = 1, although

original with the author, is not unique to nim; for example Hinsky

)

[}

17 . 212-215] discussas briefly the same idea. Some results o
k4 &

57

the theory of such Loop programs have been announced by the author
[22] and published by Meyer and the author [15,16]. The generaliz-
ation with Loop instructions for each n > 1 is believed to be entirely
new.

For each ordinal @, 0 <& < aei we define a function fa. The
function is recursive, strictly increasing, and if o > B, fa majorizes
f.,. The definition of ﬁi for finite ordinals & is the same as the fn

g

of [15,16] and in general is a modification of the function Wa used

~ by Robbin [25] for much the same purposes. The major results on Loop

programs can be stated as follows: for each Loop program’g'assigned
ordinal & there is a number gﬁ’p effectively derived,from'g such that
P with inputs x,,...,x requires no more than Q;P)(max{xl,...,xn})
steps to halt (Theorem (3.6)). The notation Iép) means fa composed
%ith itself p times. There are some programs P assigned ordinal &
which do in fact require fé?)(x) steps to halt when given input x
(Theorem (4.7)). A precise definition of the number of steps used
by a program is a by-product of a formalization of Loop programs pre-
sented in §2. |

Further results on Loop programs, and much of the rest of the
thesis, use heavily the notion of computation-time closure. A set
of functions is computation-time closed when both of the following
are true: if a function f is in the set, a function b is in the set
where b bounds the time regquired to compute £ on a Turing machine;
if b is in the set and b bounds the time required +to compute f on a

Turing machine, £ is in the set.

52

ot

If £u is the class of functions computable by programs assigned
an ordinal less than or equal to Q, eaéh %a for @ > 2 is computation-
time closed. This allows us to show the following: each class Qa for
a > 2 is closed under limited recursion (Theorem (6.8)); each class

£ for o > 2 can be characterized in arithmetic terms, without refer-

ence to Turing machines or Loop programs (Theorem (6.3)); if a pro-

#(p)

o steps as a function of

gram P assigned ordinal & requires only
its inputs where B < q, then‘g can be rewritten effectively to yleld

a program‘z‘-which is equivalent to F but is assigned ordinal B. How-
ever, 1t 1s in general undecidable whether these hypotheses hold for

P (Theorezn (12.8)).

The second example of a restricted program language is that
describing the multiple recursive functions [19,21]. Each multiple
recursive function can be defined by a formal system of equations which
can effectively be assigned an ordinal O <<§D. If Qa is the class of
functions defined by systems of equations assigned ordinal <&, then
(1éiﬁn Ra is the class of n-recursive functions; Péter shows [21] that
the l-recursive functions are the same as the primitive recursive
functions. Much the same theorems are proved for ﬁd as for Ea. In

particular, @3 is computation-time closed for o > 2 (Theorem (9.3));

if f ¢ ﬁa, f(xl,...,xn) can be computed by a Turing machine in

l+a‘maX{Xl""’Xn}) steps for some p which is effectively found from

the recursion equations defining £ (Theorem (2.1)); f € ﬁd (Theorem

14+
(8.3)). These facts alone show: for a > 2, El%x = @y (Theorem (10.1)).

53

The same kind of techniques are applied to the hierarchies of
Axt [2], Grzegorczyk [9] and Robbin [25]. All of these hierarchies
are shown to be identical to a portion of the %2 and ﬁa hierarchies,
and thus to each other. Specifically, if‘@a, a < w, are the Axt

 classes, %1 = @a for o > 4 (Theorem (10.4)); if 88, @ < w, are the
G

Grzegorczyk classes, Ea = €d+l for 2 < o <w (Theorem (10.9)); if
€, <cﬁn, are a trivial modification of the Robbin classes, £ = g

(0 Q a

for a > 2 (Theorem (10.6)). All of these results are straightforward
using computation-time closure. Not all are new, however. According

to a personal communication, Axt showed@ = S a> o, O ~

ol for
but used a different method. Meyer showed the same thing independently

[14], using a method like ours. ~Robbin [25] showed that U n Sd is the
a<w

same as the class of n-recursive functions; however, he did not sub--
divide the latter class after the manner of our @3. It should be
mentioned as well that Robbin established the identity of the h~recﬁr$ive
functions and those functions defined by ordinal recursion over certain
"standard" well-orderings of type dw " and also the classes of functions
occurring in a restricted version of the Kleene subfecuisive hierarchy [13].
It seems lixzely that by closer study equality of these‘classes could
be establishkzd at each ordinal.

III, and IV studéé% Loop programs and multiple re-

-———
T

i1,

-

Chapters
cursive functions; Chapter V contains three applicati of the tools
developed in the earlier chapters. The most important of these; as we

have indicat=2d, i1s the 1d=a of computation-time closure. An early

st

3

S

appearance of this idea, without an explicit name, was in R. W. Ritchie
[23], who used it to characterizing classes which form a hierarchy of
elementary functions. Cobham [6] pointed out how each Grzegorczyk [9]
class could be characterized in terms of the property, after the manner
of our Theorem (6.2), which states ;a is precisely the class of functions

computable by a Turing machine in a time bounded by for some p.

f((}p)
As we mentioned, Meyer [14] and also Robbin [25] used the idea as well.
Chapter V, §13, discusses unnested and bounded n-recursion [20,
21] and their relation to the Ed classesjthus strengthening some theorem}
of Péter [20,21]. §14 examines the properties of computation-time closed
classes of functions 1in general; its major results are that each %a in-"
cludes a seéuence of classes, all computation-time closed and closed under
limited recursion and substitutionswhich is densely ordered under'setv
inclusion (Theorem (14.14)); also, Ea includes an infinite sequence of
classeg with the same closure properties but pairwise incomparable under
set inclusion (Thedfem (14.15)). These two results wers obtained in
collaboration with Albert R. Meyer. §15 applies Lemma (14.13) to ob-
tain a strengthened vefsion of the Super Speed-up theorsm of Blum [4].
Among the consequences of cur Theorem (15.3) is that there are functions
lying very low in the Sa hierarchy whose computation can be sped up,

in Blum's sense, very considerably.

55

I. INTRCDUCTION

§o. Predicting how long a digital computer with a glven program
will require to process its inputs is sometimes impossibly difficult.
This difficulty can be partially explained as a manifestation of

the thecrer that thers is

w3

o effective method for bounding the com-

pubation fime of a Turing machine by inspection of the machine, or

for bounding th

(¢4

running time of a program written in any language
capable or describing all recursive functions.
In cther worids, any formalism which can describe all terminat-

ing computations must describe some nonterminating computations, and

there is no genzrally effzctive way of distinguishing the descripiion

. ting computation. In consequence, {77
J y
~rere can b= no satisfactory way of relating the complexity of a pro- -

gram in a sufficliently powerful language to the complexity of the
operations it carries out. This fact is borne out most strongly bty

the existence of a universal Turing machine: a fixed program, actually

quite small, whosze behavior is as difficult to predict as that of

e

e

£ this method are the linear bounded automata of Myhill [18], the
T{n) countable sequences of Hartmanis and Stearns [10], and the pre-
dictably computable functions of R. W. Ritchie [23]. Each of these

ders computations by a Turing machine where there is

),J.

theories cons
a bound on the time {or the storage space) allowed for computation.
The bound is imposed from outside simply by restricting attention
to those ccomputations which satisfy the bound.

By contrast, the apprcach of this thesis is to restrict the
language in which programs for computations are expressed so that
infinite computations are no longer possible. The first result of
this restriction is that there are indeed effectivély calculable

-

bounds on the describable computations, but the important fact is

2

tha* the existence of these bounds becomes a theorem not a postulate])
about the computations. It also becomes possible to do for. these
special kinds of programs what is impossible for programs in general,

namely to relate the complexity of a program to the complexity of

the calculation it describes; both kinds of complexity, of course,

1

have to be taken in the proper sense.

The major par®

H
N
5

nis thesis is the study of two examples of

or
Q

the technigie of restricting the language in which comnuta*ions are

4 4}!1 1\’ il ‘J[,w:
descrited; the remainder consists of several appraélatlons cf the e
~
tools develop-d In tne Tirst part. Before going into the specifics

ol the Swe sxarplos, we snouid discuss the possible forms of an

answer e Tas questlon: now does the complexity of a program relafe

J
2
1
’
.
)
.
N
4
!
A
)
~r

ation described by it?

W\

nanep s

It is not enough to say merely that there is an effective means i

| »

J of going from a program and its input to a number bounding the time i
. i ;

required to run ithe program with that input. For if we know the pro-

PR

gram eventually does halt, the effective method is simply the follow-

PR

the given input and measure the time required.

i

This method is not only foolish in a practical sense but (far worse,

from our point of view) uninteresting mathematically. A better way

3
R
»
[
¥
g

is to give the answer in terms of a known function. Thus if we had
a program with a single input parameter, we might be satisfied to

, s 2 .
know that for input x, the program would halt within x seconds. This

is the kind of result given for the program considered in this thesis.

On the cther hand, even this kind of answer has many practical

defencts. The trouble is that many simple programs can run for a long

time. Consider the following pseudo-FORTRAN program.

-

READ N

J=1 A ,

& Do 1-I=1, W+l f 4

1 T = g2#%7 \;’_’,_M 3 B §
" PRINT N S . oaex

e e e B

tines mean that 27 is to replace J, N+ 1 times.

=
AD
o
0
g
@
o
&)
I\
T
ot
Y
b
vt
]
o
b
mn
D
Lo}
[
m
3
[}
ct
4]
2}
(%}
W

ssociated with the variables

ilimited size. This program is an extremely

1T = &, several pages of paper are required to

, the known universe is totally

/=4 .

insufficient to contain the volume of paper required to write down J.
Thus the function of N which predicts the running time of .the program

must be very larze. 1In fact, it 1s proportional to

-~
L

heigsnt N

jaV]
[AV]
R

This example indicates that we must accept one of two things: either
that we agr=e tc treat programs whose running times are so incredibly
long as to preclude any practical application of the results developed,
or that we must throw out means of expression, like those in the pro-

gram above, which prograrmers could hardly do without. In either case

,-%
&

the fact must be faced that there can be no direct practical applic-
ations of the thecry. In the latter there is another difficulty. When
programs are restricted severely enough to make every prograﬁ h< in
ot time, the exact means of éxpression allowed to begin to
. have a major «Ifect on the time regquired: it matters a great deal, for

example, wnether multiplization is allowed as an elementary operation

or must be done in steps by means of repeated addition. In the case

cf real compuaters., of course, this is an important consideration. But

b
1
[
W
ot
)
4]
W
},«J
L5
0
D
b
£
T
A
i
]
D
o
)..J
o
kel
g
}..J
[
0
o
fJ
O
[
[
o'
&
ot
]
4]
o
ct
Pt
o]
(¢}
]
3
‘..l
<
ke
L]
@]
¢19]
[a
2
o

vy weem s Yy pm 1T - A, -~ 3 - ! = - Y 3
no programrer wotidld write, so 1t weuld be improper to claim

practical significance for our work merely because of this feature.

—

/=% .

On the other hand, the mathematical significance of the theory
~an only be enhanced when it is not model-dependent; that is when the
] details of the vasic definitions have little effect on the theorems.

Thus, in the prograns descrited below and studied in the sequel it

would make 1ittle dirfference if addition or multiplication were added

as elementary cperations. WwWe study two major examples of ways of

4

defining computatlions in such a manner that from a program one can

g

go effectively to a funchilon which bounds the length of the computa-

tion. The twc examples are Loop programs and definition of functions

by multiple recursion eguations; both involve computations far beyond

the capabtilities of real computers, but in return give rise to inter-
esting mathematical structures.

Loop prograne wxemplify the apprecach to the theory cf computability

)

introduced by Turing [23] in that a Loop program may be regarded as

a set of instructions *tc be executed by a sort of digital computer.
The Turing approach 1s iypified by the use of simplified models of
real compurters; 1t 1s probably the one most fregquently found.

A distinet althou

- equivalent version of the theory of computa-

bility iz the o2ne based on systems of Herbrand-Gddel-Kleene recursion

equations. zs presonted by Kleene in [11] and [12, §34]. Our second

example, =Tnz® of dofinizion of functicns by multiple recursion, bears
exactly the sam- relaflconsnip Lo definition by unrestricted recursion

z
Lo}
Q

Oy
[
3
2]
ot
O

programs in general: in each case the

} Y o +* .- - PN N e ey N -} - ~9 M - -3 : 2 3 4 .y -+
7 forms of - xprossicn are weakensd in such a way that infinite computa-
nicons becooe ol

N\
S\

P

A Ioop program is a sequence of instructions for manipulating
non-negative integers stored in registers; each register is capable
of storing an arbitrarily large number, and the number of registers
to which a program refers is fixed but unlimited. There are instruc-
tions for moving the contents of registers, for incrementing by unity,
and for setting registers to zero. The flow of control in a Lbop
program normally passes from one instruction to the next in sequence,
and the only way of affecting the normal flow is through the use of

Loops. A Loop is introduced by a LOOP instruction and terminated by

- an END instruction. Together these indicate that the section of the

program between the two instructions is to be executed repeatedly
some number of times. There is a variety of LOOP instruction% one
for each number n > 1; these are written LOOP(1), LOOP(2), etec.

Each kind of LOOP instruction names a register whose contents
control the looping. In the case of the instruction "LOO?(l) X",
for example, X may be any register name. - This instruction causes the
portion of the program between itself and its matching END to be re-
peated a number of times equal to the contents of X at the time the
LOOP is encountered; subsequent changes to X do not affect the number
of times the repetition occurs. Thus a Loop introduced by LOOP(1)
is entirely comparable to the DO loop of FORTRAN and to the most usual -
cases of the £g£ of Algol and the THROUGH of MAD. The similarity is
not accidental, for part of the motivation for the study of Loop pro-

grams 1s to study the power of this construction.

gt

J

Loops may contain other Loops; that is, Loops may be nested to
any fixed depth. This is the motivation for the existence of LOOP(n)
instructions for n > 1l: the effect of LOOP(n+1) is defined so as to
make such a Loop equivalent to a variable depth of nesting of LOOP(n)

Loops. In particular, the program

LOOP(n+1) X
Q

~

END

where n > 1, X is a register name, and‘g is a program, equivalent to
the program

LOOP(n) X
. X

LOOP(n) X

where x is the number in X initially; that is, we have a nest of
LOOP(n) Loops of depth x. There are no constructions in real pro-
gramming languages comparable to LOOP(n) where n > 1.

fo each Loop program an ordinal & is assigned, where O <<SD.
The ordinal is derived directly from the depth of nesting of the
various kinds of Loops: for a program without Loops, & = 0; if a

program is the concatenation of two programs with ordinals B, 71,

il

the ordinal assigned is « = max(B, 7T); if program Q is assigned

1]

ordinal 3, then program P

LOOP(n+1) X

8
END

for n > 0 and X a register name, is assigned o= B%—wnr Then, for
example, {5%; program which uses only IOOP(l) instructions is as-
signed a finite ordinal equal to the greatest depth of nesting of

Loops in the program. The ordinal assigned to a program is the

et

measure of complexity of the program.
The notion of computation by Loop program can be formalized;
a by-product of the formalization is a precise definition of the

running time of a given program as a function of its inputs. The

running time measures the number of-iddiﬁidual instruction executions
™ required to complete a program and in a sense the Justification for
introducing the somewhat opague formalism is to make reasonable the
claim that the complexity of afgalculation is measured accurately
by its funning time. ‘ N
The basic result on Loop programs is the Bounding Theorem (3.8).
We introduce for each ordinal ¢, o < dw, a function ﬁa as follows:

ifa-—-'o;

x+1 if x<1
fa(X) = ,
X+2 if x> 1

If o is a successor ordinal, ¢ = 8+ 1,

4
F

5 Fs
- 7

o(x)

where the notation £'>/(y) means £(f(...f(y)...)); there are x com-

positions of £. That is, fﬁ+l is defined from f_, by iteration. If

B
. P . . n+l
¢ is a limit ordinal, let B be the least ordinal so g = chn ,

where n > 0. Then

~n

w_x(X)

fa(x) = fﬁ«b

Thus at limit ordinals, f

o is defined by diagonalization over a

certain sequence (fBi} of functions where B, < B, < --- and sup{B,]
= Q. - The first few ﬁa are easy to describe:fl(x) = min(1, 2¥))

X
fz(x) = 273

fS(X) = 2°

The detalls of the definition of %1 are unimportant. For finite
ordinals, @ = n, ﬂz is the same as the fn,used in [15] and [16];
at limit ordinals, the definition is the same as that used by'Robbin

[25] for his functions W which play the same role as our 21' What

is important is that the ﬁa are easily defined and have pleasant

properties: each ﬁa ig a strictly increasing function, and if a > B,

f majorizes (bounds almcst everywhere) the funciion ..
a B
Given the function fa, the Bounding Theorerm is: if P is a pro-
ol

gram assigned ordinal Q, there is fixsd number p, effectively

w

found from P, such that the running time of P with inputs Xysee X,

is bounded oy féY)(max{xl,...,xn}).

By fixing upon oﬁe or more registers for input and a register
for output, we associate with a Loop program a function computed by
that program; the class of functions computable by Loop progfams
assigned ordinals less than or equal to ¢ is called %a. It is an
immediate consequence of the Bounding Theorem that every function
f e Ea has a p so f(xl,...,xn) < féP)(maX{xl""’%n})' Also, for

~ W . . oA L
each @ < @ there is a function fa € Ed so ?a(x) > gz(x); it is im-

N

mediate that the classes Ea form a hierarchy, for it is easily shown
that if o > B, ﬁa(x) > féc)(x) for each ¢ and almost all x. Already
several of the goals looked for in the study of Loop programs have

been achieved, for it follows first that every program assigned or-

dinal o consumes no more than f(p)(

N max{xl,...,xn]) steps when given

input x s X s and second that there are some programs assigned

17
ordinal ¢ which actually do require this many steps to halt. Thus
the ordinal assigned a program is a reasonable measure of the (po-
teﬁtial) complexity of the computation degcribéd by the program.

The further study of Loop programs, and in fact much of the re-

mained of the thesis, is heavily concerned with the property of com-

putation-time closure of a set of functions defined as follows: first,

when a function is in the set, 1t can be computed by a Turing machine

in a number of steps which is bounded, as a function of the inputs, by
another function in the set; and second, if a bound on the computation

time of a function is in the set, the function itself is in the set.

Il

j : Each class a for @ > 2 is computation-time closed. The first require-

ment 1s met by combining the Bounding Theorem with a demonstration that

a Turing machine can simulate an arbitrary Loop program while coﬁ-
suming a number of steps which is an Ez function of the running
time of the Loop program; the second by finding a Loop program
which simulates a Turing machine calculation carried out for a
given number of steps, and then substituting the known bound on
the length of the computation into the simulation program.
Chagvar

The computation-time, of fd leads immediately to several
theorems; for example, if it is known that a program assigned or-
dinal @ actually has a running time bounded by féc) where 2 é B <a,
the program can be effectively rewritten so it is assiﬂged ordinal B.
It is also shown that each class Ea, o 2'2,?is closed under the oper-
ation of limited recursion (see Grzegorczyk [9]); that esach class %x’
Q > 2, can be characterized in purely arithmetic terms, without re-"
ference either to Turing machines or Loop programs; and that every
primitive recursive function is in Ea for scme finite ordinal ¢.

Our second example 1s that of the multiple recursive functions.

These are, for our purposes, precisely those functions definable by

certain formal systems of equations. We imagine a language contain-

ing symbols for constants, variables, function letters, and appropriate

punctuation, combined in such a way as to represent definitions of
effectively computable functions. This language is simply a formal
version of the informal definition of functions by means of various
kinds of recursion, including, for example, primitive recursion.

Unlike Xleenz [11, 12] however, we place certain restrictions on the

form of the systems of equations. In particular, an equation defining

T

4

a function in terms of already-defined functions nmust be an instance

of one of several schemata, namely those of substitution and n-

recursion for some fixed integer n > 1. Substitution simply means

obtaining a new function by means of explicit transformation or
composition of cother functions. The schema of n-recursion allows

defining a function f(x ,...,xn) in terms of known functions and

1
values of f itself at arguments zl,...,zn such that the n-tuple
ZyreeesZy is lexicographically less tﬁan XyseresX The wvery form

of the schema of n-recursion is such as to ensure that the set of
equations constituting an instance of n-recursion actually does de-
fine a function effectively.

An ordinal o < ae)can be effectively attached to each formal
system of equations satisfying certain purely syntactic requirements.
Letting Ra be the class of functions definable by systems of equations
with ordinals less than or equal to , another hierarchy results which
is equivalent to the following: ﬁo consists of the closure under sub-
stitution of the constant and identity functions;”ﬁd for every o> 0
consists of the closufe under substitution of all functions f for which
there exist B and n so @ = B+a and f is definable by (n«+l)—recursioﬁ
from functions in f,.

)

For each n > 1 the functions in ﬁd are called n-recursive;

V n
a<w
functions which are n-recursive for some n constitute the multiple re-
cursive functions. The nction of multiple recursive function is a ge-
neralization of that of primitive recursive function, which was intro-

duced explicitly by 38del [38]; as Péter [21] shocws, the l-recursive

m—

L

functions are identical to the primitive recursive functions. Ackermanh

[1] first introduced a 2-recursive (also called double recursive)
function and used it to show that there are effectively computable
functions which are not primitive recursive. Péter [19,20,21]
studied the whole class of multiple recursive functions.

Our examination of the multiple recursive functions uses much
the same methods as those applied to Loop programs. A Bounding Theorem

(p)

for Rd establishes that each function in ﬂa is bounded by f]
LR
some p which can be found effectively from the formal system of

for

equations defining the function; on the other hand, fl«a € @a for

a > 1. Likewise, each class f, fof a >2 is compuﬁation—timé cldééd;
this is established by considering the number of steps a Turing
machine would require to carry out the evaluation of a function from
its defining equations. Then the theorem £l+a = Rd for ¢ > 2 is im-
mediate. For if f e £l+a’ f(xl,...,xn) can be computed on a Turing

machine in no more than f (max(xl,...,xn}) steps; but the latter

(p)
1+
function is in @1, and so by the computation-time closure of @a;
fe @a. The converse argument is identical.

It is.here that the concept of computation-time closure is most
important. For to show directly that £1+a = ﬁd is quite difficult.
In particular, if o < w then to construct an equivalent Loop program

with ordinal 1+ directly from the equations defining an Rd function

is quite hard. But given that the ﬁa function can be computed by a

D)

Turing machine in f§+3 steps, one need only write a program which

L3

computes any function at least as large as fgﬁé and insert it into
a program tc simulate the Turing machine.
The same kind of methods are also applicable to three- other

hierarchies, those of Grzegorczyk [9], Axt [2], and Robbin [25].
The first two classify the primitive recursive functions and the
third all the multiple recursive functions. The point of interest
is that each of these hierarchies is identical to a corresponding
portion of the qa and ﬁd ﬁierarchies; the classes of functions
evehtually become the same.

f‘The idea of computation-time closure, which plays a major role
in our work, was used by R. W. Ritchie [23] without an explicit name;
its value in characterizing the Grzegorczyk hierarchy was pointed out
by Cobham [8]. Some of the results of Robbin [25] make implicit use
of the idea.

The usefulness of the notion is that the particular functions

in'a computation-time closed set of functions depend merely on the

.approximate size of the functions in the set; that i§ a function is

in the set if and only if a sufficiently large function is in the set.
For example, supposeCL and D are two computation-time closed sets of
functions, and that D contains both a function which grows at least
exponentially and a function which majorizes every function of €
Then it can be shown not iny that O contains C properly, but that 9

contains a function universal for €: a function U € £ so that for each

f el, £f(x) = Ule,x) for some =.

7

. ‘\%@5

The secondary goal of this thesis is to study the application
of computation-time closure and other tools developed in the Qursuit
of the primary goal. The most important application, of course, is
the study of the classes %a and Rd’ which arise from Loop programs

and multiple recursive functions. There are three others: the ef-

, fects of various restrictions on the schema of n-recursion; the ex-

tent to which computation-time cloéure characterizes a set of functions
(which leads to an_impressive refinement of the Ea hierarchy); and the
existence of functions whose computation can be sped up very greatly.

For the mbst part this thesis is self-contained. The only re-
quirement is a knowledge of the elementary theory of’Turing machines:
what they are, and a few of the tricks that they can perform in order
to carry out intuitively simple kinds of operations. Familiarity with
the first few chapters of Davis [7] is more than enough background.

The mathematical notation in the thesis is generally standard.

We use a bar over a letter to indicate a sequence of elements: "in"

is the same as "xl,.,.,xn". In each case the first subscript in the
sequence is 1 and the last is the same as that on the barred letter.
Variables and constants,usually indicated by small letters ?j fiﬂ
alphabet, all range over N, which is the class of non-negative integers;
functions, often small letters f, g, h, are always functions from Nn
into N for some nj; sets of such functions are usually denoted by capiltal
script letters. Small Greek letters from the beginning of the alphabet

are used for ordinal numbers. Functional composition is often denoted

N
Tl

by juxtaposition, especially with one-place functions: fg(x) is the

same as f(g(x)). Finally "" means strict set theoretic containment.

-

yar

IT. LOOP PROGRAMS

§1. ° A Loop program is a finite sequeﬁce of instrucﬁions for manip-
ulating non-negative integers stored in registers. There is no limit
to the size of an integer stored in a register, nor to the number of
registers to which a program may refer; bﬁt a given program refers
only to a fixed set of registers. We will use upper case English
letters, sometimes with subscripts, as register names, and abbreviate

a sequence X ..,Xn of register names by Xn. Boldface capitals (iden-

1’
tified by a wiggly underscpre) stand for Loop programs, and if‘£ is a
program Reg (P) is the set of register names used by P.

The instructions of a Loop program are of five types:

1) x=0

k. (2) Xx=X+1

) ’ (3) X=Y
(4) 100P(n) X where n is a fixed integer, n > 1
(5) END

Here "X" and "Y" may be replaced by any names for registers, and the

"O0% of "X = 0" is to be read "zero".

“(1.1) Definition. The c¢lass L of Loop programs is U Ly, where O

ranges over ordinals < aeﬁ and whefe QJ is the smallest class
satisfying
(i) 1fa=0, L, is the class of finite sequences of type (1),

(2), and (3) instructions,

(ii) If P € Lﬁ and B < @, then P € L,

(iii) If Q, R € L, and P is Q concatenated with R,
then'g € ya,
(iv) If Q € I and & = P+’ for some n, 0 < n < W,
~ B —

then ,E € La, where E is

LooP(n+1) X
Q

~o

END
and X is any register name.

By (1l.1.iv), type (4) and (5) instructions occur in pairé, like
parentheses in a well-formed formula, so that the LOOP-END pairs in
a program are unambiguously determined. |

The first three types of instruction have the interpfetation
suggested by their appearance. "X = O" means that the contents of
register X are to be replaced by zero; "X = X+ 1" means that the
 contents of register X are to be incremented by one; "X = Y" means
that the contents of register Y éré to be copied into register X,
destroying the old contents of X but leaving Y unchanged. These are
the only instructions which affect the registers.

Instructions of types (1), (2), and (3) are executed sequentially
in the order in which they appear in the program. Type (4) and (5)
instructions affect the normal order by indica?ing that the execution
of the block of instructions between the LOOP and its matching END

is to be repeated zero or more times.

The effect of a LOOP(n) instruction is defined by induction on

n. Specifically suppose that P is a Loop program, and that x is

stored in register X initially. Then the program

LOOP(1) X
P

~

END

means that P is to be repeated x times in succession before the
next instruction (if any) after the END is executed. Changes in
the contents of X by P do not affect the number of times P is exe-

'cuted; and if x is zero initially'g is not executed at all.
(1.2) Example. The L, program

LOOP(1) X
X =X+1
END

doubles the contents of register X.

(1.3) Example. If the initial contents of X and Y are x and y,

the L2 program

LOOP(1) Y
A=0
LOOP(1) X

X = A
A=A+l
END
END

[

leaves x:y in X, where x:y (pronounced "x monus y")

equals x- y if x >y, O otherwise.

Suppose now that the interpretation of the effect of a
LOOP(n) - END pair has been given for some n > 1, and‘g is a Ioop
program. Say that the initial contents of register X are x > 1.

Then we interpret the program

LOOP(n+1) X
P

~

END
as being identical to

1OOP(n) X
Loog(n) X 5 X

LOOé(n) X

END x

J

wheré the LOOP(n) - END pairs are nested to depth x. If x is zero

initially, the effect is the same as

LOOP(1) X
P

~

END

That is, P is not executed at all.

%
(1.4) Example. Suppose we have the L program

i

LOOP(2) X
X=X+1
END

and X contains 2. Then the program is equivalent to

LOOP(1) X
LOOP(1) X
X=X+1
END
END

and execution of the program would leave 8 in register
X. DNotice that the depth of nesting is not affected by

changes to X.

(1.5) Example. If the initial contents of register X are 2,

the L&F program

100P(3) X
X=X+1
END

is equivalent to the program

LOOP(2) X
LOOP(2) X
X =X+1
END
END

which is in turn equivalent to

% ;
v i
S

LOOP(1) X
LOOP(1) X
LOOP(2) X
X=X+1
END
END
END

w

Now when the program Q indicated above 1is executed, the
contents of X will change to 8, by Example (1.4). But
then the next time Q is executed, Q will be equivalent to

LOOP(1) X
. depth 8

I00P(1) X
f; X=X+1

END
: depth 8

END

Thus the expansion of a LOOP(n+ 1) - END pair in terms of
LOOP(n) - END depends on the contents of the associated

register at the time the LOOP is encountered.

Finding the number left in register X by the program of (1.5) is

left as an exercise for the persistent reader.

§%. Although it would be possible to characterize formally the

. n;tion of computation by Loop program directly in terms of the in-
formal discussion above, the examples, especially (1.5), should have
convinced the reader that such a characterization would tend to be
quite complicated; more seriously, the individual steps in a com-
putation by a Loop program would in themselves involve considerable
computation. This is undesi;able because we will be attempting to
measure the computational complexity of a function by the number of
steps required to compute it. If the individual steps turn out to
be nearly as complicated as the function itself, this measure can
hardly be claimed to have much significance.

We will circumvent this kind of objection by giving a definition
of computation by Loop program whose individual steps are gquite ele-
mentary. The price that must be paid for this characterization is
that it is no longer clear from the definition that Loop programs be~
have as outlined in §1; thus, a theorem must be proved which states
in effect that Loop programs operate as desired. Thé proof, unfor-
tunately, is rather tedious; but given the theorem, we can seiect
whichever version of computation is more appropriate to the case at
hand.

To begin this alternate characterization, associate with each
program P not only the registers Reg (P), but also a switch and a

pushdown store; the latter are used by LOOP and END instructions.

(2.1) Definition. A pushdown store is either the single

object (0) or the pair (t,p) where t is an n-tuple
of in‘tegers é,nd p is a pushdown store. If a push-
down store is (0) it is empty. The depth of (0) is
(0), and if_p is a pushdown store whose depth is m,

the depth of (t,p) is m+1.

For the remainder of this section, let }i be a Loop program

with Reg (P) = (}_(r) and let P consist of the sequence I,,I I

LT EEETR N
of instructions where e > 0. There is of course no loss of general-

ity in restricting Reg (E) in this way.

(2.2) Definition. A state of P is an (r+ 3)-tuple (ir,i,z,p)
where xJ._>_O for 1 < j < r, where iSi_<_e+l, where
0<£ <1, and where p is a pushdown store. A state is

initial if 1 = 1 and is final if i = e+ 1.

(2.3) Definition. If s and s' are states of P with
s = (ir,i,z,p) and s' = (i},i',ﬁ',p’), then s' is the

next state of s under P if i # e+1,)'c;‘ = ir except as

~

provided in (i), (ii), (iii) below, and one of the fol-
lowing holds for some k, n:
(i) 1f I, is "X

L = 0" then x! =0, i' =i+1, £ =14'=0,

and p' = p;

i

(i1) 1f Ii is "Xk Xk+l" then x}'{ = xk+l, i' = i+1,

£ =14' =0, and p' = p;

(iii) 1If I; is "X

£ =14'=0, and p' = p;

= Xj" then x = X5 i' = i+1,
(iv) 1If I, is "LOOP(n) Xk" and the matching END is I ,
then i' =m, £ = £' = O, and p' = (t,p) where

t = (a ...,an;l) and for all j with 1 < j <n,

lJ
85 = %Ly 8y = X

(v) For the remaining five cases let I; be "END",
p= ((al,.'.,an;a), q), and let the matching

IOOP instruction be I_ = "LOOP(n) Xk"' If a
m n

]
o
-

a=1,4 =0, then i* = 1+1, £' = 0, p' = q; or
(vi) Ifa =0,a=0,2%=0theni'=4,14"'=0,
P =q;5
(vii) If for all j with 1 < j < n, ay = 0, but a_ £0
and £ = O then i' = m+1, £' =0, p' =
((ay,---5a 58 -132), a); |
(viii) If for some u with 1 < u <n, au;é 0, and a_ £ 0,

£ =0, theni' =1, 2" =1, p'=((a),--.,a,_;,8-152),q);

(ix) If for some u with 1 < u<n, a, # 0, and for all
J with u< j < n, aj=0, and £ = 1, then i' = i,

i _ £' = 0, p' =((ai,...',ar‘1;0), p) where for 1 < j < u,

i

al = a., a,l’;l = au-l, and for u < j <n, aé = xk-‘-l,

i
|
i
|

2""’Ie be a Loop program.

A sequence Sl”"’sm of states of P is an execution
= Sactublont

(2.4) Definition. Let P=1, 1

of P whenever

(1) s, is initial, and

(ii) s, is final, and

(iii) The pushdown stores of s, and s, are the same, and

1

(iv) For each i, 1 < i < m, S;,1 1S the next state of
s. under P.
1 ~

If the pushdown store of s, is empty, the execution is proper.

1

(2.5) Definition. If there is a unique execution of P of length
m beginning with (ir,l,o,p) and ending with (i},eﬂu 1,0,p)

~then for 1 <i<r, xi is the integer left in Xi pllg'When

Reg {g) initially contain x . Also m-1 is the running

time.

(2.3) Definition. If for each ir there is a unique proper exe-
cution of P beginning with (ir,l,o,(o)), then let TP(iT) be
the running time of the execution beginning with (é:,l;o,(o)).

Definition (2.2) may seem complicated, but its complexity lies
in the multitude of clauses rather than in the clauses themselves.

A more comprehensible descriptién of the execution of a Loop program

can be given as follows.

(1)-(iii) If the current instruction is an instruction of type

(1), (2) or (3), carry out the instruction in the obvious way and go

on to the next instruction.

}

iv) e current instruction is n put the
(iv) If th t truct "LOOP(n) X, " put th
(n+ 1)-tuple (xkil,...,xkil,xk;l) on the pushdown store. (If n =1,
put (xk;l) on the pushdown store.) Then go to the matching END
instruction.

v ‘ e current instruction is , and 1 e top o

(v) If th t instruct "END", and if the top of

the pushdown store is (a ,...,angi) with a = 0, and £ = 0, pop up

1
the pushdown store and go on to the next instruction.

(vi) If the current instruction is "END", and if the top of
the pushdown store is (al,...,an;O) with a = 0, and £ = 0, pop up
the pushdown store and do this instruction again.

(vii) If the current instruction is "END", and if the top ofi
the pushdown store is (al,...,an;a) with a; = 0 for al} i <n but
an~# 0, and £ = 0, subtract 1 from a, and go to the instruction fol-
lowing the matching LOOP.

(viii) If the current instruction is "END", and if the top of

the pushdown store is (a RRFLNY a) with a, % 0 and a, % 0 for some

l)
w<n, and £ = 0, subtract 1 from a_ and set £ = 1; then do this in-
struction again.

" (ix) If the current instruction is "END", and if the top of

the pushdown store is (a ,...,au,o,...,o,an;a) with 1 <u<n and

a, # 0, and £ = 1, and if the matching LOOP instruction is "LOOP(n) X

A
b4

k
then set £ = O and put the (n +1)-tuple (al,...,au_l,au=l,xk:l,...,xkal,xk;O)

on the pushdown store; then do the END instruction again. This ex-

hausts the cases which can.possibly arise.

Examination of the various cases of (2.3) shoﬁld convince the
reader that the next state of a given state is uniqﬁe if it exists
at all, and thus that there is at most one executionA with a‘given
initial state. The possibilities do arise that a state has no next
state yet is not final, or that there is never a final state;
but the theorem.about to be proved has among its consequences that
from any initial state thereis exactly one execution, and thus that

the running time T_ and the integer left in Xi are well-defined

P

functions from N* into N.

(2.7) Definition. Two programs P and § are equivalent if given
any initial state of P and P there are unigue executions
of P and g whose final states are the same except perhaps in

the third from last ("instruction counter”) component.

(2.8) Theorem. Let P be a Loop program using r registers.
(1) If s = ()_cr,l,o,p) is an initial state of P, there
is a unique execution of P beginning with s; furthermore,
the running time and the integers left in Reg (E) are
independent of p, the initial pushdown store.

(ii) 1Ir P is of the form

LOOP(1) X
Q

~

END

L&

where Q is a Loop program and X is a register

name, let X contain x initially; then P is

equivalent to P

0o

O ¢ o s

and Tg(xk) = Tg(xk) + X + 2.
(iii) If P is of the form

LOOP(n+1) X
Q

~

for Q a Loop program, n > 1, and X a register

name, let X contain x initially. Then if x>0

P is equivalent to f; =

LoOP(n). X
LogP(n) X x
100P(n) X

Q
END

. X
END
END

1>
f

and if x=0, P is equivalent to

100P(1) X
Q

~~

END
| In both cases TE(Xr) = Tz(xr).

Proof. The proof is by transfinite induction on Definition (1.1)
'of Ly
If Pe L, by (1.1.1), so that @ = 0 and P contains no LOOP in-

structions, (i) of the theorem is obvious and (ii) and (iii) are
vacuous. If £ € La by (1.1.ii), so that 2 € L£3 with B < @, the theorem
is immediate by the induction hypothesis. If P e L, by (1.1.iii) so
that P is Q concatenated with R, any final state of Q corresponds in

an obvious way with an initial state of R; the details are omitted.

Now assume that P e L, by (1.1.iv) with n = O; that is, P is

LOOP(1) X
Q

mD
for some Qe LB where @ = B+ 1 and X is some register name. Let
there be e instructions in P and. say x 1s the initial contents of
. X; as an induction hypothesis assume that ,@, satisfies (2.8.i). Con-
sider the initial state (ir,l,o,p). By (2.3.iv) the unique next
state is (ir,e,O,((x;l),p)); the next state after this, by (Z.S.Vii),‘

is (ir,Z,O,((x—l;l),p)) if x > 0. But this is essentially an initial

s‘ttiate in an execution of Q3 by the induction hypothesis the next
] se;veral states consist of an execution of Q which ends with
(i;,e,o,((x -1;1),p)) for some }-c:'r Then the next state is
(i;,z,o,((x- 2;1),p)) if x > 1; repeating the argument leads,
after x executions of Q, to the state (i;,e,o,((o;l),p)). By
(2.3.v) the next state is (i;,e+ 1,0,p) which is final. Counting
the number of states not involved in the executions of ,@, yields
(2.8.ii) and thus (2.8.i).

The remaining possibility is that P ¢ L, by (1.1.iv) with

n >0, so that P is

ilz L00P(n+1) X
Q

I: END

e

Let the final END instruction be the e-th instruction of P, as in-

dicated above. We have to show first that the program E =

I;: 100OP(n) X
12: L.OOP(n) X X
Ix: LOOP(n) X
)
TA: END
e
3 : X
e+x-2 END
Toix-1 END

\

where x > 0 is the initial contents of X, is equivalent to P, and

that T_(Xx). = Ta(%X_). As indicated, we let I~ be the first END
P'r P''r e

~ o~

instruction oflé after(@. The method is to consider an execution

of P and show that each state of this execution corresponds in an

_appropriate sense 'to a state in the execution of P; the correspondence

includes the reguirements that the registers be the same, and that

the pushdown stores be "similar". Since P ¢'L

n-1

-1’ and

P+af

Q> B+w “x, the induction hypothesis for § will yield the result

desired.

In the definition and lemma that follow, we use a consistent
notation: letters without hats refer to the program_g, and those
with hats refer to‘g; for example, s and § are states of P and‘§
respectively. Also, a primed letter refers to the next state of
a given state; so if, for example,§ is a state of‘g, §' is the next
state of § underlg. Finally, x is the initial contents of register

X. We assume that x > 0.

(2.9) Definition. For a pushdown store p let ij be the object
at the j-th level.of p; that is, if p= (ql,(qz,...(qk,(o))...)),
then Obp = qj for 1 < j<k; if j >’k, ij = 0. Two push-
down stores p and ﬁ occurring in states oflz andlé are
similar if for each j one of the following holds:
(i) o.p = 055’ or

3
ii) o.
(i) 5P

i

(y,al,...,an;o) and Ojﬁ = (a ...,an;o) and

l)
05+1p = (y,bl,...,bn;b) for some y with 0<y<x; or

Ll

(iii) O”J.p = (y',al,...,an;o) and criﬁ = (ai,...,an;l)

and O, (y+ 1,b

J+1P = .,bn;b) where for 1<k <n,

170
bk=0, and 0 <y < x; or

.,an;l) and 0'J.§= (al,, . .,ansl) .

(iv) O’J.p = (x-l,al,..

”~

(2.10) Lemma. Let 815

is an execution s

~ N ~
T be an execution of P. Then there

1708y of E such that S, = §1 and for

each pair 55 = (ir,i,ﬁ ,p) and é\j = (:‘E‘r,{,f,ﬁ) we have

xJ. = J?J. for 1< j<r, pis similar to 5, and one of the
following holds:
(i) 1<i<eand §=i+x-1; or

(ii) i=1=1, and £ =4 = 0; or

it

(iii) o,p (y,O,...,O,an;a) with 0<y<x, i=e,

? £ =1,14 = O', f=x-y+1; or

T (iv) i=e+1, T=%8+x

(v) 0P = (y,al,...,an;a) and i = e, I = é+y wi%;h
0<y<x, and1&=l?.'

Proof of Lemma. Let s = § = (}.cr,l,o,p) be an initial state of P and

Then s and § satisfy (2.10.ii), and p= ﬁ so p is similar to ﬁ by

>

A~

(2.9.1). Now assume that s = (?cr,i,ﬂ,p) and § = (ir,i,z,f)\) are states
of P and 13 satisfying (2.10); we prove that s' and §' also satisfy

(2.10). The proof consists in considering the cases that arise.

~

Case 1. s and § satisfy (2.10.i). Then P and P are executing
the same instruction of Q, and the result follows from an induction

hypothesis on Q.

|

;
1
i

| Case 2. s and § satisfy (2.10.ii), soi=f=1,4 =14 = 0.

) Tl'ien (2.3.iv) applies to both s and §: §'=
(i?,é\+x-l,0,((x=l,...,xl 1,x;1),p)) and s' =
(:-cr,e,o,((x=l,xll,...,x-‘-l,x;l),?)). Then s' and §' satisfy
(2:lO.v) and p' and p' remain similar by (2.9.iv).

Case 3. s and § satisfy (2.10.iii), so i =&e, § = x-y+1,
£ =1, Z = 0. Then (2.3.iv) applies to S, so if X is the current

contents of register X, §= (ir,€+y-1,o,((xk=1,. ..,xkll,xk;l),ﬁ)) .
Also, (2.3.ix) applies to s, so s'= (ir,e,o,((y—l,xkf-l,...,xk=1,xk;0),p)).
Now p' and p'remain similar by (2.9.iii); s' and 8' satisfy (2.10.v).
Case 4. s and § satisfy (2.10.iv), so i = e+1, § = €+x.

The s and § are both final and neither has ainext state.

Case 5. s and § satisfy (2.10.v), so i = e, 1 = &+ y where

0<y<x,¢ = 1?, Ulp = (y,al,...,an;a), and by similarity, O‘lﬁ =

o~ - .
(al,...,an;a). There are several subcases corresponding to various
sy sy e e ~
possibilities for s.

Subcase 5.1. (2.3.v) applies to §: & = 1, a =0, Z=o.

Then by (2.3.v) §' = (ir,$+ y+1,0,q). First say 0,p and O‘lﬁ satis-

fy (2.9.iii); then oyp = (y,al,...,an;o) and since a = 0, (2.3.vi)

applies to s, so s' = (ir',e,o,q). But by (2.9.iii), O,p =

(y+1,b .,;b 3b) so s' and §' satisfy (2.10.v). On the other

17
hand, if 0,p and glﬁ satisfy (2.9.iv), then by (2.3.v), s'

il

(ir,e+l,0,q). Also by (2.3.v), &' = (ir,é\+x,0,a) and so § and

§' satisfy (2.10.iv).

i
| Subcase 5.2. (2.3.vi) applies to §: & = o,'an =0,%=0,
‘ané so &' = (ir,ga-y,o,a). (2.3.vi) must also apply to s, éo s' =
(ir,e,o,q) and s' and §' satisfy (2.10.v).
Subcase 5.3. (2.3.vii)appliesto 8: £ = O and a = 0 for
1<j<nbuta £ 0. Then §'= (ir,x-y+1,o,((al,...,an_l,anal;a),a))
by (2.3.vii). If y = 0, (2.3.vii) also applies to s and s' =
(ir,Z,O,((O,al,...,ah_l,anll;a),q)) so s' and §' satisfy (2.10.i).
If y > 0, then (2.3.viii) applies to s; s'=
(ir,e,l,((y,al,...,an_l,an=l;a),q)). Then s' and §' satisfy (2.10.iii).
Subcase 5.4. (2.3.viii) applies to §: £ = 0, a # 0, and for
some u with 1 <u<n, a £ 0. Then §‘=(ir,€+y,l,((al,,",an_l,anll;g),a)).
By similarity, (2.3.viii) also applies to s, so s' =
(ir,e,l,((y,al,...,an_l,an=l;a),q)) and s' and §' satisfy (2.10.v).
Subcase 5.5. (2.3.ix) appliesto §: £ =1, for some u with
l1<u<n, a # 0, and for all j with u < j < n, ay = 0. Then if xk
is the current contents of X, St=)
({cr,é‘+y,o,((al,...,au_l,auzl,xkzl,...,xk:l,xkgo),ﬁ)). By similarity
(2.3.ix) applies also to s, and so s' =
(ir,e,o,((y,al,...,au_l,au=l,xk=1,...,xk=l,xk;0),p)). Then p' and P

remain similar by (2.9.ii), and s' and §' satisfy (2.10.v). This con-

cludes the proof of Lemma (2.10).

We have thus shown that given an execution of ﬁ, there is an identi-
cal-length execution of P with the same initial state and such that

in each corresponding state the registers are identical. Also, by the

\ 4

)

similarity of the pushdown stores, the execution of Eiends with the
pushdown store the same as it was initially;'g and‘g'are then equivalent.
The sole remaining case is that x, the initial contents of X, is

zero. But then the following is an execution of P:

Sl = (xr,l,o,p)
32 = (}—(r,e,o,((o,o,-.-,O;l),P)) by (2.3.iv)
S5 = (ir,e+~1,0,p) by (2.3.v)

This proves (2.8.iii); (2.8.i) is immediate by the induction hypo-

thesis forlg and Theorem (2.8) is proved.

In view of (2.8.1i) the distinction between executions and proper
executions (in which the pushdown store is initially empty) is un-
necessary, since the initial contents of the pushdown store do not
affect the quantities of interest, the final contents of the registers

and the running time.

§3. The previous section showed that the running time function TP

for any program‘g is totally defined. It should also be intuitively

clear that TP is effectively computable. Thus the claim that the

~

running time of a Loop program is bounded a priori is trivially true,
provided that the claim simply means that given a ﬁrogram with its
initial state, there is an effective method of finding a number that
bounds the number of steps required for the program to halt. For
since any Loop program with any input eventually does halt, an "ef-
fective method" simply consists of running the program and counting
the steps.

Of course, bounding the running time of P by T, is not very

P

~

informative, for it amounts to "predicting” that P will run as long
as it runs. One would at least hope for bounding functions which
are in some sense sufficiently comprehensible that they provide more

information than the previous tautology. An inevitable difficulty

-is that the bounding functions must grow at such extraordinary rates

that their sizes can hardly be called comprehensible. Nevertheless,
the functions Qx defined below have such simple definitions and use-
ful properties that our Theorem (3.6) below has intuitive appeal as

well as technical usefulness.

(3.1) Definition. If g: N - N is a function, the function h:

N2 - N is called the iterate of g (or, h-is defined by

iteration from g) whenever h satisfies

n(0,2) = 2
h(y+l,z) = g(h(y,z))

i

i
|

i
i
|

Often, we will write the iterate h(y,z) as g(y)(z). Thus,

L

-g(y)(z) = g(g(... g(z) ...)), the composition being taken yvtimes.

(3.2) Definition. For O < «” an ordinal, the function £ is
defined as follows:
(i) if a =0, fa(x) = x+1 if x < 1; fa(x) = x+2 if x > 1;

(ii) if «

]

x
B, fo(x) = £57(1);
(iii) if O is a limit ordinal and B is the least ordinal
. . n+l
satisfying & = B+ w for some n > 0, then

fd(x) = fB+an(x)j

Thus if @ is a successor, f, is defined by iteration from its

predecessor; 1f & is a limit, Qz is defined by diagonalization over

a certain sequence {fB-} of functions where sup {Bi} = Q.
i

In the proofs below we will use implicitly a number of elemen-

tary facts about the arithmetic of ordinals, and also the Normal

Form Theorem for ordinals less than 09% any ordinal O < aP+1 for

éome n, 0 <n < w, may be written

0
+ ccr + WA

a
n-1 (e}

i
8.'.3
Bm
+
8!3
i
o

where O < a, < ® and the a, are unique. See, for example, Suppes' book [5].

(3.3) Definition. For O = aP-an + e 4+ u?-ao an ordinal, write
m-1
a) =
b(®) =2 58y
for each m < n+1; if m>n+1, t = tn+l(a). Also,
n+l -

= a) i .

tw(oz) tn+l() if a<w

of the information we require about the functions f,.

(3.4) Lemma. For all x, p € N, @, B < &>

(i) <fl(x) = 2x+ (1=x) |
(i1) f:(Lp+l)(x) = 2P.g (x) > 2Py
(ii1) £,(x) = 2

1

(iv) £4(0)
(v) £y (x) > x+1
(Vl) fép)(x) is increasing in p, x
(vii) if @ = B+d, then fy(x) > fg(x) for x > t (B)
(viii) if @ > B, then f(x) > fﬁ(x) for x > tm(B)

(1x) Z-fc(xp)(x) < féwl)(x) for Q >1, x+p>1

(x) (fé}’)(x))2 < fc(xp+2)(x) for @ > 2, x+p > 2.

Proof. (i) If x = 0, f‘l(O) = féo)(l) =1 = 2-0+ (1:0).
fl(l) = fél)(l) =2 =21+ (121). If for x> 1 fl(x) = 2%,

2(x+1) + (12(x+1)).

fl(x+l) = fofl(x) = 2x+ 2

(ii) Immediate for p = O. f§P+1)(x) = flf](_p)(x)
= Z-f(p)(x) = ZP-fl(x) > 2Py,
| (111) £,(0) =’f§o)(l) =1 £,(x +1) = f](_x+l)(l) = 2X~fl(1)
= 2%y (41).

Notice that to(Ol) = 0 for all Q. 'The next lemma collects most

(iv)-(vii) These will all be proved simultaneously by induction

on & and x. All are immediate for & = O by definition.

.

i

If & = B+1, then £,(0) = féo)(l) 1 proving (iv). Also,

f‘a(O) > 0, yielding (v). Now fa(x+ 1) fsfa(x) > fa(x), using (v)

for fﬁ' Then fép-"l)(x) = fafép)(x) > fc(zp)(x), proving (vi). Also,

fa(x+l) = foa(x) > (x+ 1)+ 1, proving (v).
Now in (vii), n must be O since @ is a successor. Since
fa(x) >x+1, fﬁfa(x) > fa(x+l), using (vi) for fB. But fﬁfa(x) =

fa(x+ 1) so f(x+1) > fa(x +1) for all x > 0 = t.(B), proving (vii).

o
The next possibility is that @ is a limit ordinal: let & =

B +a)n+l where n > O and B is the least such ordinal. Then fa(x) =
fﬁm“x(x)' Now fa(O) = fB(O) = 1, proving (iv). Also,
f (x+1) =¢ (x+1)
a 5+(Dn(x+l)
>f (x) by (vi)
B+af* (x+1)
>f 4 (%) by (vii) since t_(B+ &x)=0
- B+wx n
= £,(x)

Then féwl)(x) = fafép)(x) > fép)'(x), proving (vi). Also,

fa(O) =1>0+1 and f(x+1) > f,(x) > x+1 proving (v). Finally,

write B = B'4Y where tn+l(5') =0and v < . Then a = B+ P
= B' +(bn+l, and by choice of B', fa(x) = f n (x). Since v < wn+l,
: . «
Bl+wx
if x>t o (r) then w'x > 7. So, using (vii) for B'+ &'x and B'+ T,
£f.(x)=7° (x) > ¢ (x) = £,(x)
a BT x B+ P
. . S . Y . _
if x > tn(‘r) But x > tn+1(Y) > tn(”r), proving (vii). This com
. pletes the proof of (iv)-(vii).

(viii) If @ > P there is avy >0 s0o Q& = B+71. Write

n o n n :
T = a)n+uo-gn+ +w-go= wW+r', so@ =pB+w +7v'. By re-

il

peated applications of (vii) we have fa(x) >f (x) for all x,

Brafl

since t_(B+ ') = 0. Also by (vii), £ ,(x) > f.(x) if

B
x> tw(B) > tn(B). So fa(x) > f‘ﬁ(x) for x > tw(B).

(ix) 2-f((xp)(x) = flfép)(x) < fép+1)(x) if @>1and x+p > 1
by (i) and (viii) since f((zp)(x) > 1 if x+p > 1.

(x) Trivially, 22 < 22Z = féz)(z) for all z. Then
[(20)? < 2 £P < FP i)

if x+p > 2 by (viii), since x+p > 2 implies fép)(x) > 2. This

completes the proof of (3.4)

(3.5) Definition. A function g: N* - N is bounded by f:
N - N whenever for all im’ we have g(;cm) < f(ma.x{}—cm}), where

m&x{im}' is the largest member of ;(m'

(3.6) Bounding Theorem. Let P be a program in L,. Then
there is a number p, which can be found effectively
from P, such that fép) bounds TP’ the running time

of ,If,

Proof. The proof is by induction on @ and Definition (1.1). Say
f, € La, let P use k registers, and let m be an abbreviation for
max{:.ck} where ;ck are the numbers initially in Reg (P). There

are four main cases corresponding to the clauses of (1.1).

Case 1. O = 0. Then P has no loops and so T, is identically

P
equal to the length of ;13; if p > 0 is this length, then

I SCRRE ¥ S SUOREcy

by (3.4.v), (3.4.vi).

Case 2. P e I, by (1.1.ii), so that Pe LB with B < Q. By
the induction hypothesis we have have q so TP(fck) < féq)(g). But -
‘by (3.4.viii), if we let p = ta)(B) and if x_;p, then f‘a(x) > fB(X)' |
By (3.4.v), fép)(g_l) >m+p, so f‘ép+q)(x) = f’ép)féq)(x) > TP(;(k).

Case 3. P e I, by (1.1.iii), so that Pis Q concaten;ted with
r)

R and @, R € Ly By the induction hypothesis, let f((xq) and fa

bound T, and T, respectively. After execution of 2 let the registers

Q

~ ~

of P contain i}': Then TP(ik) = TQ(ik)+ TR(}-:I'&); we. have

~

r)(

Tp(%) < £ (m) + 207 (max(3;))

But after execution of Q, the largest integer in any register is at
most m + féq)(g), since each instruction execution can increase the

largest register by 1 at most. But by (3.4.v) and (3.4.ix),
‘ m + fc(xq)(g) < féq+l)(§) since @ > 1, g > 1. Thus
- (a) (r).(q+l)
Tp(x,) < fg ™ (m) + £ 'fy (m)
< z.féq”‘*l)(g) by (3.4.vi)

< fc(tq+r+2)(_rg) by (3.4.ix)

Case 4. P € L, by (1.1iv), so that P is

LOOP(n+ 1) X
Q

~

END
for some Q € L‘3 where @ = B+ cnn, n > 0. We use the following

(3.7) Lemma. If Q€ L8 and T. is bounded by féq), then

)
the program P =
100P(n+1) X
2
END
q+b+4)

has T_ bounded by f(
P B

~

, where b = tn(ﬁ)-

Proof of Lemma. The proof is by induction on n. For n = 0, tn(B)= 0-

for all B. Then the lemma reduces to: if Q € L6 and TQ(:'(R) < féQ)(Ln)’

then E =

LoorP(1) X

q+4) (m).

has TP(XK) < f5+l There are two possibilities; first take
Q

~~

B = 0. Then T, is identically equal to the length of Q, and the

~

running time of E is exactly gx+x+2, where x is the initial con-

tents of X, by (2.8.ii). But since by definition x <m,

% ¢
£y

Tp(x,.) = (a+1)x+2 < (g+1l)m+2

< Zq-_@+2

< f§q+2)(_r§_) by (3.4.ii) and (3.4.v)

< f:(Lq+4)(§) by (3.4.vi)

Now if 0 < B < a)w, assume that T_ is bounded by féQ). If x is the

Q

~

number initia.ily in X, 3 is equivalent to

W + 0 1D

By the same argument as for Case 3 of the theorem, the first exe-

§ cution of Q requires at most féq)(g) steps, the second fé2q+2)(£1)
steps, the third fé3q+‘-’=) (m) steps, ... , and by the obvious induction,

2)-
the x-th requires at most féx(q+,) 2)(_111) steps. Thus, if m >0

< X'féﬁl}(qﬁ)'z)(g) +2 by (3.4.vi)

< e®(@2)2) (W), g by (3.4.v)

< E'fég(q%»(l)‘ by (3.4.v)

= m-f, (m -(q+3§) . by (3.2) since @ = B+1
Smefy fl(qﬂ)(g) by (3.4.ii)

< E'féQ+2)(m) by (3.4.vii)

< '%gq%)(r_n) S by (3.4.x)

. N =\ - (q+4) -
But even if m = O, Tz(xk) =2, so T}z(},{k) < f6 (m) for all X, -
This concludes the proéf for n = 0.

Now we assume the lemma for some n > O, and prove it for n+1.

E is then

LOOP(n+2) X
Q

~o

END
" which is equivalent to

I00P(n+1) X
. X

100P(n +1) X

~r

D
END
where x > 1 is the number initially in X. If x =1, TP isAbounded
! by fé$+4);- if x = 2, 'T,I.}. éj:;;a) since~tn(6+ o) =0;

and by the obvious induction, for each x > 1,

is bounded by

- (g+b+4x)
T_(<f
3 xk) Bk (m)
< f6+a)nx+l(q+b’+5§_1 +1) | by (3.4.vi) and (3.2)
< f +b +5m +1 by (3.4.vii
< an(xﬂ)(q m+1) y (3.4.vii)

<f (g+b +5m+1) by (3.4.vii)
= B+w'(g+b+5m+l) -

)

~ a?bm e i

‘diately

i
i
i
i
{
i
{

L. B n+l .) .
N?w if B = a?bm o + W 1bn+1'*“an + + Wb, let ' =
n
el Then B+w (g+b+5m+1) =
B! +cnn(q+b+bn+5§3+l) and furthermore B' is the least ordinal

with this property. Thus by (3.2),

Tz(xk) < fﬁtwnﬂ(q +b+b +5m+1)

= fsmpﬂ(q +b+b +5m+1) by definition of B'
(g+b+b_+1)

< fgjwmln (5m) by (3.4.v)
(gq+b+by+1) (3) .

.<.. ﬁ-}ﬁp’—'—l fl (E) by (3.4.11)
(q+b+b,+4)

_<_fﬁ+(dm_ln (m) by (3.4.vii)

- (q+b+b, +4)

But even if m = O, Tp(ik) =2 < (m) by (3.4.v). Since

fB+aP+l

tn+1(5) = tn(B)+ b =Db+b , the lemma is proved, concluding Case 4.

)

Since in each of the four cases the p such that fép bounds T

P

L

was found effectively, Theorem (3.7) is proved. We also have imme-

(3.8) Corollary. Let P € L, be a Loop program, and let m

be the largest number initially in Reg (P). Then
there is a number p so that f((xp)(_n_}) bounds all the

numbers left in the registers of P by execution of P.

Proof. Since each instruction execution can increase the largest
register by 1 at most, the numbers left in Reg (P) are all bounded
by m+T,(x.) <m +fép)(9). If @ > 1, by (3.4.ix) m+ fc(xp)(g)

(m). The proof for g = 0 is obvious.

%D

§4. If a set of registers is designated for input and output, a

Loop program defines a function.

(4.1) Definition. ILet im be distinct register names, and let P be
a register name which need not be distinct from im' Iflg is
a Loop program, the (m+ 2)-tuple Qg, X P) is called a program

with input and output, im being the input registers and P

the output register. The function f: N = N is computed by

(P, im’ P) providing f(§m) equals the contents of P after
execution of P when'im initially contain im’ and all other

members of Reg Qg) initially contain zero.

For example, if P is the program of Example (1.3), then (P,X,Y,X)

computes x:y; QB,X,Y,X) computes the projection pgz(x,y) = y.

(4.2) Definition. fd for 0 < a < of® is the set of functions

computable by programs in Id with input and cutput

£= U _C.
, a<<09) o

Obviously, if a > B then fb §>£B by (1.1.ii) of the definition

of HJ' Tt is the task of this section to prove that if ¢ > B the

containment ﬁa ;;E is proper.

B,

(4.3) Definition. Let F. be the program

R0
X = X+1
X=X+1

2\

and if B is the least ordinal so o = B+ q)n, let
Ea be the program
LOOP(n+ 1) X
g

END

It is immediate that Ea € La by Definition (1.1).

(4.4) Lemma. ILet ?a be the function computed by (F _,X,X). Then

if x > 0, fa(x) > fa(x). Also, fa € s:a.

"Proof. ?O(x) =x+2 > f‘o(x) for all x by definition. Say that

a = B+ 1; then Ea is

LOOP(1) X

T

END

which is equivalent, when x > 0 is in X initially, to

%

S

%
So /fd(x) = %éx)(x) > fﬁ’f‘éx—l)(x) > > féx—l)ff\,B(X) > féx)(x)
> féx)(l) = fa(x) if x > 0. ‘

Now if B is the least ordinal for which a = B8+ mn+l and if

x >0 is in X, then Ea is equivalent to

LOOP(n+1) X
: X

LOOP(n+1) X

But this is exactly the program EBHLPX' So if x > 0, fa(x) =

f x)>*f x) = f (x); this concludes the proof of (4.4).
4.5 Theorem. For <&] f € £ .
() "‘> ? (o4 (8

Proof. fl(x) = 2x+ (1:x) is in £lvia, the program F =

LOOP(1) X
G=0G+1
G=G+1

END

F=F+1

LOOP(1) X
F=0

END

where ('li')X,F) computes f . For o > 2, we defer the proof wuntil

Chapter IV. The only facts we will need for the remainder of this

chapter are given by Lemma (4.4). Tt is possible to construct a

program for fcx in Loc’ but a surprising amount of labor is involved.

23

}
!

(%.6) Lemma. If a > B, then for any constant c, ;a(x)>,féC)(x)

for almost all x.

Proof. If o > P, then @ > B +1. First we establish the result

for f and f,.

B+l B -
fg,q(x) = féx)(l); for x > ¢, £ (x) = féc)féx‘c)(l).
But for large X, féx'c)(l) = £, (x-¢) >x by (3.4.1i) and (3.4.viii).
Thus fB+l(x) > féc)(x) for large x.

But now if o > B+1, for large x fd(x) > fB+1(x) by (3.4.viii);

this yields the lemma.

(4.7) Hierarchy Theorem. If a > B, £d ¥>£B.

Proof. As remarked sbove, if @ > B, £, 2 £, by definition. If

B
Ed = L5, the function %a of Lemma (4.4) would be a member of 58;

but for all c, 'fa(x) > fd(x) > 'féc)(x) for almost all x by (4.8) and

(4.4). Then by (3.7), %& f EB. This proves (4.7).

The Bounding Theorem (3.6) and the Hierarchy Théorem (4.7)
together provide the rigorous Justification for the claim that the
simple measure of the complexity of syntactic structure of a Loop
program by Definition (1.1) is also an adequate measure of the power
of the program; for the Bounding Theorem implies a maximal complexity
on the functions of %3 by bounding the number of steps the computation
of each such function can possibly consume. The Hierarchy Theorem
yields aminimal complexity for fa by exhibiting Ed functions which
cannot be computed in fewer steps than the number implied by the

structure of their programs.

It is convenient to introduce at this point a property of

the classes'%a which follows almost immediately from its definition.

(4.8) Definition. The operations of substitution consist

of the .following methods of obtaining a function f

from given functions g, h:

(i) Substituting a constant: obtaining f from g
where f(in) = g(in,c) for some number c;

(ii) Permuting and identifying variables: obtain-

ing f from g where f(in) = g(gl,...,gm) and
each Ei, 1 <i<m is one of the X3
(iii) Composition: obtaining f from g, h where
£(5,) = ek, n(E)). |
Also, if tfis a class of functions, E;is closed

under substitution whenever any function f obtained

from functions in{i by substitution is also a member

of Cw

(4.9) Theorem. For all o < a?i Ed is closed under sub-

stitution.

Proof. Say (g,in,H,G) computes.g, (g,in,H) computes h, and f(in) =
g(x, h(x)). We assume that Reg (G) N Reg (H)= {xn,H} and that
neither G nor H uses registers Zn' These conditions can of course
be brought about by changes in names of the registers used by g

and H. Let E be the program

1%
7 =X
n n
)

X, =2
X =7
n n
G

Then (E,in,G) computes f. This proves that Ed is closed under com-
position; proofs for the other possibilities, substitution of a
constant and permutation and identification ,of variables, are

entirely analogous and are omitted.

26

.
7

bility.

’1
§5. The preceding section showed that Ed contains some very large

: fﬁnctions -- in fact, functions larger than any in £_ if B'< o -~

=
but it is not yet at all clear that Loop programs can do anything

much but run for a long time and eventually halt with rather large
numbers in the registers. This section will demonstrate that even
Ly

the groundwork for showing among other things that each ﬁd contains

programs can perform quite complicated operations, and will lay

very small functions more complicated than any functions in £, if

B
B <a.

In particulér, (5.1) shows how to construct L2 programs which

simulate Turing machines; (5.2) shows how to construct Turing ma-

chines which simulate Loop programs. Theorem (5.1) is useful in
relating Loop programs to other formalisms for computation, as is
done in Chapter IV. Combining (5.1) with (5.2) yields Loop programs
which simulate other Loop programs; §6 leans heavily on this possi—

We assume that the reader is familiar with the elementary ca-
pabilities of Turing machines as discussed, for example, in Kieene
[K] or Davis [D]. Our theorems would be true using any of the various
formalisms for Turing machines; for definiteness, we give an infor-
mal definition of computation b& Turing machine much like that of
[X]. |

A Turing machine # is determined by a finite set szof quin~

tuples {(qi,sj,sk,d,qg)}, where d is either "L or "R", and such

- that no two quintuples of szhave the same first two components.

The first and last components of the Quintuples of szcomprise the
states of M; the second and third components comprise the symbols

of . One of the states, a5 is distinguished as the initial state,
and one of the symbols, S4 is called "biank" and is also written
"B". Associated with the Turing machine is a tape, which consists
of a two-way infinite sequence of squares; each square has printed
on it one of the symbols of . If the symbol printed og a square
'is g7 the square is blank, and at any time almost all of the squares
on a tape are blank.

One square on the tape is scanned by m. A situation consists
of a particular printing of the squares of the tape, a particular
squafe on the tape (the scanned square) and a particular state; the
machine is in that state.

Given a situation, mmay perform a step as follows: if the ma-
chine is in stat? q; and the symbol on the scanned square is Sj’ and
if (qi’sj’sk’d’qﬂ) € Qﬁf then the symbol on the scanned square is

replaced by s, , the scanned square moves‘one square to the left or

k
right according as 4 is "L" or "R", and the machine goes into state
Q- If no quintuple of thbegins with qi, Sj then no act is per-
formed and the machine has halted; in this case the situation is
terminal.

The Turing machine is used by choosing some situation in which

to start it; the machine then successively performs steps until it

halts; and the contents of the tape in the terminal situation determine

1
natural numbers O, 1, 2,... by "1", "11", "111",..., so that in the

the output. Specifically, let s, be the symbol "1". Represent the

representation of x there are x +1 occurrences of "1". Also, re-

1’

present an n-tuple x
of the x; separated by "B" so that the representation of (0,2,1,3),

cXy by juxtaposing the representations

for example, is "1B111B11B1111".

A Turing machine computes the (partial) function f: N° - N if

-when the Turing machine is started in state 9 with the representa-

tion of‘in on its tape, which is blank otherwise, and with the square
just to the right of the representation of in the scanned square,‘then
the Turing machine eventually halts with a total of f(in) "1"s to
the left -of the scanned square in the terminal situation, providing
f(in) is defined. If f(in) is not defined, the Turing machine does
not halt.

For example, if a Turing machine computes x+y, when started

in the situation:

. B111B1111B ...
t

9o

it may halt in the situation

. B1B111B1BB11llB ..
t

93

where no quintuple starts with ;> B. The notation for situations

should be obvious.

24

(5.1) Theorem. Let smbe a Turing machine which computes
the function f: N° - N. Then there is a Loop pro-

gram with input and output (TM ,in,s,P) where TM_eL,

which computes a function TM&J Nn+l - N with the

following property: if s exceeds the number of steps

required to compute f(in) using M, then f(in) = TMméin,s).

Proof. PFor simplicity, the theorem will be proved only for the case
n =1, and for M a 2-symbol machine with symbols {B,1}. Exactly the
same methods apply when n and the number of symbols of M are unre-
stricted.

The heart of the construction is an Ll program Step which in
effect carries out a single step in the Turing machine computation.
Step uses several main registers Q, TL’ TS’ TR which contain re-
spectively the number of the current state, and representations of
the tape to the left of, on, and to the right of the scanned square.

Suppose the non-blank portion of the tape is

oo BS_ S_ --- 88,8 ...8 ;S B..
where each S, is "B" or "1" and So is the scanned square. Then Ty,
contains |
u-1 u-2 0
. + . o .
t_ 2 b2+ +t -2

where each t, is O or 1 according as S is "B" or "1". Likewise Tq

contains to and TR contains

L0

T contain numbers whose binary representations

" That is, Tr» Tg> R

are images of the corresponding portions of the tape.
Also suppose register Q contains a number g, where O Sq <m

and Mhas m+1 states (qo, .o .,qm}. Consider the program Decode

Co'O =0

COl =0

ClO =0

Cl% =0

mo ©

le =

COO = COO+1
| LO0P(1) Q

CmO = Cm-—l,O

C c

10 © ~00
END
LOOP(1) Tq
Co1 = oo
Coo =
€11 = %0
1o =0
ml C'mO
mO= 0
END -

; E It is easy to see that if Qcontains i and T, contains j, then

Gy = 1 but Gy

Now let the quintuples of = be {;nl, . .,mr]. Let Quints be

S

=0forifkor j#i.

the program
‘ Decode
erwm
= 0
= 0

AR LLEE R

Here if m, is the quintuple (qi,sj,sk,d,qz) and 4 is "L" then

%i is the program

LOOP(1) C..
} ' +d
TS - sk
L =1
Q =1
END

If 4 is "R", M, is the program

1LooP{(1) C..
ij
Tg = 8y
R =1
Q =4
END

Here we use the obvious abbreviation "TS = sk" for

TS = 0

TS = TS4‘l
if s, = "1"., Likewise, "Q = £" is an abbreviation for
Q=0
Q=Q+1
. £
Q=Q+1

Thus if the number of a state is in register Q and the contents
of the scanned square are in register TS’ Quints =~ causes the next
state to appear in Q and the new symbol for the scanned square to be
placed in TS.’ Quints sets registers L and R so that L = O and
R =1 if a rightward move is to be made, while L = 1 and R = 0 if a
leftward move is to be made. If the situation is terminal, Q and TS
remain unchanged and L = R = O.

Given the interpretation above for the numbers in TL’ TS’ TR’

the effect of a rightward move of wican be reflected by replacing

T, by B-TL-+TS, replacing Tg by rm(TR,Z) and replac;ng Tr by TR/Z.

Here we use "TL", for example, to refer both to the register and its

contents. Also, rm(x,y) is the remainder upon division of x by ¥,
and x/y is the integral quotient of x and y: the greatest integer z
so’z~y < x. Arbitrarily, we se% x/0 = 0.

These functions can be carried out in Llf Consi&er the follow-

ing program RM ("rightward move").

T o =20

LR
LOOP(1) T,
Tig = TLR+1 TrR e—z-TL
Tig = TLR4-1
END
1.oOP(1) Ts
Tip = Trptl Tix ©2.T; +Tg
END
1 .
Tep = O
1 — 1]
Tep = Top+ 1
Tog = ©
LOOP(1) Tg $ Ty © rm(Ty,2)
T =T
SR
— 4
Tsr = Tag
1 —
Teg = T /
END
Tpg = O
1 .
Thg = O
LOOP(1) TR :
T = Rpp "o
w— 1
Ter = Tgg
1 —
TRR__ T
END

RM places Z-TL4—TS in oo, rm(TR,2) in T

but does not change TL, TS’ T

sg and TR/Z in Tpo

R" - Of course there is a corresponding

program LM which puts Z-TR-FTS in TRL’ rm(TL,Z) in TSL and TL/Z in

TLL without changing TL’ TS’ TR and which thus simulates a leftward

move.

.next state in Q and the next tape configuration in TL; TS’ T

Now let §§e2 be

uintigm

M

RM

LooP(1l) L
Ty = T,
Tg = Tgp,
Tr = Tgy

END

LoOP(1) R
T o= Top
Ts = Tgr
Tr = Tgg

END

Step is an Ll program; given the number of a state in Q and a
tape configuration in TL’ TS, TR’ executlo? of Step leaves the

R But

then if an initial situation is in-Q, TL’ TS’ R’ the L2 program
Result =
Wm
LOOP(1) §
Step
END
leaves in TL’ TS, TR a representation of the tape configuration after

s steps of M, where s is the number in S; if s exceeds the number of

steps required for M to halt, the final tape is left in TL’ TS, TR.

Thus the only remaining tasks are tc find a program which, when given

d
i
1

a% input number, produces the cofresponding‘initigl‘situation, and
) té find a program which, given a tape.situation, yields an output
number from the final tape representation.
According to the formaiism agreed upon above, if the input
number is x, the tape representation is astringof x+1 "1"s just
to the left of the scanned square; in other words, we want T, to

L

contain 2X+1— 1 and TS, TR to contain zero. The job is done by the

L2 program Input:

Q=0
TL =0
TS =0
TR = 0 1
= X+ 1
LooP(1) X
X+1
LOOP(1) TL & TL 2 -1
TL = TL+~1
END
TL = TL+-1)
END

Next, the output number is to be the total number of "1"s oc-

curring in the binary expansion of TL. The LZ program Qutput =

P=20
1L.0OP(1) T,
T e—-rm(Tl_I,Z)
Ty, <—'I‘L/2
LOOP(1) T
P=P+1 P <P+T
END
END

e ‘

leaves in P the correct number. We have used, for example,
"T»é-rm(TL,Z)" as an abbreviation for a program which puts rm(TL,z)

into T without destroying the constants of T The necessary pro-

L
grams appear as part of the program RM above.

Finally, let TM be the L2 program

InEut
Result
Mevg’n

OutBut

Then (TM_,X,S,P) computes'TMmzwith the properties required, and

Theorem (5.1) is proved.

(5.2) Theorem. For each n > 0 there is a Turing machine ﬁPﬁ
which computes a function LP : N L N with the follow-
ing property: if (g,in,P) is a Loop program with input
and output which computes f: N -+ N, then there is a

number e so that LPn(e,in) = f(in). Furthermore, if T,

~

is the running time function of P, then there is a con-
stant ¢ so that the total number of tape squares ever
scanned in the computation of L?n(e,in) is no more than

c-(e%—max{in)-+TP(in))3.

Proof. We will not actually construct LPp, but we will give enough
details so that it should be clear to anyone with some familiarity
with computation by Turing machines that'ﬁpn exists. Actually, the
first'par£ of the theorem is immediate from the intuitive computa-

bility of functions defined by Loop programs.

)

For each (P,in,P) there must be an e so if (P,in,P) computes
f, then LPn(e,in) = f(in). Thus e should somehow encode (g,in,P).

When this is the case, it is usual to say that e is a Godel number

of (g,in,P).

The encoding can be done in a variety of ways; the one suggested
here is particularly simple. First, we may as well assume that
Reg (E) =‘{ir}, that the input registers are in’ and that the oufput
register is Xl’ since clearly for any Loop program with n input
registers and an output register, there is another program in the
desired form. (The new program is obtained merely by making the

proper changes in the names of the registers and possibly adding an

“instruction ?Xl = Xk" to put the answer into Xl°) So we need only

consider programs like (g,in,xl) where Reg (P) = {Xr}.‘ Now, using

an eight-symbol alphabet:
LE=X1/+0

rewrite P by placing "/ betweeﬁ the instructions,by changing
"L00P(n)" to "Ll ... 1", that is, to "L" followed by n ""s, by
changing "Xk" to "X1 ... 1", that is, to "X" followed by k "1"s, and
by changing "END" to "E". Thus the program P=

X, = 0

LoOP(1) xl
X, = X, +1

END

X =X,

would become
X11 = 0/L1X1/X11 = X11+ 1/E/X1 = X11

Since 8 different symbols can appear in this repreéentation, the
representation of any program E can be interpreted as a base 9
number; take "L" to have digit value 1, "E" to have value 2,...,
"O" to have value 8. We will let the blank "B" have digit value O.
Thus given any program 2 there is a unique number e associated
with it, and if e is written in a base 9 notation P is recoverable
immedistely. On the other hagd, not every number e has a corres-
-ponding program; for example, all those numbers which contain signi-
ficant zeroes in their base 9 expansion.

Now we proceed to describe the operation of £P, Recall that
P is given an (n +1)-tuple (e,in) consisting of e+ 1 occurrences

of "1", followed by "B", followed by x, + 1 occurrences of "1",...,

1
 followed by "B", followed by xni-l "1"s. We write this initial tape as

.BeBx. B... Bx B..
I | -n

where the underlined letters x represent a string of x+ 1 "1"s.

ﬁfﬁl performs as follows: first go to the representation of e and
rewrite e as its base 9 represen%ation (which, as explained above,
is an image of g). Call this sequence of symbols €. Of course, the
length of € is no longer than the length of e; in fact the replace-
~-ment can be done using no more tape than is consumed by e itself.

‘The tape thus becomes

.8Bx,B...Bx B..
-1 |

Thén P, checks € to make sure it repfesents a permissible Loop
program; the checking consists of examining each instruction to
make sure it is a legal instruction, and verifying that LOOPs and
ENDs are nested properly. If € does not represent a syntactically
correct Loop program, (P, erases its whole tape and stops. Thus,
in effect, every number e will be associated with some function;
those numbers e which cannot be associated with a syntactically
correct Loop program will all represent the function which is iden-
tically zero.

If on the other hand € represents a syntactically correct Loop
~program, L, examines @ to determine the registers ir it uses, and

then changes the tape to

..-B&€Bx,B...Bx BOB... BOB.

which represents € followed by the r-tuple (in,O,...,O); that is,

the initial contents of ir since Xn+ ""Xr are zero. Continuing,

l!
L£P, produces the tape

- BE€B|x, B...Bx BOB ... BOB|1B|OB|B ...

1 T2 31 4 5

which, for convenient reference, we have divided into five regions.
Region 1 contains €, which represents the program P being simulated;

regions 2-5 together represent the initial state (ir,l,O,(O)) of P.

5%

{

S steps, and let m be an abbreviation for max{in}, that is, the largest

|
|
§

Sfﬁl is then ready to begin simulating g. In general, just before

- béginning\A step in the simulation, EEﬁl will have on its tape the

following sequence of symbols, if the current state is (ir,i,&,p).

..Be BKlB"fB§r Bi|BL B33113§213...ngllBB...BBglngajB...BikjjBB...

1 2 3|4 5

The representation of the state used in region 2-4 is obvious. The
contents of region 5, which represents the pushdown store, are inter-
preted as follows. The object at the top of the pushdown store is

(all’ azl,...,akll). More generally, the object at the m-th level

of the pushdown store is (alm’ CPRRRPL!). Tuples on the push-

down store are separated by double blanks, and members of a tuple
are separated by single blanks.
What is the length of this representation of a state? The length

of region 1 is no more than e+ 1. Suppose the simulation has run for

number initially in the registers. Then each of the X, in region 2

is no more than m+s. So the length of region 2 is no more than
r*(gy+s-%2). Bét according to the encoding we have chosen, r is cer-
tainly less than e. So region 2 has a length of less than e-(m+s +2).
Again, the number i represented in region 3 correspdnds to the in-
struction about to be executed, which is a number certainly less

than e, so region 3 has a length less than e+ 2 squares. The 4 of

region_h is either O or 1, and so the length of region L is 3 at most.

Whe@yer a tuple is placed on the pushdown store; all its members
are bounded by the largest number in any register. Since nothing on
the pushdown store ever becomes greater than the largest register,
any single number anywhere in the pushdown store is bounded by m+ s.
The largest tuple on the pushdown store has at most e components,
since the number of components is a function only of g; the depth
(number of tuples) of the pushdown store cannot exceed s, the number
of instruction executions taken so far. Therefore region 5 has a
length bounded by s-(l1+e-(m+s+2)).

Each of regions 1-5 has its length bounded by a polynomial of
degree at most 3 in s, e, and m. Therefore, the sum of the lengths
of regions 1-5 is bounded by c-(e-+§~+s)3 for some constant c.

The discussion so far has been fairly rigorous, except for the
claim that the string of "1"s representing e could be turned into

the string €. The main portion of the construction whose details

~ we will omit is that of showing that {Pp can transform the representa-

tion of a state as specified abévé iﬁto the representation of the next
state, without using any tape squares other than those already used.
We leave to thebréader the tdsk of convinecing himself that this is
possible, with the feminder that Efﬁl may use a large number of extra
symbols to mark tape squarés in which it has a special'interest at
some ﬁoment. We may also remark that all the theorems in the sequel

which use this theorem would be unaffected if the polynomial bound

c'(e+m+s)3 were replaced by any exponential in e, m and s; and

—

-finally that the encoding we have chosen is actually rather inefficient

and that by using a binary encoding of‘the numbers making up a
stafe, the present theérem would remain true with a bound on tape
consumption of d-log2(1+ e +g+s) for some constant d.

Granting that L8, is able to replace the representation of L
a state by the representation of the next state without using‘more
tape than is consumed by the states themselves, the theorem fol-
lows immediately. For SF% simply keeps simulating E until a final
_state is reached, then erases all of the tape but the portion con-

taining x. and halts on the rightmost square of the representation

1

of x,. Thus £8, has computed (P,in,Xl); and since the program runs | v

for TP(in) steps by definition, the total tape consumption is bounded
7 = \1\3 - = 3

by ct(e4:gj+TP(xn)) = c-(e%-max{xn}-+TP(xn)) . This concludes the

o~ ~

proof of (5.2).

(5.3) Theorem. For each n > O there is an £2 function Mh:
N*2 LN so that for any Loop program (P,in,P) which
 computes f: N” - N, there is an e such that Mﬁ(e,in,s) =

f(xn) provided s > Tg(xn).

" Proof. By (5.2) there is a Gddel number e for (E,Xn,P) so that
LPh(e,in) = f(in), and LP is computable by a Turing machine [£ 2N
whose total consumption of tape'is no more than c-(e+méx{in}+TP(in))3
- squares. For brevity let this number of squares be t; Now sa; i1 52}

has q states and uses k symbols. Then the total number of distinct

~tapes appearing in the computation is no more than kt, since each

|

1
H
[
1

i

{

tépe square can have printed on 1t one of the k symbols. At each
—sifuation occurring in the computation the Turing.machine is scan-
ning one of the at most t squares, and is in one of the g states;
therefore at most q-t-kt different situations can arise in the com-
putation. If one of these situations is ever repeated, the whole
computation must be caught in an endless loop; but this does not
happen, so the Turing machine must halt within q-t-kt steps, that
is, within a number of steps

¢+ (etmax(X_J+15(%))°

q.c-(e—kmax{in}4-TP(in))S-k =

~

= B(e);{n)TP(;(n))

Remembering that q, ¢, and k are fixed numbers, it is easy enough
to show that B is actually a member of ﬁz. Alternatively, it is

easy to show

i) . (etxy+e + ~+x,+Tp(xy))
B(e,xn,TP(xn)) <z ~

for large enough arguments. Since fz(x) = 2% and %2(x4-1) > fz(x),

there is a constant b so

B(e,in,T (fcn)) < ?éz)(e:i-xl + e+ xn+TP(§<n)+b)

~ ~

B' (e,x ,Tp(x,))

1

But B' is a member of Ez since it is obtained by substitution from
members of EZ. The function x+y, for example, is in fl via the

program A =

where (4,X,Y,Y) computes x+y.
Recall that the Turing machine {f, of (5.2) is a particular,
fixed machine. Apply (5.1) to this machine to get an £2 function

TMEP so that if 2z exceeds the number of steps required for £5;

n
to halt,

TM&',Pn (e,in;z-) = LPn(e,{cn)

Then take Mh(e,in,s) = TM£§g(e,in,B‘(e,in;s)). By the fact that B!

is increasing, the proof of (5.3) is complete.

§6. All the investment in labor of §32-5 now begins to pay off.
We have several easy theorems which characterize the classes ﬁa

for o > 2 in three ways, and which show each classk.(ia fora>2

has two important closure properties. Finally, £a+l has a universal
function for f’cx’ and £a+l has a very small function not in S:a.

(6.1) Theorem. For o > 2, a function f: ¥ - N is in £y
if and only if there is a program (P’Xn’P) which com-

putes f such that TP is bounded by fép) for some num-

~

ber p.

Proof. The "only if" part is simply the Bounding Theorem (3.6).
. - (p) - =y < 3(P)

Conversely, if Tz(;gn) <1y (ma:gﬁ?cn}), then Tg(xn)vs ?o: (xl+ e X+ 1).
This latter function is in Sf,a. Then by (5.3) there is an e so

=y = 2(p) . .
f(xn) = Mn(e’xn’foz (Xl + e 4+ xn+l)). Since M o€ 552, by substitu-
tion T € S:a for o > 2.

This thecrem is interesting because it shows that if we have

any program P which computes f, no matter how deeply the loops of

f, are nested, so long as the running time of P is bounded by fétp)

~ then 3 can be rewritten as an La program.

(6.2) Theorem. For o > 2, .(",a is the class of functions which
are computable by a Turing machine where either the
running time of the Turing machine or its consump-

tion of tape 1s bounded by f(p)

o for some number p.

5

Proof. Immediate by (5.1), (5.3), andlthe argument of (6.1).

' Theorems (6.1) and-(G.Z) provide further evidence for our
basic claim that the complexity of a function can be measured by
the ordinal assigned to its Loop program. In pafticular, (6.2)
assﬁres us thét thé hierarchy of sets Ea does not arise becausé
of some peculiarity in the definition of Loop program, but that
in fact if some function f is in %a but not in EB (where o > B)

then f is more difficult to compute than any function in {, even

B

if the computation is done by the familiar Turing machine.

(6.3) Theorem. The n-argument functions of %1 are pre-

cisely the functions expressible in the form

£(%) - Mn(e,}-cn,fép)(max{in}))

for some numbers e, p, and where Mh is a particular

function in ﬁ?‘

Proof. That each f is expressible in fhe required way is an imme~
diate consequence of (6.1) and the Bounding Theorem (3.6). The
converse follows from Tﬁeorem (4.5) and the closure of ﬁa under
substitution.

Theorem (6.3) characterizeé Ed in a purely arithmetic manner,
without reference to Loop programs or Turing machines; Notice,
howéver, that we have not yet‘proved Theorem f4.5) which shows
that Qx € Ed; thus to avoid circularity we will refréin from using
(6.3)-unti1 (4.5) is proved. Theorems (6.1) and (6;2) do not de-

pend on (4.5).

(6.4) Definition. A class{f of functions is computation-
| Eigg closed if whénever f e t, there is a function
Se € % such that Se pointwise bounds the number of
steps required to compute f on a Turing machine,
and if.convérsely whenever there is an Se e*a
which bounds the number of steps required to com-

pute some function f, then f ¢ fi;

(6.5) Theorem For o > 2, %3 is computation-time closed.

Proof. Immediate, using (6.2) and the fact that %a ¢ & and ’f’a(x')
> fa(ic) for x > 0.

It can be proved that every class of functions which is closed
under substitufion, computation-time closed, and containing a suf-
ficiently large function is also closed under the operation of limited
recursion defined below; we will use another, more direct method
to éhow each Ed is closed under limited recursion. The proof
yields a corollary which indicates the power of the classes %&

for a < w.
(6.6) Definition. If f obeys the conditions

£(%,,0) = (%)

f(;(nJY‘*‘ 1) = h(in)y:f(in:}r))

then f is said to be defined by primitive recursion from
-g and h. We allow the case n = 0, so that g may be a

function of O variables, that is, a constant.

(6.7) Definition. If f: N°TT

- N is defined by primitive
recursion from functions g and h, and if in addition
we have f(in,y) < b(in,y) for some function b and all

in, ¥y, then f is said to be defined by limited

recursion from g, h, and b.

(6.8) Theorem. For > 2, .Sia is closed under limited
recursion. That is, if f is defined from g, h, be .ﬁa

by limited recursion, then f € S_',a.

Proof. We have

f(}—(n,O) = g(in)
f(in}y‘*‘l) = h(;(n:yyf(;(n:Y))
f(;(n:.V) < b(;{n:Y)

where g,h,b € Sia. Let (g,in,G) be a prog;‘am for g where G eI,
- and G does not destroy iegisters Xn and Y. Let (§2in,Z,F,H) be
g program for h where again g € L'a and E does -not destroy the
contents of in’ Z, F.. We also assume that the registers of G

and H do not overlap except for Xn' Such programs are easily

found given any programs for g and h. Then let F be the program

G
F=0G
Z =0
LOOP(1) Y
H
F=H
7 =7+1
END

.

W

Then (E,}_(n,Y,F) computes f. For say y = O; then the instructions
witﬁiﬁ the Loop are not. executed, and after execution F contains
g(in) = f(}.(n,O). If y > 0, after the first execution of the in-
structions in the Loop the contents of F are h(;’cn,o,g(in)) =f(x,1);
by .inductibn,‘ aftér the y executions of the instructions within
the Loop, the contents of F are h()-cn,y— l,f(}-cn,y—l))= f(fcn,y).
By counting the steps required to execute F, |

- - -1 - -
Tz(xn,y) = TG(xn) ~+ ZZ:O[2+ Tg(xn,z,f(xn,z))] +y + 4

~

By the Bounding Theorem (3.6), if we let m = ma.x{}-cn},

1) < 2P @) + 20 Toe X2 (axlan, oGm0 T4y o

By (3.8) since b

m

ﬁa ’

() < 10 (m) + 2 2+ 150 (maxlm, 7, 557 (max(m,2))))] 47 44

<P m)+ (y21) 2+ 49 (a7, £ (maxm,30))] #y+ 4

Then by using Lemma (3.4) repeatedly, exactly as in (3.‘7), there
is a number s so that TF(;cn,y) < fés)(max{_rg,y}). But then by (6.1),

fe Ba- This concludes (6.8).

The method yields two corollaries.

(6.9) Corollary. If f is defined by primitive recursion

from g ¢ £a+1’ h ¢ ﬁa, then f ¢ £a+l'

VE

Proof. If f is defined from g and h exactly as in the theorem,
except that the requirement f(in,y) < b(in,y) is dropped and we

now allow g € £a+1 ; then the program for f given in the proof of

(6.8) still w§rks; by Definition (1.1) of Ly,.7 E € gOl—i—l'

(6.10) Definition. P, the class of primitive recursive’

functions, is the smallest class of functions con-
taining the successor function s(x) = x+1, the iden-
tity function i(x) = X, and closed under substitution

and primitive recursion.

(6.11) Theorem. The class U Lo
a<w

~—rpecursive functions.

contains the primitive

Proof. ﬁo contains s(x) and i(x). By (4.9) and (6.9), each primitive

recursive function is in £, for some & < W.

(6.12) Theorem. For each & > 2 » S contains a universal

function for ﬁa; that is, a function Ua: Nz -+ N so
~ that if f: N » N is a function in sza, there is an e
so Ua(e,x) = f(x), and conversely for each fixed e,

Ua(e,x) is an £y function.

(Y)(

Proof. Given a function g, its iterate g x) is defined by a

special case of primitive recursion (see Definition (3.1)). Thus

in particular the function f’c(xy)(x+ 1) is in Lo Take

1

Ua(e,x) = Ml(e,x,f'ée)(x—k 1))

For each fixed e, Uy € Ea- Also, each function in Ly must have an
infinite number of Gﬁdei numbers; for example, an arbitrarily large

number of (useless) "X = X" instructions may be prefixed to any pro-

gram. Thus by (6.1), for every f € £y there is an e so f(x) = Ud(e,x).

'Notice that although we used (6.9) in this proof, the theorem
follows essentially from the computation-time closure of Ea and the

fact that EO%l contains a function which bounds every function of Ea.

(6.13) Corollary. For each O > 2, o,y contains a charac-
teristic function (that is, a function whose range

is {0,1}) which is not in Lo

Proof. It is immediate that the function 1l:x is in £1 and hence in
Sy Take g(x) = 1=Ud(x,x). Then by Cantor's diagonal method, if

g € &), g must have a Godel number e: g(x) = Udﬂe,x). But then
1=U,(e,e) = gle) = Yyle,e)

’which ig absurd.

|

N
J

ITT. MULTIPLE RECURSIVE FUNCTIONS

§7. This chapﬁer studies the theory of the multi?le recursive
functions. Many of the results in this theory have exact counteré
parts in the théory of loop programs developed in Chapter IT; it
also turns out that the methods of proof of the corresponding
theorems are often gquite analogous. In large measure the similar-
1ty in the development of thé two theories occurs simply because
the theories are, in fact, very similar; it is also due to a con-
scious attempt-to draw the appropriate parallels. This attempt is
made in the belief that both the author and the reader benefit from
the technical economy achieved by using a few tools rather than a
large coliection. Finally, we believe the methods uised here and
in Chapter II are of great utility in the characterization of sets
of computable functions; support for such a claim can only come
from successful use of these methods.

The theory of Loop programs‘may be regarded as an attempt to
examine the result of restricting the notion of program in such =z
way that the structure of a program controls’the complexity of the.
operations the program performs. - The theory of Loop programs is
thus in the tradition of the Turing-computable functions: those
functions computable by Turing machines. Here we take "Turing
machine" in the broad sense of referring to all ﬁhe various theo-
reticél machines which serve as models for digital computers. But

it is well-known that several quite different ways of defining

)

b
e "}

"effectivély computable" all lead to exactly the same class of
functions. Chief among these alternati?é approacﬂes is the defini-
tion of functions by Herbrand-Godel-Kleene recursion“equations.

We summa;ize this approach, following Klgene dg; §547.
Iﬁagine a formal language built up frqm-several basic symbols:
= (equals), ' (successor), O (zero), (,) (left and right paren-
theses), £, 8, h, fl’ g El""’ (function letters), X, ¥ 25 Xq5
Ypr Zyseees (variables for natural numbers), and , (comma). From
these symbols are constructed several kinds of formal expressions.
The numerals are O, 0', O",...; these stand for the natural numbers
0, 1, 2,... . The formal expression which is a numeral for a number
x we write v(x). Terms are O, any variable letter, expressions of

the form t' where t is a term, and f(t ..,tn) where f is a function

1’
letter and tl,...,tn are terms.

Next we have equations of the form t = s where t and s are

terms. Systems of equations are finite sequences e

IERREEEMN of

equations. The systems of equations are the basic objects of study.

A system of equations may have a principal function letter:

the first (left-most) function.letter of the last equation of the

system. From a system of eQuatibps formal deductions may be made.

The deductions are precisely aﬁalogous to deductions in formal

logic from a set of postulates. There are two rules of inference:
(R1) From an equation containing a vafiable‘letter,

we may pass to the eqguation obtained by substituting

;

a particular numeral for every occurrence of

the variable letter.

(R2) From an equation of the form f(v(xl),...,v(xn))

= v(x) and another equation r = s, we may pass

to the equation which results bj substituting

v(x) for one or more occurrences of f(v(xl),...,v(xn))

in the équation r=s. |
Then a deduction of an eguation e from a system of eqguations E is a
sequence of eéuations, each of which is either one of the equations
of E or obtained from one (or two) of the earlier equations of the
deduction by an application of Rl (or R2).

A syStemlof equations E defines the funetion ¢ recursively when-

ever the following holds: £ 1s the principal function letter of E,

and for all x %X the equation f(v(xl),...,v(xn)) = v(x) is

100
deducible from E if and only if-@(xl,...,xn) = x. If a (total)

function has a system of equatiéns which defines it recursively,

IS

the function is called general recursive. Kleene shows that the

class of general recursive functions is precisely the same class as
the functions computable by a Turing machine.
The class of multiple'recursive functions may be defined in an

analogous way; we will instead use a slightly different approach,

and then discuss 1ts relationship with the Kleene formulation.

R

(7.1) Definition. For some n > 1 and m > O, suppose

(7.2)

defined by n-recursion from CSERERNI-S0

the function f:Nn+m - N satisfies the 2" equations:

f(O,...,O’,}}m) =T

£(0,...,0,x +1, :§rm) = F,

£(0,...,0,%, 1+1,0,7) = Fyg

fx -Pl,...,xn+-l,§m) = an

1

where T F , are formulas built up from constants,

SRARREEIS

variables in’ im’ and functions g,,...,g, by sub-
stitution. Suppose also that Fl contains no occurrences

of £, and in-each other equation

f(glJ e :gn).:);m) = FJ

where each §i is either "Xi+-l" or "O", each occurrence
of £ in FShas a k, 1 <k <n, sof appears in the context

f(él,...,g x ,T "’Tn’gm) where §k is "xk+-l", an@

k-1’ k+1°°

Tk+l""’Tn’sm are terms (i.e. formulas) built up from

variables §m and those X, for which §i’= "Xiﬁ-l" by ap-

plication of‘gi,...,gr and f. Then f is said. to be
r

Example. £ 1s defined by Z-recursion from gyrv+ 18

r

if f satisfies

f(O:O;Y) = gl(Y;S)

f(O;XZ +l)Y) = f(O:XZ;gZ(Y))

f(Xl‘*‘lJO)Y)‘: f(Xl>gs(f(Xl:Xl}yfl));gg‘t(y))
f(:(l+l)X2 +l)Y) = gS(f(xl}f(Xl+l}X2)y))y))

EII o

r

(7.3) Definition. For each ordinal & < aeﬁ Ry 1s the least
class of functions satisfying o

(i) 1IfQ O; ﬁu contains the successor function

s(x)

(i1) If B <O, Ry ¢ Ry

x+1 and the identity function i(x) = x

il

(iii) Ry 1s closed under substitution
(iv) If @ = B+d for some n > 0, and T is de-

fined by (n +1)-recursion fromgl,...,gr € RB,

then f € Rye
We will call R = U , ® the multiple recursive functions.
a<w
Also, for each n > 1, U @a is the class of n-recursive
a<w :
functions.

It will be seen that if a function f is defined by n-recursion
frqm well-defined, total functions VRIS then £ is in fact a
well-defined, total function. The proof 1s by induction on the
well-ordering of n-tuples of integers under the lexicographical

ordering.

(7.4) Definition. The n-tuplevin is lexicographically less

- than the n-tuple §q (in symbols, (in) < (§n)) whenever

there is a u such that x_ < y_ and for'all i <u, x, = ¥, -
u - Yu i i

Notice that this relation is a well-ordering of order type
o by the mapping

(xn) > dP_l-xl + e 4+ Wex

1;4} (7.5) Theorem. If f is defined from total functions
gyr0 8, by n-recursion, f is a total, well-

defined function.

Proof'. We have the equation f(O,...,O,&m) = Fl. By the definition,

Fl cannot contain any qccurrences of f; so f(O,...,O,im) is uniquely

defined for all &m. Now suppose f(%n,ﬁm) is uniquely defined for
all y_ and all z, with (zn) < (Xn). Then f(xn,ym) = Fj’ where‘Fj
is a formula built up from (some of) §ys-s8, and occurrences of

f of the form f(Tn,ém) where T ,...,T ,S .,Sn\are terms and, by

1’
definition, (Tn) < (in). Thus f(in,iﬁ) is uniquely defined.

170"

Now by Definition (7.3) each function f € Rd is defined by a
sequence of equations, each of which defines a new function used in
V} the definition of f. The ipitial equationé in the sequence define
functions from the initial functions s(x) and i(x); and each equation
in the sequence is either an instancé of substitutionlwhich defines
a new function from functions defined earlier, or part of an instance
>of the schema of n-réecursion from functions defined earlier. These
equations can of course be translated into the fofmal equations of
Kleene; this 1s really nothing more than a one-f@ripne replacement
of the informal symbols of the defining equationé-gg; the formal
symbols of the recursion equations. Conversely, 1t should be ob-
vious that each system of formal equations which obeys a few purely
syntactic rules defines a multiple recursive function. The rules
are: each equation e is either of thekform f(xl,...,xn)bg T, where

T is a term containing no function letters, or is of the form

f(xl,...,xn) = T, where T is a term containing function letters de-
fined by earlier equations (formal substitution), or is part of the
(formal) scheme of n-recursion corresponding to the (informal) De-
finition (7.1). We aiso require that each system of equations be
consistent: that it not define the same function letter twice, nor
use the same function létter with varying numbers of arguments.
Again,.this restriction is purely 'syntactic. We may also attach

an ordinal @ to each function letter used in such a restricted
system of equations: if a function letter f is defined by (formal)
substitution from function letters f ’7"’:r’ attach to £ the

1

ordinal & = max{®_ ,...,& } whére & ..,8 are the ordinals attached
1 r r

1’7

l,...,fr; or if'r = 0, so f is defined by substitution from ﬁhe

empty set of functions, & = 0. Also, if f is defined by (formal)

to f

(n+1)-recursion from g)s--s8, @ssign f the ordinal @ =
max{al,...,dr}ﬁ-&p. Then assign to a .system of equations the or-
dinal of its principal function letter, and let R, be the set of
those systems of equations with ordinal less than or equal to &.
The point is that the systems of equations in Ra have a purely
.syntactical definition; furthermore, given a Sequence of formal
symbols, we can effécﬁively test whether the seqﬁencé is in Ra.
Finally, each member of Ra is a system of equations in the Kleene
sense, so deductions may be made from such a system in exactly the
Same way as they are from the more general systems of equations.

It should be clear that a function f is in ﬁﬁ if and only if there

is a system of equations in R, which defines f recursively.
Other writers use definitions of n-fécufsipn somewhat differ-
.19 20 ‘
ent from ours. Péter [PL, PZ], for example, uses a slightly less

general scheme in which f obeys

f(Xn’ym) = g(ym) , .‘1f. Xl ce..'x =0

f(il +1,...,xn-+1,§m) = F o#herwise

where each occurrence of f in F has the form

f(xl4»l,...,xi+-1,xi+l,Ti+2,...,Tn,ym). Our developmengtcould Jjust
a

as easily have been carried out in this way. Robbin [JR] uses a more

general scheme.

f(in,grm) =F_ if (xn) = (0,...,0)
f(:‘cn,:}m) =F if (x,) # (0,...,0)

where Fo is a formula not containing f, and every occurrence of f

LSy

are formulas and for all (in) 4 (0,...,0), (Th) < (in). The only

in F is of the form f(Ii""’Eh’Sl”"’Sm) where T.,...,T ,8

problem with this scheme for our purposes is that given a pair of
equations in the above form, it is not clear from their syntactic

structure that f is properly defined, because the condition (Tn) < (Xn)
is not a syntactical property, but depends on the values of the functions
involved. In fact, given a pair of equations like the above, it is

effectively undecidable to determine in general whether the condition

(Tn)<i(in) is met. All of these approaches have the common property

that a function is defined by induction on the lexicographical well-
ordering of n-tuples. As we will discover, all the variations are

equivalent in that they lead to the same classes of functions.

§8. This section corresponds to §§3-4 of Chapter II in that it
establishes the rate of growth of the largest functions of each

class @a. There is a Bounding Theorem for ﬁa, much like Theorem

(P) for

(3.6), showing that each function in @3 is bounded by fl+a

some p; and a Hierarchy Theorem for ﬁa, wﬁich proves the inequaliﬁy

ﬁ& o> R, for a > B by demonstrating that f

8 140t € ﬁd for ¢ > 1. Thus

the Bounding Theorem for ﬁd'is different from fhat for Ea, in that
the former limits the size of the functions of @j, whereas the latter
bounds the computation time of functions of Ea. The bound on the
fqnctions of ﬁa came as a corollary to the bound on computation time;

yeN€vs e
the reserve-will be true of Rd.

(8.1) Bounding Theorem for ﬁd. If f:Nn - N is a function
(p)

in ﬁd’ there is a p such that f(xn) <134

(max{in});
p depends effective on the recursion equations defin-

ing f.

Proof. ILike that of the Bounding Theorem for Loop programs, this
proof is by induction on Definition (7.3) of ﬁa. There are four
cases corresponding to the four clauses of (7.3) which exhaust the

ways by which a function f'may be a member of ﬁa.'

Case 1. f(x) = x+1 or f(x) = x. We have immediately that
£(x) < £ (x) < £ (x).

- "0 - "1

Case 2. f € RB and B < @. Then we have a p so that f(in) <

fii;(max{in}) by the induction hypothesis for @B and (3.4.viii).

B

Case 3. T is defined by substitution from functions gl,...,gr€ ﬁa.

The theorem is immediate by Lemma (3.4).

Case 4. f is defined by (n+ 1)-recursion from functions
gy 7018, in &6, where O = B-+aP. This case is proved by induction
on n. Suppose F is a formula built up by substitu&ion. We define
the QEEEE of ¥ by induction on its structure as follows: the depth
of a variable or a constant is zefo; the depth of g(Fl,...,Fm) where

F s.--,F are formulas is max(depth(Fj)}+ 1.

-

Now consider the base of the induction, n = 0. Then @ = B+ 1

and f is defined by l-recursion from Brre 18, € ﬁB. We have

f(O,‘&m) = Fl

f(x+1,y,) = F,

Let a be the greater of the depths of F, and Fz, and let b be suf-

1

ficiently large so fiﬁ% bounds each of SRR and also all the

constants occurring in Fl and FZ' Then

- (ba)

£(0,3,) < Ty

o (max(im})

~ Suppose for each z < x where x > O we have

_ (baz+l) _
£(z,y,) S5 (max{z,y)
By definition, f(x-+l,§m) = F,. But since each occurrence of f in

F2 is of the form f(xaim), by the increasing property of fl+B and

the hypotheses on F2 and £,

(baX+2

)
1+B (

f(x4—l,§m) <f max{x—%l,&m})

Thus, if we write m for max[x,im},

(o x+l)

£(x,5,) <18 (o)

(b2t ()
= fl+f3 f3p()

m+1
+

i

Lolba= " +m)

<t féba+l) (m)

- (ba+2)()

IA

We have thus proved the following for n = O:

(8.2) Lemma. If f is defined by (n+1)-recursion from

gl,...,gr, and if the greatest depth of the formulas

Fl,...,F2n+l defining f is a, and fg % bounds all of
gs-+:8, as well as all the constants of Fl,...,F2n+l,
then f is bounded by f£23+t+2)’ where O = B-&ae and
6= t.(B).

Proof. The basis n = O has already been doné, so we will assume
the lemma for some'nbz 0 and prove it for n+—l.'.Thus, a function
f(x,xo,...,xn,im) is being defined by (n+ 2)-recursion. For each
fixed x, let f(x)(xo,...,xn,im) = f(x,xo,...,xn,im). On examining
the 2n+2 equations defining f, it is found that the first 2n+1 of

them constitute a definition of f(O) by (n +1)-recursion, for these

equations specify the value of f(x,x ..,xn,im) when x = 0. Thus

by the induction hypothesis, f(O)(XO":;’Xn’im) §‘f§b2+z;2)(m)
: T 1B+

where m is max[xo,u..,xn,ﬁm} and t = tn(ﬁ). Suppose for some x

0’

b

that

((ba+t42)x+1)

f XoyeeasX 5,y) < T (
(X)(%) S 1+ (x4+1) z)

Again, by the definition (7.1) of n-recursion, f(is defined by

x+1)
(n+1)-recursion from g)s-+s8, and f(x)' The depth of the defining
formulas is still a, and by (3.4.viii) and the induction hypothesis

for SRR the function

. ((ba+t+2)X+1)
14+B+a (x+1)

e

bounds all of =S RREET - f(Thus, now letting m be

x)’

mgx{x +1’X0""’an§m}’

(- ((ba+t+2)x+l-a+t+2)
- f Lo X L,y) < F ' m
(1) 07 % 0Im! = % gy in(4e) =
((ba+t+2)X+2)
f m)
1+p+af (x42) T
Thus, we have shown where m is max(x,xo,...,xn,ﬁm},
. .(ba+t%2)x+1)
f(x,x.,..,X < f(m
(ER ’ n:ym) = 1+B+(Dn(X+l)' (__)
ba+t+2 E‘+m)
< f((=+ (1)
= L+B+af(m+l)

2
< £ (ba +t +2)5" }
= T1+p+aft(ml)+1 (ba)
< fl+8+wn.A(A) where A = (ba +t+2)%7

Em%

L »

. _ .8, L. n+l ' . o, -
Now if B = w bs + + w bn+l + +'u)'b , let B' =
af-bs + eee 4 a?+l.bn+l- Thus B' is the least ordinal so o o= 5'+—a?+l,
m@_1+5+dﬁ%ba+t+2ﬁﬁ2= 1+&-H§.“ba+t+2ﬂﬂ2+gﬁ. Then

f(X’XO""’Xn’y‘m) < fl+5'+ap'(A+bn)(A—gbn)

§+2

i

fl%a((ba-+t~+2) +-bn)

(baﬁt+bn+2)(

S flﬂd E

But since tn+l(6) = t-+bn by definition of t, this proves Lemma (8.2)
and thus Theorem (8.1).
Unfortunately, the somewhat more atﬁractive conjecture that gép)

bounds the functions of ﬁd fails. This matter will be discussed

after (8.3).

(8.3) Theorem. For each @ > 1, f €R_.

e a
Proof. Consider the function hﬁ.n: Nn+2-*9N defined bY (n+2)-
J .
recursion from fB:
hB,n(go"'f’gn’O) =1
n (0,...,0,x+1) = £ (x+1)
B:n ’ B

hﬁ’n(go,...,§n~l,xn+l,x+l) = hﬁ’n(go,...,gn_l,xn,hB)n(go,...,gn_l,xn+1,x))

hB,n(gO"'"gn—Z,xn-l+l’o’x+l) = hs,n(éo""’én—z’xn—l’x+l’x+l)

,n(xo+1,0,...,0,x+l) =h n(xo,x+l,0,...,0,x+l)
2 . .

Be B

Each equation containing a & is schematic in that it represents all
the equations obtained by replacing gi by "xi4-l" or "0". We show

that when B is of the form B = B'+~a§ for some B', then

O .
hB,n(xO""’Xn’x) = fB+Y(X) where 7y = W X ot WX The in-
duction is on y. If ¥y =0, so x_ = -+ =x =0, then hg,n(o ,0,%)

= f_(x) by the first and second equations. If v is a successor, so

B

Y =0+1 wvhere d = ap'xo + et g?-xn, the third equation applies:
h ,n(go""’gn—l’xn+l’x+l) = hB,n(go""’én—l’xn (§O’ n 1°%4 +1,%))
By the induction hypothesis for & and the first equation, we have
hﬁ’n(xo,..., n-1% “+1,0) = 1 . |
5 n(x ..,xn_l,xn+l,x+l) = f8+5(h6,n(xo""’Xn-l’xn+l’x))
But for fixed Xyre oo X these are the same equations defining fB+6+l
n-m

= f , by Definition (3.2). Finally, if Y is a llmlt, soyYy=0+w

B+Y
. n n-m+ n-m
where m < n and & = a>-x0 + e + W 1-xm_l-+u> Xy We have

B,n(x ..jxm_l,xm-+l,0,...,0,0) =

X _1:%.+1,0; vee30,x+1) =h m_l,xm,‘xﬂ,o, ce e, 0,x+1)

hB)n(XoJ"‘) B,n(xo}"'ix

‘Combining the equations and using the induction hypothesis for 3,

cesX . ,X +1,0,...,0,%) = n-m-1 (X)

hB,n(XO" m-1""m B+§+

Fpan ()

by Definition (3.2).

S

Now consider the equations

£(0,y) =y+1

f(X"‘ l;}[) = f(x:f(XJY))

which are an instance of l-recursion. We show that f(x,y) = y-kZX.

This is clearly true for x = 0y if it is true for X,

f(x'*‘l;Y) = f(x, f(X)y))

f(x,y) + 2*

"

y+2x+2X

y+_2x+l

1

So f € ﬁl and f(x,0) = fZ(x).
Now let @ be an ordinal, 1 <O < ugﬁ and assume that fl+5 € RB

for 1 < BP<a. IfQis a successor, @ = B+1, then f1+a is obtained

from f,,p by iteration (Definition (3.1)), which is a special case

of l—recuréion, 50 fl+5 € Ra; If @ is a limit ordinal, let B be the

least ordinal so @ = B-+ap+l. By definition, is obtained by

hl+5,n

(n +2)-recursion from fl+5’ and so by the induction hypothesis,

But hl+B,n(x,O,...,O,X) = fl+5+aP°X(X)=:fl%j(X)’

so by closure under subétitﬁtion; f1+a € ﬁa. This concludes (8.3).

hl+5,n € R1+5+ap+l'

The rather unpleasant need_to use T yj'to bound §&,, rather than

1

ﬂz, stems from the difference between l-recursion and primitive re-

cursion. The equations above,

J

f(O)y) =y+1

f(x+.l,y) = £(x, £(x,y))

i b'q . e .
which make f(x,y) = y+ 27, are not an instance of primitive recursion,

because in the latter scheme the parameters must remain fixed, not
variable, in the defining formulas. In other words, the schema of'

primitive recursion may be written

£(0,y,) = Fy

f(x+1,5,) = T,

where F. does not contain f, and where every instance of f in F_ is

1 2

of the form f(x,&m); here l-recursion would have f(x,im) where im
are formulas. The difference is between "nested" and "unnested"

formulas. Thié matter will be discussed more fully in Chapter V.
Notice, incidentally, that if @ >, 1+a = . |

The above results give

(8.4) Hiefarchy Theorem for f,. If a > B, ﬁd :>RB=

Proof. Immediate by (8.1), (8.3), and (4.8).

% ‘ §9. The task of this section is to establish the computation-time
closure of Ra for each @ > 2. The path we take is essentially the
same as that foilowed for Sa: show that the compuﬁation time of
each function in ﬁa is bounded by another function in ﬁa, and theﬁ
find a function in ﬁz which mimics the act%ons of an arbitrary
’Turing machine for a given number of steps. We base the proof
for the first half of the result on the use of deductions from the
formal recursion eqﬁation defining a funétion in ﬁu. This method
is by no means the only way to carry out the proof, but it seems
to offer the féwest technical difficulties and will be applicable

as well to later work.

(8.1) Theorem. For each & < &91 if £ € ﬁa then égn be

computed'by a Turing machine in such a way that the

J

number of steps required to compute f(in) is bounded’

(p) -~ _
by fl+a(max{xn}) for some p.

Proof. We will show that for each f ¢ Ra'there is a set of equations

(q)

E defining f recursively and a number g so that f1+a

(max{in}) bounds
the number of equations in a certain deduction of the equation
f(v(xl)’f"’v(xn)) = v(x) from E. Then we wili arrange for a
Turing machine to perform tée deduction and conclude the theorem.

If f € R, then f(in) = x,+c or f(in)'= ¢ for some constant

c. Thus f is definable by one of the equations

T a6l

e _ 1
f(xn) = x}

s

R

or

iy — 1.t
f(xn) =0

A deduction of the equation f(v(xl),...,v(xn)) = vy(x) simply con-
sists of the n+1 equations which start with the original defining

equation and have the variables x cX successively replaced by

1’7
v(xl),...,v(xn). Thus the number of equations is bounded by a con-

(n+1)

stant, n+ 1, and a fortiori by fl

(max{in}}.

B
with B < @, the claim is trivial by Lemma (3.4.viii). If f is de-

Now suppose f € ﬁa where @ > 1. If f € Ra because f € §&

-

fined by substitution from functions in ﬁa,‘the proof follows from

arguments similar to, but simpler than, those used for the next

case. We omit the details.
There remains the case in which f is defined by n-recursion

. . ’ n-1-
from functions in ®,, where 4 = B+ 1 for some n > 1. We have

p

the 2" equations

PO R n

where each equation is obtained by allowing each gi to be either
"xi+'l" or "O". The functions g)s---,8, appearing in the formulas

Fj are all bounded by fﬁgé for some q by Theorem (8.1). Define for

n.
each i, 1 < i <r, a function 4, :N * =N such that &, (x ,...,%,.)
- = &5 €171 i

bounds the number of equations in the deduction of the equation

8, (V(x)) 905)) = V().

=

How do we deduce the equation f(V(xn),‘v(ym)) = V(x)? (We have

written,V(xn) for v(xl),...,v(xn).) First select the applicable

equation on the basis of which X, are.zero:

f(g ;5') = I,

and then substitute the desired numerais for the En to get

$(V) s V)) = v(F))

where V(Fj) is Fj with a numeral substituted for each corresponding
variable in Fj. This requires n+m+ 1 equations. Then replace one
of the innermost function letters by the numeral which is its value.
This will require a subsidiary deduction of the proper equation.
Then, similarly, replace one of the remaining innermost function
letters by making a second subsidiary deduction, continue until

all the function letters are removed from V(Fj); we then have

f(v(x), viy,)) = v(x)

for v(x) a numeral. Thus the total number of equations is no

more than
n+m+1+ ZH’hk(Tl’ - ,'Tsk) +1]

equations, where the sum ranges over all literal appearances in Fj
of a function letter h in the form hk(Tl"'°’TSk) and where Tff"’TSk
are formulas. Notice that we include f itself in this census of

function letters, so terms of the form {f(Tl""’Tn+m) will appear

ri-te

in the expression above; this function letter represents the number
of equations required to deduce f.

Thus we arrive at the 2 equations

’tf(gn)ym) = ZJ'

These define the function {f by n-recursion from COERRRRI-

L ,...,4 , £, and addition. Each 2, is a formula n+m +1 +
3 g, J
Z[{hk(Tl,...,Tsk)+-l] like the one derived above. Now consider the’

following modified equations:
*(tE v = 5%

Here Z; is the formula arrived at by repiacing each occurrence of

A (qi) .
gi(Tl,...,Tsi) by fl+B (Tl+ cee 4 Tsi), where g, is chosen so the

latter function bounds the former; likewise, &gi(T

1’
. (py)
placed by its bound f L (T, + *++ + Ty). That such bounds exist
1+8 1 55

..,Tsi) is re-

is guaranteed by Theorem (8.1) and the induction hypothesis for

Lo s oty

(T, in whi nlas 5%
Zj by f(Tl, ’Tn+m) By the way in which the formulas Zj were

) in

Finally, replace each occurrence of‘f(Tl,...,Tn+m

defined, %; is thus obtained by n-recursion from the functions x+ ¥y
. ' * : () ' ‘
and flfB’ so by Lemma (8.2), £f is bounded by fl+5ﬁmp"l for some g.
- = *,= = - -
But we also have £f(xn,ym) > &f(xn,ym) and Lf(xn,ym) > f(xn,ym), for
'{; is defined from increasing functions which bound those defining

-Lf and f, and the formulas defining %; are of equal or greater depths.

Thus the deduction of f(V(xn), V(ym)) = v(x) contains no more than

(q) - - ,
fl+5ﬁ1p—l(max(xn:ym]) equations.

E -2

Foa?

Next, it should be clear that there is a ¢ so the t-th equation

t+max{in,§m}

in the deduction will contain no more than c characters.

For substituting a numeral v(x) in an equation can increase its
length by at most d-&(x) for some fixed d; and each numeral which
is substituted is either one of the in’ im or already appears as
part of an earlier equaﬁion. Since fz(x) = 2%, there is an s so

the total number of characters in a deduction, namely

. CO T _ -
D a5y 10T) i)

1+ n’¥m
: (s)
1s bounded by fl%a'

Now a Turing machine can certainly carry out the deduction

we have outlined. Given input in’ ﬁm, it simply forms the equation
f(in,im) = Fj’ and proceeds to derive the succeeding lines of the
deduction exactly as suggested above. Even if none of the deduction
is erased from the tape, the total number of ftape squares used

need be no more than

(s)

X4 -+Xn+ n +yl+' . -+ym+m+ fl_*_a(ma}({xn)ym))

Then by exactly thé same argument as that given in {5.3), the total

p)

+a(max{in,§n}) for some

number of steps required is no more than fg

P, solong as @ > 1. Even if o = O, the theorem remains true; for

suppose f(in) x;+c. Then f can be computed as follows: move to
the left over the repfesentatiom of Xyseees® s erasing the tape,

until x, is reached; pass over x;, and then add c-1 "1"s to its

left. Continue to the left, erasing Xo _qyreso¥yw Then move right

1

again until Xi+ c has been passed, and stop. The total number of

(p)
1

cludes the proof of Theorem (9.1).

steps is no more than f (max{in]), for suitable p. nThis con-

A fuller discussion of the use.of Turing machines to carry
out deductions‘frém recursion'equationé is given by Kleene Lﬁi §697;
readers who mistrust our sketch of such ﬁechanized deductions should
consult this work. |

Theorem (9.1) constitutes half of the proof that ﬁa, o> 2,
is computation time closed; the other half follows from the next

theorem.

(9.2) Theofem. Let M be a Turing machine which computes
the function f£:N" - N. Then there is an ﬁ2 function
TN%JNH+1 = N with the following property: if s exceeds
the number of steps required to compute f(in) using M,

then f(xn) = TM%SXn’s)'

Proof. This proof can be made by giving a direct construction of
TM&{ but a simpler method is £o show that ﬁd ;Zﬁd for o < W, and
theri use Theorem (5.1).to éonclude (9.2).

As we have remarked, Eb =.RO, for each function in both classes
can bg written in one of the formf f(in) = gi4-c or f(in)= ¢ for
some constant c. ow supposeiggéé—éa for some ¢, 0 < <W®, and

let P € L be a Loop program with RegQE) = {Xl,...,Xn).

——e

X
3
H

I

For each 1, 1 < i <n, let fi:Nn - N be the function computed
by (P, Xn’ Xi)._ By definition, each f, € Ed.. Now consider the

function

*..
fi(xn,o) = X,

*, = % - -
fi(xn,z+-l) = ;i(fl(xn),...,fn(xn),z)

which is defined by l-recursion from fl,...,fn; by the hypothesis

on £ ,...,f, * e

*
1 n 5 ol Let,E be the program

Now we assert that f;(in,z) is the function computed by (P*,Xn,Z,Xi).

This is certainly the case when z = 0; for then P* is equivalent to

the empty program. If the assertion is true for initial contents of

"Z = z, let the initial contents of Z be z+ 1, and the initial contents

of X be x . P*is thus equivalent to

« U

&"d
g

-The program P leaves fl(in),...,fn(in)»in registers X -»X 3 and

100
by hyﬁothesis, if the contents of Xn are in at the beginning of the

. : *
execution of the program P above, then Ek leaves fi(yl,...,yn,z)

)

e

in register Xi' Thus when the initial contents of Z are z+ 1, P*
* > e N O . 2 .
leaves fi(fl(xn),...,fn(xn),z) = fi(xn,z-kl) in register X;; so
(E%, in,Z,Xi) computes f?(in,z). If register Z is one of the X,
> -4 £ * < ¢ * =)
say 7 is register Xj’ then(gi,xn,xj,xi) computes fi(xn’xi)'
The foregoing establishes our claim that ﬁd g;ﬁa for g < w

for the functions of Ea computed by programs of the form

LoOP(1) X
. 8

~

END

When we have a program of the form

@ v

the clgim follows from the closure Qf Rd under substitution.
Thus for g < W, Ea g;ﬁa; in particular by Theorem (5.1), the

desired function Tsze RZ and Theorem (9.2) is proved.

Theorems (9.1), (9.2), (8.1) and (8.3) give immediately

(9.3) Theorem. For each a > 2, @a is computation-time

closed.

15

ey

IV. IDENTICAL HIERARCHIES
§10. The following very important result is now straightforward.
' w
(10.1) Theorem. If 2 << W, R, = £1+a'

Proof. If f € ﬁa, the time required to compute f using a Turing

machine is bounded by f(p) for some p. By (4.4), §£&(---4—xn+l)
> f(p)(max{x }), and fgf&(x + oo+ xn4-l) € £y, Then by the com-
putation-time glosure of £l+a’ f e £l+a' Conversely, if f ¢ ﬁlyd’
the computation time of f is boundedAby fizé for some q; Eut

£3&(x + oo 4 xn) € ﬂa, so by the computation-time closure of ﬁa,

f e Ry- |

Notice that this gives

Proof of Theorem (4.5) concluded. We showed f € El directly;

£, € L, follows by (6.9); (8.3) and (10.1) give fy € £y for @ > 3,

2 2
yilelding the theorem.

Theorem (10.1) follows from just two importané characteristics
of each gl%J and ﬁa: First, each class (for & > 2) is substitution
and computation-time closed; second, the two classes contain fuﬂctions~
of the same size, in that ary functioﬁ in the one class is bounded
by some function in the other. Thus it appears that any class of
functions which has these two closure properties is essentially

characterized by the size of the functions it coﬁtains.

This same approach using computation-time closure is applied
below to three examples of other hierarchies mentioned in the
literature; we show that each of these hierarchies 1s identical

to a portion of the Sia hierarchy. Not all the theorems are proved

solely on the basis of computation-time closure -- sometimes ad hoc
methods are easier -- but mostly we make use of this powerful closure
property.

A hierarchy similar to the ch hierarchy where & < O was de-

-

9
fined by Axt [A5A2]. We have
(10.2) Definition (Axt). For each @, 0 < & < ®, let P,
be the smallest class of functions satisfying
(i) - The successor function s(x) = x+ 1 and the
identity function i(x) = x are in Py
(i1) I a> ﬁ, Py _:_>P5,
(iii) P, is closed under substitution,
(iv) If f is defined by primitive recursion from
functions g,h €PB’ then f € @, where & = B+1.

It is obvious that @, the class of primitive recursive functions,

is precisely

U &
a<w?

See Definition (6.10). The difference between the Ra hierarchy for

O < W and the {Pa hierarchy is that where Ra is defined using 1-

}

recursion, §, is defined using the less general sghema of primitive
recursion.

| It should be ciear intuitively that the function TMétwhich
mimics Turing machines is primitive recursive. In fact, this re-
sult follows from proofs of the Kleene qumal Form Theorem; see,
for example, Kleene [é% §58] or Davis.[é%'p. 63]. This fact alone
would put TMizin.Pa for each & > ao’ where @o is a fixed ordinal
less than w. The next lemma, therefore, is of interest only be-

cause it shows & to be no greater than b,

(10.3) Lemma. The function TM_, of Theorems (5.1) and
(9.2) is in.Puf Also, each function used in the

(p)

definition of TMﬁlis bounded by fz for some p.

Proof. The proof of the lemma consists merely of an enumeration

of the definitions of various functioné, concluding with that for
TMﬁé this together with a verification that the function so enumer-
ated have the properties ascribed to them. The verification is left
mostly to the reader. 1Instead of giving thg details here we segre-
gate them in §11, since, as remarked above, the regl content of the
lemma is already obvious: that TM§z€53d for some @ < O, and there-

f(()‘p)

fore that TM%lcan be defined using functions bounded by for

some & and p.

(10.4) Theorem. For 4 < < w, £o =Py

Proof. By Corollary (6.9) and the closure of Ea under substituti
Lo ija for all & > ®. On the other hand, since fl € Pl and QJ+1
is defined from fa by a special case of primitive recursion,

£, 6521 for each @ > 1; thus by (6.3) and (10.3), Pa D £, for
h<ac<w,

We remark that the first half of this proof, that gOZE?Pa’

could have been shown as follows: prove that each function in Pl

on,

is

bounded by fgp) for some p. Then by Lemma (8.2), each function in

P, is bounded by fép) for some p. Finally, Theorem (9.1) applies

a fortiori, toKDG as well as ﬁﬁ’ since primitive recursion is a
special case of l-recursion; thus each function in6’a can be com-

puted in fewer than f(P

of ﬁa‘, SE’OC —:—)POC

)

steps. Then by the computation time closure

Other hierarchies may be obtained by starting with a fixed set

of functions and clos1ng under substltutlon and limited recursion.

The next example is essentlally the one studled by Robbin [J%ﬂ, his

initial function was 2 rather than fO’ but otherwise he used functions

like 21'
(10.5) Definition (Robbin). For each ordinal ¢, o < &9%
let §3 be the smallest class of functions satisfying
(i) Ea contains the successor function, the function
max(x,y), and fa,

(ii) qo is closed under substitution,

(iii) Sa is closed under limited recursion.

w
(10.6) Theorem. For 2 <a<®, Sd = Ed.

Proof. Say & > 2. Then Qa contains all the starting functions of
EO, and by (6.8) and (4.9), fd is closed under limited recursion
and substitution. Thﬁs £d E)SU' Conversely, if f € %j’ by Theorem

(6.3) f may be written

-f(xn) = Mn(e,in,ﬁép)(max(xlf...,max(xn_l,xn)...)))

for some e and p. Since Mh is obtained by substitution from TMm
for some W, by closure under substitution and Lemma (10.3), TM%ze 82;
for all the recursions defining Tszin (10.3) are bounded by fép).
Then by (6.3), f € Ed.
T e
Grzegorczyk [&] studied a similarly defined hierarchy

{€G: o'< w}. His starting functions, however, are somewhat different.
a .

(10.7) Definition. For each o, 0 < a < W, let g, be the

function defined as follows:

golxy) = y+1
g (x,¥) = x+y

g, (x,y) = (x+1)-(y+1)
For a > 2,

8,41(0:v) = g (y+1,y+1)

a+ goc

ga+l(X+l)Y) = ga'*‘l(X) a+l(XJy))

We remark that these functions were somewhat simplified by R. W.

5
Ritchie [R#R2].
(10.8) Definition (Girzegorczyk). For each @, 0 < < W,
let Sg be the smallest class satisfying
. G .
(i) €, contains g and gy
(i) %i is closed under substitution,
(iii) €g is closed under limited recursion.

-

G
(10.9) Theorem. For 2 < a < W, Sd = §3+l'

Proof. By definition,

8,(0,7) = (v +2)°

gs(x+ l)y) = gs(x)gs(x)y))

Abbreviate (y+2)2 by k(y). Then we assert that

(2%)

gs(x,y) = k7 “(y)

The equation holds when x = 0; if x > O,

gz(x+1,7) = g5(x,85(x,5))
X X
<)

2x+l)

- k% gy

Now k(y) = (y+~2)2 < yu if y > 2. Therefore,

=

k(x)(y) < v

< f§5)(x+-y) irty>2

7 ' .
Then fé)(x+ v) > k(x)(y) for all x, y. Thus k(x)(y) € .532, for it
is definable by limited recursion (in fact limited iteration) from
functions in ,(32. Then gz € EZ by closu're“under substitution.
o . . _ on.

Now for 3 <a <, goc+l is obtained from &y by l-recursion
By Theorem (10.1) and the definition of @a, o € £a+l. 'IjhlS
immediately proves .SZ o 8 E since 5_’, contains the starting
functions of 8oc+1 and has the same closure properties.

~ (x)
Now we show ga+2(x,y) > foc (y) for L <a < w. For

g.(0,y) = (r+2)% > 20y -y

gS(X+ 1,y) = gB(X)gB(X:Y))

> fiX)(gS(x,y))
> 248 ()
>y ir x>
Even if x = 1, 83(1?3/') = ((ZY"‘*'Z) + 2\2 2 fj(Ll)(). For 15 @< w,
oz+3(o’y) = oc+2(y+l’Y+l) ayﬂ)(y-hl) > féii(:v)
(L) = £,5(0080,50) > 1) > £)
83X+ 1,y) = 85X oc+3(x’y))
> T T)
> () () if x> 1

= Ta+l

So in particular, ga+l(x’_l) > fa(x). Since clearly ga+l(x,y) >
max(x,y), there are functions in 63%—!—0(which bound fa(max(x,y)) .
But since by Lemma (10.3), TM;m € 8%}, by using Theorem (6.3) we have

v W3 i .9).
8g+1 o) S‘a for 2 < a <®; this concludes (10.9).

Sassa”

§11. The major purpose of this section is mere}y to prove Lemma
(10.3), which proof is, apparently of geéessity,_éomewhat long-

Wiﬁded. A minor purpose is to demonstrate that a few other functions
are in variogs classes Pa, so that these functions may be used in

the sequel without further proof of their claimed properties.

Proof of Lemma (10.3). The construction is éonceptually identical
to that of (5.1), except that there a Loop program was written, and
here’ a primitive recursive function is defined. The approach here
constructs TMazdirectly, in contrasﬁ to that of Theorem (9.2), which
showed that 1-recursions could perform the functions of LOOP(1l) in-
structions, and concluded the theoren indirectly via (5.1). We
remark that this latter method may, in fact, be used successfully

to prove (10.3), but that without some complexities it succeeds only

in showing that TM&{E PS.

The following functions are all inﬂ’l.

Xx+0 = x

x+(y+1) = (x+y)+1
For each fixed n,'n-x‘= X+ crr Fx

0-1=0

(x+1):1

1f
el

p(x,0) = x
p(xiy+ l) =0

1-x = p(1,x)

We also write sg(x) = 1<x and sg(x) = sg(sg(x)).
Now if SRR hl""’hr+l are given functions such that at
most one of Y- is zero for any argument, the function f de-

fined as follows is 5btained from the given functions and X+ y.

sg, and p by substitution:

hl(xn) if glgxn) =0
f(xn) = hr(xn) if gr(xn) =0
hr+l(xn) otherwise

Here f is said to be defined by cases.. We have

£(x) = p(hy(x), (x)) +---+p(h (x),e (x)) +
p(h, (%)ssele (x)+ - +selg (x)))
Thusﬁja for @ > 1 is closed under definition by cases. The following

functions are all defined by a single recursion and substitution from

functions already defined, and thus are in5°2:

x-0 =0

x-(y+1) = xy+x

x20 = x)
x:(y+1) = (x2y):1

|x-v| = (x2¥)+ (v*x)

x,y) = (x+7) %+ x

For each fixed n > O,

O
n =1
1 A g
X+ Sn
¢ »/

The following functions are all defined by a single recursion from

functions already defined, and thus are ih P3;

rm(0, y) = 0

fO if]rm(x,y)-+l-y =0
m(x+1,y) =

rm(x,y)+ 1 otherwise
ofy =0

x/y +1 if |(x/y+1)y -x-1
(x+1)/y =

x/y otherwise

Jo=o0

Jx+1 if |(~fx+1)2-x—1 =0

Nx+1 = |
. J& otherwise
m(x) = x = (Vx)°

mo(x) = Nx = 7w (x)

' The functions T, My, T, are pairing functions with the proper-
ties 1(ﬂi(z), Wé(z)) =z, Wi(T(X,y)) = X, Wé(w(x,y)) = y. Define,

using substitutions from already-given functioms,

T

= Wiﬂé(x).

—
o]
=t
|

(x)S = Wiﬂéﬂé(x)
(x)R = W?Wéﬂé(x)

E(Xl}XZ’XB’XL[») = T(Xl’ T(Xz: T(XSV:XLL)))

These last five functions provide the basis for the function
about to be defined which mimics a Turing machine. If XQ’ Xpp Xg5
Xp respectively represent the state of the Turing machine and its
tape to the left of, on, and to the right of the scanned square, then
E(XQ,XL;XS,XR) will represent the whole current situation. Conversely,

if z represents a situation, (z) represénts the state in that situ-

. Q
ation; similarly for (Z)L, (z)S, (z)R. Let the Turing machine W have

u symbols SgrecsS and v states dgr 29,73 @8 before, the tape

u-1
will be répresented by a number which, in a base u notation, is an
image of the corresponding portion of the tape.

Now let ngz) be that function, defined by cases, which is J
whenever the quintuple (q(Z)Q, S(Z)S) S0 4 qj) is a quintuple of W;
ngz) = (z)Q if such a quintuple does not appear. Likewise let.Sméz) |
be the function which yields the next symbol to be placed on the
scanned square, and let Dw5s) be 0 if M has halted; and 1 or 2 re-
spectively if M moves left or right. It shbuld be clear that for

each machine M\, Qmi Smf and szare defined by cases, and hence by

substitution, from functions already given. Now define

-3

f
z if Dwéz) =0

Step,(2) = {B(Q_(2),(2) /u,m((2) ,u)u (2), S (2))

if D (z)=1

B(q(2),u-(2); +8_(2) ,7m((2)), (2) /)

if D%z)=2

Thus Stepmze PS and 1f z is the representation of a situation,

Stepwgz) is the representation of the next situation. Now say

- Resultmgz,o) =z

R%mmﬁzﬁ+l)=smm%R%@m%2ﬁ))

Then Resultwgz,s) € Py; it is the situation resulting after s steps

have been performed by ™ when started with z. Define for a parti-

cular u

Ones(b,0) = u-b+1

Ones(b,x +1) = u-0 (b,x)+1

Ones eﬁjz, and when Gnes(b,x) is written in base u notation, it con-

sists of the digits of b followed by x+1 "1"s. Now let

Inputn(xn) = Ones(u'Oneg(...u'Ones(O,xl);...xn_l),xn)

so that, for example, Inputz(x consists, in base u notation, of

17%5)

xl+l "1"s, followed by O, followed by x2+~l "1"s. Then say

Initialn(xn) = E(0, Inputn(xn), 0, 0)

Ipitialn(in) is the encoding of the initial situation of M with in-
put X -

Then define

Output*(z,0) = 0

1+ Output*(z,x) if Irm(z/ux,u)- 1[=0
Output*(z,x+ 1) =

Output*(z,x) otherwise

Output(z) = Output*(z,z)

Output € P3, and Output (z) is the number of "1"s occurring in the

base u representation of z. Finally, define

megxn,s) = Output((Resultm51nitia1(xn),s)))

L

TMW2 is the desired function. It should be obvious that all the

ép) for some

‘functions used in the definition of TM&zare bounded by f
P exéept perhaps Resultw{ Even this is bounded, however; for Resulth
i1s in each case an encoding of four numbers. The encoding is a poly-
nomial in the numbers. encoded, and the numbers themselves represent
tapes. But by the representation of a tape'we have used, the size of
- the encoding of a tape is exponential in the lquth of the tape; and
this length is lineér in the number of steps taken.. Thus Resultgm
grows exponentially at worst; this makes it straightforward to show

Resultmzis bounded by fép) for some p, since fz(x) = 2%. Finally

Tszeﬁ°4, so (10.3) is proved.

“w

§12. Summarizing Theorems (lO.l), (10.4), (10.8), and (10.8), we

immediately
.)] &
(12.1) Theorem. For 3 < o < W, Lol = ﬁ6:~ Pa+l_'§a+l_ §2+2

w
For 2 < a< W, £O%l = ﬁa = §1+1,

Therefore each of the theorems of §6 discussing Ed applies, mutatis

mutandis, to the other classes as well. The following characteriza-

tion is alsoc interest.

(12.2) Theorem. For a > 2, Ea is the closure under substitution

of the (finite) set of funchions Oy, 7, M, Ty, £).

Proof. Tg'wi,_ﬂé are the pairing functions defined in §11 with the
properties 1(m (z),7,(2)) = z, m (t(x,¥)) = x, m((x,¥)) = y. §11

shows these functions are in 82 and thus -in Ea for ¢ > 2. Also, Ml

and ﬁx are in ﬁd by Theorems (5.2) and (4.5). Therefore, the closure
of these functions is included in ﬁa. Now if f:N" - N is in Sa,'there

is an f%:N > N so f* € £ and f(in)= f*(T(xl,T(x wx ,0)...)));

ore s T(X) ;
simply take f£¥(x) = f(wl(x),wivz(x),...,Wiwén-l)(x)). Then by Theorem
(6.3),
(%) = M (e, (% s e estlx 0]), 8P (el e ,0) -2))
n l b 1} 2 n} ‘)a l) s n}

for some e and p, since T(x,y) > max{x,y}. This concludes (12.2).
Theorem (12.2) answers in the affirmative the question posed by

1
Grzegorczyk [&, p. 41] whether hisclassesﬁg were definable by sub-

~stitution from a finite set of functions.

.3 erinition S1 ag-iha1mar). . e C¢lLass O
12.3) Definition (Csillag-Kalmdr). The cl € of

elementary functions is the least class such that

(1) ¢ contains x+y, Xy,
(ii) € is closed under substitution,
(iii) € is closed under the operations of limited
sum and limited product: the operations which

umegﬂﬁﬂ‘ﬂNjnu>mNM&

- N, where
- vy -
. s(x»¥) =0 glx ,1)

and into p:Nn+l - N where

- ¥ - .
P(XD:Y) = iEO g(XnJl)

Grzegorczyk was able to show that his class Gg is identical to the

elementary functions [G, Theoren 4.47. Thus, immediately,

(12.4) Theoren. £, = €.

Although the foregoing theorems show that all the hierarchies we

have defined eventually become identical, we have not discussed much

the relationships of the various classes at the bases of the hier-

archies. Figure (12.5) depicts the known set-theoretic inclusions

among these classes. The figure is to be read as follows. A vertical

double line between two sets indicates that the set higher on the page

is known to include properly the lower set, and that the proof of the

inclusion is either given explicitly or follows immediately from ex-

plicit proofs. A double line one of wﬁose members is dotted means

that thgre,is a proper inclusion between the two;sets but that we
withhold -the proof. The only such sitﬁégioﬁs whiéh require much
thought are to show‘ﬁé o 51 and EZ :>§%, especially the latter. A
single solid line means an inclusion shown to exist but not known
to be proper.

The horizontal dashed lines seﬁaraﬁeAthe-sets into strata ac-
cording to the functions whose rate of growth characterizes the sets
in a stratum. Since each set in the stratum of f includes f, and
each function in such a set has a p so f(p) bounds that function,
it is impossible that a set in a lower stratum should include, prcper-
ly or not, a set in a higher stratum. However, the inclusion relation-
ships not explicitly indicated amoﬁg the sets of a given stratum are
uncergain. I conjecture that all the sets shown in the figure as
incomparable are in fact incomparable, except that it seems likely
that 6?,1 c i%

Granting that sets in different strata cannot be equal, why are
all the sets in a given stratum not identical? The answer, of course,
lies in their failure to be computation-time closed. This failure
comes about in two ways, corrésponding to the two parts of Definition
(6.4). First, a function may fail to be in a class although the class‘
contains a function bounding iﬁs computation time. This occurs be-
cause the particular functions TMﬁzare not in the class; such is the
case with, for example, R, 2, ﬁé and (perﬁaps) 6%. Second, there
may be a function in the class whose computation time is not bounded

in the class; this occurs with 80 and Sl.

17

¥

Conversely, given that-above a certain point all the classes
become computation-time clbsed, why should the hierarchies eventual-
ly become identical? After all, l-recursion, for example, seems &
considerably more powerful operatioh than primitive recursion: as we
showed, with a single l-recursion the function Zx_pan be defined,
while any function defined by a single l-recursion is bounded by a
linear function. This fact might lead us to suspect that one
l-recursion was worth two primitive recursions,and thus to the con-

jecture that R

2 @1 for a > .. The reason this does not occur

0
is that while l-recursion is more powerful than primitive recursion
in>terms‘of the size of functions definable, the functions definable
by l-recursion are larger by a fixed améunt -- in fact, only exponential-
ly laréer. Onée the.class E% is reached, functions of exponential
growth are available and the advantage thgt l-recursion has can be
5vercome by using substitution.

As we remarked in §7, there-are variant definitions of the schema

a5 .

of n-recursion. Robbin [JK] would allow a function f to be defined by

]
Fxy

£(x57,) = ¥, if (x) = (0,...,0)

if- (xn) £ (0,...,0)

]
-

f(Xn:ym)

-

so long as each occurrence of f in F has the form f(Tn,ém), where
Tn’ ém are formulas and (in) > (Tn). We rejected this scheme be-
cause it is in general impossible to determine by examination whether

(in) >_(Tn) holds. On the other hand, perusal of Theorem (8.1) indi-

cates that the only fact actually used about the occurrences of

1f-8

the function being defined is that demanded by Robbin's definition:
n;mely that the n-tuple of values occurring as the arguments of the
definiendum on the right-hand side should be lexicographically less
than its arguments oﬁ the left. Thus Theorem (8.1) holds as well
if the definition of ﬁd is modified so that Robbin's, rather than
our, use of the term n-recursion is used. Theorem (9.1) likewise
does ﬁot @epend on the particular form of our definition, but goes
through as well with the more general one. (Actually, (9.1) needs
to be supﬁiemented with a little more argument, but we omit the de-
tails.) It follows that the modified ﬁa is identical to the actual
ﬁa, at least for a > 2. (In order to make recursion possible at all,
the initial functidn x+1, at least, has fo be added. Otherwise-it
would fe impossible to get off the grouﬁd, since there is no function
r € RO such that x > r(x).)

' On the other hand, neither do more restricted definitions of
n-recursion affect the results. For example, we have allowed what Péter
calls "replacement of parameters". In other words, in the schema

of n-recursion f(in,§m) may be defined in terms of f(fn,ém); the

parameters I need not remain constant. It would make no difference

if we required the bécurrences of f on the righﬁ to be of the form
f(Tn,im); for in Theorem (10.3), TM@{ Ty Ty T were defined without al-
lowing replacement of parameters, and by Theorem (8.3), f, may be
defined without using parameters at all. Then by (12.2), the class

ﬁd where n-recursion ﬁakes place without replacement of parameters is

identical to the original ﬁa. We could also require that on the right

-

hand side of the schema of n-recursion, the funcﬁiﬁn letter being
defined should not be nested within itself below;ﬁhe second level --
that is, that the,défined letter, say f, may appéar as part of an
argument of f, but that these inner oécurrences of £ should not
themselves contain f. Since in the proof of neither (8.3) nor
(10.3) did we need to violate this éohdifion,.once again the classes
@a would not be changed if the condition were imposed. However, we
will show that the situation is different if no nesting whatever is
allowed.

By Theorem (6.2), Ea for o > 2 is precisely the class of
functions coﬁputaﬁle by a Turing machine in a number of steps
bounded by ﬁ;p) for some p. Consider any device or formalism what-
ever for computing functions, so long as this device has a notion of
"step" which can be related to the steps of a Turing machine: in

particular, that there are functions k. (x,s) and kz(x,s) so that

1

if this device is given input x and halts within s steps, a Turing

machine can produce the same output in k. (x,s) steps; and conversely,

1
if some function is computed by a Turing machine, and if the funcﬁion
is computable at all by such a device, then when the Turing machine
takes s steps for input x, the function can be coméuted by our de-
vice in no more than kz(x,s) steps.

It should be clear from tﬁe foregoing arguments that if qj is
the class of functions computable by such a device within Qép) of its

steps, we will have the theorem QJ = Qa for ¢ > @, so long as k, and

(0] 1

k2 are bounded by some multiple recursive function. It seems unlikely

-2

i

that any formalism for computation could be put forward seriously
to which these‘considerafions would not apply.

This reasoning above provides some justification for not giv-
ing in full detail the proofs of Theorems (5.2) and (9.1). The

former theorem showed how to construct Tufing machines to simulate

'the Loop programs, and the latter how to make Turing machines carry

out deductions in the Herbrand-Gddel-Kleene formalism; in both cases,

an unproved, though not unsupported, assertion was made that the
simulation could be performed within a certain time. The essential
content of each theorem is simply the fact that there is only a
fixed time loss involved in transferring’from the one formalism to
the other, not what this loss factor actually is; thus verification
that it is at most éxponential is merely an interesting detail.

The original problem which motivated this thesis was.that of

" relating the complexity of a program to the complexity of the function

it computes. A final theorem will complete the investigation of the

main question.

(12.8) Theorem. Say o > 2. Given a program in Id’ or a
set of recursion equations in %1’ it 1s effectively
impossible to decide whether there is a B < O so that
the program (or the equations)could be rewritten so as

to give the same result, and yet be in LB (or RB).

Préof. A trivial modification of the constructions of §11 or Theorem
(5.1) yields a function Cmgx,s) which is one if Turing machine Wlwith
input x halts in fewer than s steps, and is zero if it does not.
Consider the derivations (in Ra) of the functions uyo_for each Yor

where

iy () = Ol 23,)

Let M be a Turing machine such that the set H = {yO:Wthalts with in-

almost everywhere;

put yo} i& non-recursive. If y € H, uy, is £

thus Uy, # @6 for P < a. If Yo % H, qyo(g) = 0 for all x, so Uy, € RO.
Then if we could decide whether the function gyo was in RO’ we could
decide whether M hmlts with input yo, and so H would be recursive, -
contrgry to hypothesis. Clearly the same meﬁhods work also for
programs in yx.

We have thus established the following statements about Loop
programs . |

(1) ZLoop programs can compute a broad and interesting class
of functions, namely-the multiple recursive functions. |

(2) Given a program, we can effectively find the least @ for
which the program is in Lye | -

(3) For every program in Iu, we can effectively find a p so
that with inputs in’ the program halts in fewer than ﬂép)(max{in])
steﬁs.

(4) There are some programs in L, which actually do run ﬂgp)

steps.

(5) If we know a program requires fewer than ﬁ;p) steps, we
can effectively rewrite it so it is in Ly
(6) However, it is in general impossible to determine whether

(p)
Q} steps.

an L, program does in fact require at least

Exactly corresponding stateﬁents_éah be made for functions
bdefined by multiple recursion equations. Stétement (1) means that
we have not proved impressive-looking theorems about an uninterest-
ing elass of objects. Statements (2)-(4) establish that the goal of
relating the complexity of a program--asmeasured by the least O for
which the program is in La -- to the time required to execute the
program, is aﬁ aim successfully achieved. Moreover, (5) and (6)
indicate, in an admittedly weak but nevertheless reasonable sense,
that our measure of complexity is the best possible.

Finally, a word about practical applications. The fairest word,
probably, is "none". It is true that if we restrict, say, FORTRAN
by eliminating GO TO and IF statements the computation time could
be predicted by examining the depth of nesting of DO loops. How-
ever, the prediction is likely to be impossibly pessimistic; for

the rate of growth of even f, is quite large. To’be told, say, that

2

given input x, one's program will halt within

X
2
22

seconds, is not very useful if one wishes to use input 100 or even

2. Of course, by use of ad hoc methods the estimate could be improved,

nis

Wl

but this is not very satisfying, since the whole point of the kind
of analysis we have been doing is to avoid ad hoc methods and use

a general method instead.

There is one further problem. Suppose examination of a program

has revealed that the progream with input x will halt within fS(X)
(say) steps or seconds or whatever. We are interested in input 17
and therefore insist on inquiring as to the value of f5(17). To

put iﬁ in recognizable form, we must compute f5(l7) but to do this --
in fact even to write down the answer -- requires a time which is

essentially f_(17) again! We would have been better off running the

S

program itself; at least it had a chance of halting immediately.

=1

S

V. RELATED TOPICS

§13. At the end of the last section several variant possibilities
for a definition of n-recursion were mentioned and it was argued
that all were egsentially identical, in the sense that all would
yield the ;ame classes Ra. This section studies two operations
based on n-recursion which are strictly weaker than n-recursion:

unnested n-recursion and limited n-recursion. We will be able to

strengthen results of Péter on the two operations and to answer a

question of Grzegorczyk on the latter one.

(13.1) Definition. The schema of unnested n-recursion is

the same as the schema of n-recursion with the fol-

lowing additional restriction: if the function f is

being defined, no occurrence of f on the right-hand

side of the defining equations has another appearance
of £ in the formulas constituting its arguments.

al
Péter was able to show [P1, p.74] that the operation of unnested

recursion does not lead out of the primitive recursive functions;
that is, that the classc? is closed under this operation. Our ana-
lysis will confirm the result by showing in what class a function

defined by unnested n—recursioﬁ%frbm gl""’gr must lie if

Byrv-18, € Ea.

. »

n=1. Since B e £ 0y B (x,¥) <

(13.2) Definition. Call a 1-1 function En:Nn+l =N

satisfactory for ¢, c if En is monotone increas-
in%in each variable, and if for each i, 1 < i < n,

and all in’ y the following inequality holds:

En(xl,...,x.

1—1’Xi+l’xi+1""’xn’y)

> En(xl’ s)Xi—l’xi)}:—)’ <o ;E;y)
where b = f(c)(max{i v}).
— a n)

Such an encodihg En provides to a certain extent an order-
preserving map from N" into N for each value of the parameter y.
Of course, En for n >.l cannot be perfectly order-preserving, be-
cause the order type @ for n > 1 is strictly‘greater than the order
type w. A perfectly order-reserving map Qould have b arbitrarily

large in Definition (13.2).

(13.3) Lemma. For each n,c > 1 and ¢ > 2, there is an

En € £d+n+l S0 En is satisfactory for «,c.

Proof. Induction on n. Ifn = 1, take El(xl,y) = 2.3, and the
lemma is immediate. When n > 1, let En be satisfactory for o, c+ 2

and assume En(in,y) z»max{in,y); this is certainly the case when

< (@)

a+n~1(maX{in’y}) for some

o+

i

number g, by Theorem (8.1). Take d g+c +3, write in4—x for

X -+x,...,xn-+x, and define

1

Q)

(¥¥) E__,(x+l,x ,y) > E

.;} . Dig/
B (% txry) £00) (5, (Fyrxey)

- X V.. 0 n A JTodn-1
En+l(x,xn,y) 27375 7

Clearly En+l(x,xn,y) 2»max{x,xn,y}, E .

1
.)) (ax)
and En+l is 1-1; also En+l € Sd%n since ﬁa+n—l
. . _ ale) - .
‘€a+n-l by iteration. Let b = £ (max{x,xn,y)). For 1 < i < n,

the inequality

(¥) E (x,)-ci_l,xi+1,x:.L

n+l "Xn’y) > E

+17° n+l

holds. For let x be fixed. Then by hypothesis,
En(xi—l

>E (x4

HXFY X, KAy, X, XY, .. +x+
VX FXAYHL, X, Y, X XY, Y)

1

+x+y,xi+x+y,2*,..;,2*,y)

where b¥* = géc+2)

finition of b and the monotonicity of En’

En(x.

+X+Y , X, XY+, X,
i-1 Y:l A 1Ky

+l+x+y,...,xn+x+y,y)

> En(ii_l+x+y,xi+x+y,§+x+y,...,9+x+y,y)
Then by the monotone dependence of En+l
It remains to be shown that

n+1(X,:t2, oo J:_QJy)

R
S

holds as well. By definition;*:

is monotone increasing,

is obtained from

(X’ii-—l’xi 3Dy)P_)Y)

(max{in+x+y}) 2‘ﬁéc)(max{x,in,yl)-+x-by. By de-

on E _, (*) holds for 1 < i < n.

7 3

Y 5

y
- pla(x+1)) -
E_(x +x+y+l) (E (x +x+y+l))
- _oXtl Ly o nn O%n 1 n
En+l(x+l,xn,y) =2 375 -7
(ax) .(d) 5
R E (x +x+y) f e lfoc+n l @x+y+1
Now for all En’ X, ¥
E (z_+x+y,y) < f(Q) (max{z_+x+y)) !
n'n 2l = Ton-1 n

< 289 (i (x,5_y))

c - .
Therefore, if b = é+) l(max{x,xn,y}), putting b for zl,.,.,zn, we

have

%Y
5

+C+2 -
2-En(g+x+y,.. ,b+x+y) <2 ﬁ;in N)(max{x,xn,y))

< f(q+c+3)

using (3.4.iii). But since by definition d = q+c+ 3, and max{x,in,y}
SEn(xn+x+y+l) s |
e

L) .
(a) -
2 En(_“g+x+y sees ,p_+x+3/r\) < f e 1(En(xn+x+y+%\})

So by the above, :
e o
- X
) Xy En(xn+x+¥g. ﬂa (2 En(2+x+y,...,§+x+¥g)
E +1(x+l,xn,y) >2735 5 '
' ?%/)g’
E,(b+x+y,...,b+x+y) f(dx)(E (oAx+Y e on s DX+))
J.5 - A o n'—= - N
> 2%.3 -7
N
= En+l(X,E, R ,:t_)72
which is the inequality (¥*). Therefore En+l satisfies Definition

(13.2) and (13.3) is complete.

TH

(13.4) Lemma. Let E be the encoding function of Lemma
n
(13.3). Then for each i, 1 < i <n, the function

n
Wi, where

is in 32.

Proof. Grzegorczyk ﬁé} p-13] showed that the function (x)y is ele-
mentary, where (x)y is the exponent of the y-th prime in the prime-
power decomposition of x. The O-th prime is taken to be 2, 80, for
example, (ZX'Sy)O = X, (ZX'By)l = y. Then by Theorem (12.4),

1 _ . . s n n
(x)y € £,. Now Wi(z) = (z),. since El(x,y) =273 If M,y

0 1

are all in 52,
n+l
Trl (Z) et (Z)O

for 2 <i <n+l, W?+l(z) = (vrril_l((z)z) 2 (z)y) = (=)

So W?+l is also in L. .
i 2

(13.5) Theorem. Say o > 2. If f is defined by unnested

n-recursion from functions in ﬁa, then f € ﬁb%n'

Proof. The function f satisfies the 2 equations

f(En)f).’m) = F

3 P B
J &

where for 1 < j < Zn, Fj is a formula. Each occurrence of f in one

of the formulas Fj is of the form f(gn,fm), where én’ Th‘are formulas

/ny

not containing f. Thus these formulas represent functions in EU'

Let ¢ be great enough so f(c)

P bounds all én appearing in any for-

mula Fj in the context f(gn,fm). Then by Lemma (13.3) choose an
encoding En satisfactory for ¢, c, and let W?,...,ﬂi be the decod-

ing functions for En' Now consider the function % satisfying

A -
f(O,ym) = 0
o . n n
fFl if 7rl(x+l) = = Wl(x+l) =0
2 . n _ _.n _ n, .
F, if 7Tl(x+l) = = Trn_l(x+l)— 0, Wn(xkl) >0
£(x+1,7) = § :
Foaif 1(x#l) >0 ..., 1 (x41) >0
ol 1 ’ g
.

A

Here for each j, 1 < j < Zn, Fj is the formula which results from Fj
N by replacing each occurrence of X, 1<i<n, by ﬂ?(x—%l) = 1, and

replacing each occurrence of f(én,fm) by

%(min(En(én, max{&m})i-l,x),ﬁm)

Here, of course, min(a,b) is the smaller of a and b. We assert that

these equations define a unique function f, and that
£(x 5y,) = f(En(xn,max{ymHl,ym)

. The first half of the assertioqais immediate by the form of the equa-
tions. For %(O,im) is defined ouﬁfight, and T(x+ l,im) is defined
in terms of known functions and values of f of the form ?(Z,Tm) where
z < x+1, since on the right-hand side the first argument of ? is

_always min(E,x) for some formula E, and min(E,x) < x.

76

woeas '
The other half of the assertion wes the fact that En is satis-

factory for a, c. We have

f(En(O,...,O,max(37m}) +1,§zm) = F,

~

Since ﬁl contains no occurrences of iy nor of x5 for any i, Fl = Fl
as a function of &m, so the assertion is true for (in) = (0,...,0).
Say for some En the assertion is true for all (En) < (En) where each

§i is either "xi4~l" or "0O". Then

B(E (8 ymax(y,)+ 1,5,) = F,

where 1 < j < 2",
- . _n n N 3 = e .
Now for all those ﬁi for which €i = x, +1", ﬂi(Engén,max{ym})) 1=x,;

s0 ﬁj is the same formula as Fj’ except that

%(min(En(§n,max(§m]) +l,En(§n,max{§m})+-l ,Tm)

is substituted for f(én,fm). But since each Si’ as a function of in’ §m’

is bounded by Q;C), and since by definition of n-recursion Sn < En,

and finally since En is satisfactory for «a, ¢, we have
En(Sﬁmax{ym}) < En(ﬁn;maX(Xm))
Thus those instances of % on the right might as well be of the form

f(En(Sn,ma.x {ym}) +1,Tm)

but since (én) < (En), by the induction hypothesis the occurrences of

~
f have the same value as

Y7

i

£(8,T)

Thus f(En(En,max(ﬁm})-+l,§m) = f(in,im) which complete the trans-
finite induction proving our assertion.
The schema of which the definition of % is an example is called

course-of-values recursion with replacement of parameters. In the no-

parameter case course-of-values recursion differs from primitive re-
cursion by defining f(x+ 1) not merely from the immediately preceding
value f£(x), but also using several earlier values f(rl(x)),...,f(rk(x))
where rl(x),...,rk(x) < x. The term "replacement of parametgrs" is
used because %(x%-l,ym) is defined using not only %(ri(x),im) where
ri(x) < x, but values of the form f(ri(x), gl(x,§m),...,gm(x,§m)), S0
the parameters &m do not stay fixed.

Péter ﬁ%%, §3, §5] shows how such kinds of recursions can be re-
duced to primitive recursion. The essential idea for course-of-values
recursion can be demonstrated by an example. Let py be the y-th prime,
where the O-th prime is 2; as mentioned in the proof of (13.4), (x)y

is the exponent of the y-th prime in the prime-power factorization of

X. Say

g(0) = a

g(x+1) = n(x, glr(x)))

o
(A oeR

where r(x) < x. Define a new function g* as follows:

. g
gx(0) = 2% = égdfr
h(x,(g*(x)))
g*(x+1) = g*(x)p_, r(x)

Thus g¥ is defined by.primitive recursion. It should be clear that

g*(x) = pg(o>.p§<1> el pB®)

and thus that

g(x) = (g%(x)),

Therefore if @ > 2, and g is defined by course-of-values recursion

from functions in %a, g € £d+l'

A similar argument can be applied when replacement of param-

eters takes place. Thus the function ? defined above is in Eb%n’

since it is defined by course-of-values recursion with replacement

of parameters from functions in Ed This completes the proof

4n-1"
of Theorem (13.5).

(13.6) Definition. If f is defined by n-recursion from
AR - and if in addition there is a function

g S0 f(xn,ym) <g (xn,ym), then f is said to

r+1 r+1

)

be defined by limited n-recursion from ORRREET-

Ert1”

14 = . . .
Peter showed that limited n-recursion, like unnested n-recursion,

! 40
does not lead out of the primitive recursive functions [PX, p.113; P3].

FS
.

(13.7) Theorem. Say a>2. If f is defined by limited

n-recursion from functions in £ , then f € £ .
o a+n

74

Proof. In the proof of Theorem (9.1), which showed that each function

(p)
1+’

arrived at the following intermediate result: if f is defined by n-

f in ﬁa could be computed by a Turing machine within time f we

recursion from Y- W the number of equations {f(in,ﬁm) required

to deduce the equation f(v(xn), v(ym)) = v(x) is given by another n-

recursion as follows

/e’f(gniym) = Zj

where each Zj is a sum of the form

n+m+1 + Z[&hk('l‘l, .. "Tsk) +1]

and the sum ranges over literal appearances of function letters h

k
in Fj' Now all the functions SERRREL-N {gl,...,£gr, f in each Zj
(c) :
are bounded by f, - for some ¢, so each fungtlon hk(Tl" .,Tsk) oc-
curring in each Zj may be replaced by ﬁéc)(Tl + e F Tsk). Here

{gr,

cluded because of the bounding condition. But now observe that the

hk ranges over gy ,.-.;8.; £,

g 7t ;5 the function f can be in-
i

function %; which results bounds &T, and &; is defined by an unnested
n-recursion from functions in Ed if o> 2. Then {; is bounded by
'géig for some d, by Theorems (13.5) and (8.1); the rest of Theorem

(9.1) goes through unchanged, and if ¢ > 1, f can be computed by a

e
Turing machine in time £.°)

g
for me £ n
o some e, so f € ﬁb%n’ and Theorem

(13.7) is proved.
It might be thought that Theorems (13.5) and (13.7) are pessi-

mistic; although we have shown that if f is defined by limited or

Jo

unnested n-recursion from functions in Ea, then f ¢ ﬁd%n’ perhaps

in fact we always have f € iﬁa. This 1s not the case.

(13.8) Theorem. Say « > 2. Then for each n > 1 there is

a function T € Eb%n'_ﬁd+n—l such that T is definable

by a single instance of limited, unnested n-recursion

from functions in Ea.

Proof. Recall from Theorem (5.2) that Ml(e,y,z) is the function
computed by the Loop program with Godel number e, when the input is
y and the program halts in fewer than z steps. Mi € EZ by Theorem

f .

-(5.2). Now define by unnested n-recursion from sg, Ml’ o

T(O)--';O:G:Y;Z) = sg(Ml(e,y,z))

T(E _ %, +1,e;y,2) = T(én_l,x ,e,y,fd(z))

T(gn_z;Xn_l+'l,O,e,y,Z) = T(én_z,xn_l,z,e,y,l)

T(¢ +1,0,0,e,y,2) = T(gn_SJanz)Z)O)e)y)l)

n-3’*n-2

T(Xl4'1)oy"-)o)e:Y:Z) = T(xl,z,O,...,O,e,y,l)

As usual, the equations containing a & are schematic: ir represents

all the r-tuples obtained by letting each éi be either "xi-kl" or "0".

Then it is easy to verify that
LE -
G
(Xl) (XZ) ‘ (xn)

(i se5752) = se((e,y, T) £ 200 e, M (2)))

We omit the details. Now, recalling that sg(0) = 0, sg(x+ 1) = 1,

we have T(xn,e,y,z) < 1; so this is an instance of limited n-recursion.

Al

Now let

T(e,O,...,O,e,y,l)

1l

U(e,y)

sg00, (e,5,78%) ()

Then, by the argument of (6.12), U is universal for the character-
istic functions of Eb%n—l; so U and hence T cannot be members of

gb%n—l'

completes (13.8).

But T € ;a+n by Theorem (13.5) or by Theorem (.317). This

9
Grzegorczyk [&, p.41] posed the question: does the operation of

. G
Since Qa = &

I . . G
limited Z-recursion lead outside the class 80% 1

?
1
Theorem (13.8) answers the question affirmatively.

Theorems (13.5), (13.7) and (13.8) have to be modified slightly

when n-recursion takes place without replacement of parameters, and
since this restriction is imposed by Péter and probably is implied
by Grzegorczyk, the situation is worth some discussion. However, de-
tailed proof will not be given.
w

In the case of limited n-recursion, the constryctions may be

modified as follows.

(13.9) Theorem. Say « > 2. If £ is defined by limited
n-recursion without replacement of parameters from
i ; AT
functions in £a, f e fo#ﬁ-l’ and for n > 1, there

is an T so Qeflned such that f € £d+n—ln %a+n—2'

Proof. The first half follows by observing that thé function ¥ oc-
curring in the proof of Theorem (13.5) is defined, in this case, by
a limited course of values recursion without replacement of param-

eters from functions in §

otn-1’ This can be converted to g limited

recursion from functions in Ea%n—l’ and we know already by Theorém
(6.8) that £a+n-l is closed under this operationJ. It follows that
£e Ed%n—l'

On the other hand, in the proof of Theorem (13.8) only the
parameter z (the last argument of T) is subject to replacement.

. Thus the definition of T can be regarded as an (n+ 1)-recursion

without replacement of parameters, simply by considering z a re-

cursion variable rather than a parameter. Thus for n > 1 the function

T can be defined by limited n-recursion, and T € EO%n—l— Qa+n—2'

completes (13.9).

The same method can be adapted to show

(13.10) Theorem. If for o > 2 and n> 1 f is defined from
functions gl,...,gr € £d by unnested n-recursion

without replacement of parameters, then f € £d+n—l’

£

and there is an f so defined such that fef .
. a+n-2

on-1"

" The proof is omitted. The reqguirément n > 1 must be included since

This

unnested l-recursion without replacement of parameters is essentially

primitive recursion, which is known to be capable of defining functions

in £b+l— Ea from functions in Sd.

§14. The study of the several hierarchies carried out in Chapters
II-IV depended heavily on the properties of computation-time closure,
closure under substitution, and in some cases closure under limited
recursion. Since the same classes arose again and again in spite of
the various ways in which the hierarchies were defined, it is natural
‘to wonder to what extent the closure properties alone characterize a
set of functions. Might it be, for example, that every class of
multiple recursive functions with the above closure properties and
containing (say) £2 must be either one of the Ed or the whole class
of multiple recursive functions? This possibility seems, if anything,
enhanced by the existence of two ways of refining the Ea hierarchy
studied by R. WérRitchie and by Cleéve.

&

Ritchie [RWR2] defines a hierarchy {Fi:i € NJ whose union he calls

the predictably computable functions, and which turns out to be pre-

cisely the set of elementary functions; that is ﬁz. F . may be taken

0]

to be the linear functions; then Fi+l is defined as the smallest

con
class of functions computable on a Turing machine whose assumption

of tape is bounded by a function in Fi' The input and output of the
Turing machine are by Ritchie's convention in a binary encoding; it

_can be shown that 2% ¢ F, - T, 22" ¢ F,~F, etc. The term "predicta-
bly computable" arises from the fact that if a function is in Fi’ it

can be computed using an amounﬁ;bf tape bounded -- that is, predictable --

by a function in Fi~l’ which in turn is predictable by a function in

Fi-Z’ and so forth.

L 4

In characterizing his classes Fi’ Ritchie showed that each
class had the property of computation-time closure. ZFach class Fi
is closed also under "explicit transformations” -- equivalent to
Definition (4.8), parts (i) and (ii) -- but, as the example above
indicates, Fi fails to be closed under composition. However, Fi
is closed under a certain limited form of composition which is suf-
ficient to prove the desired results. The Fi individually fail also
to be closed under limited recursion, although of course their union

is closed.

An analogous hierarchy {Ea:a < a?} was considered by Cleave [€1.].

He considegﬁs a kind of simple computer, the "unlimited register ma-

Al .
chine" of Shepherdson and Sturgis [88]. The classes Ea arise by re-

stricting the number of "transfer" or "jump" instructions carried out

in a given computation. Thus E. is the class of functions computable

0

in such a way that the number of transfer instructions executed is
bounded by a constant; given Ea, Ea%l is the class of functions com-
putable in such a way that the number of transfers is bounded by a
function in Ea. The analogy here with the predictably computable
functions is evident. At 1limit ordinals, the functions obtained so

far are collected:

U
o rrs
€N S

E =
w- (r+1) <

Thus at limit ordinals, the effect is that of definihg a new machine
whose elementary operations consist of those functions definable in

a class with a smaller ordinal.

Cleave is able to show that if the basic arithmetic operations
of his machine allow addition, multiplication, and testing for zero,

G

then.EhyS = 8s+2 for each s € N, s > 1; that is, Ehys = £s+ Thus,

1
part of the Ea hierarchy appears again; but once more the classes Ea

fail in general to be closed under limited recursion and substitution.

For a fixed s, the classes E

are analogous 1in several ways to
W s+r -

the Ritchie classes Fr’ but apparently it is not true that Rr = Er.

The work of Ritchie and of Cleave tends to reinforce the natural-
ness of the fa in two ways. First, certain of the fd classes reappear
in each of these contexts; and second, both methods of refining the
hierarchy result in classes which fail to have the attractive closure
properties of the ﬁd.'

Nevertheless, the hierarchy ﬁd can bé refined in such a way that
the closure properties of fd are retained. In fact, we will demonstrate
the existence of an almost embarrassing richness of classes which are
closed under limited recursion, substitution, and have the property of
computation-time closure. There are éeveral preliminary definitions

and theorems.

We recall some useful notation common in the literature.

(14.1) Definition. If M is & Turing machine, let e be the
Gddel number of M. Then;wé:Nn - N is the (partial)
function computed by ® with input in’ and @e:Nn - N
is the(partial) function giving the exact number of

steps required for m to halt with input in' Also,

say that e is the index of f whén f is the function

Pe-

This definition assumes an arithmetization of Turing machines

which has not been carried out. However, the task has often been

performed in the literature; see the remarks following Theorem (14.3).

(14.2) Definition. If P is a predicate, we will'say that P is

a member of a class of functions if a representing

function for P is in the class; that is, a function f
S0 f(xn) =1 if P(xn) is true, f(xn) = 0 if P(xn) is
false. If P is a predicate [P(in)] will denote the

representing function of P.

Then, for example, x = y is a predicate in £, because

[x = y] = sg|x-y| =1 |x-v].

(14.3) Theorem. The predicate given by [@e(in) = y]
is in 32 as a function of e, ih’ and y; there is
an EZ function U so if z > @e(xn), Un(e,xn,z) =

P (%)

Proof. As we have mentioned, to consider statements of this type

~requires an arithmetization of ;uring machines. It is well known,

See
however, that there exists a GBdel numbering of Turing machines such

that for eachn, T € £, where Tn(e,in,y) = 1 if the Turing machine

with G9del number e, given input in’ halts in precisely y steps, and

Al

Tn(e,in,y) = O otherwise. Then, of course, [@e(in) = yl= Tn(e,in,y).
Likewise Un € f2; here Un is precisely analogous to the function LPn
of Theorem (5.2). See, for example, Davis ng pp.56-62]. Davis
notes only that his construction yilelds primitive recursive functions,
but since it is readily shown that all the recursions are bounded by
fép) for some p, it is immediate that Tn and Un are in Ez. Kleene
ﬁ%; §§56-57] carries out a similar arithmetization for recursion
equations.

A property of certain functions which is very important in the

sequel is

(14.4) Definition. A recursive function f is honest
whenever the number of steps required to compute
f is bounded by an EZ function composed with £
that is, if f(xn) = Un(e,xn,r(xn,f(xn))) for some

nunmber e and some r € EZ.

The term "honest" is used because if f is honest, the value of
f(in) accurately reflects the difficulty of computing f(in). No dis-
approval of functions which are not honest is implied. In fact highly
dishonest functions, for example complicated characteristic functions,
are rather more interesting than honest functions; much of the time
required to compute an honest %ﬁﬁétion is spent merely in writing
down the result.

We note that a somewhat broader definition of honest was used

35
by Robbin [FR].

1%

L »

A useful alternate characterization of honesty is the following.

(14.5) Theorem. A recursive function f is honest if

and only if [f(in) = y] is in £,

Proof. First assume [f(in) = y] is in Ez. Hence we have a Turing

(c)

machine which computes [f(in) = y] within £,

(max{in,y}) steps for
some constant c¢. Consider the following procedure to compute f:
given input in’ write in,O on the tape and use the given machine

to compute [f(in) = 0]; if this is 0, add 1 to the O at the end of
the in and compute [f(in) = 1]; if this too is zero, continue test-
ing [f(in) = 2], etc. until a true predicate is found. This requires

on the order of

f(x)

5 gle)
i=0 @

(max{in,i})

() (max(z_, £(x)))

< (1+f£(x))-f
steps. But the latter function is in EE as a function of inkand
f(in), so f is honest.
Conversely, if £ is honest, there exist e ¢ N and r ¢ E? S0
that
r{X,,¥y)

[f(x)::y] =[U (e;X ;r(;(n:Y))::Y] * Zi—.:()[q)e(in) = 1]

g

where the right-hand side is inwﬁz because € = £, (€.is the class
of elementary functions) and by definition, € is closed under limited

sum.

Although we have called camputétion~time closure a closure
property, it differs from other such properties, for example,
closure under limited recursion, in an important sense. When we
speak of the least class of functions containing given functions
and closed under limited recursion, we refer to a well defined
entity, namely the intersection of all classes of functions which
contain the given functions and which are closed under limited re-
cursion. That this intersection is indeed closed under limited
recursion follows from the fact that given three functionsfizig is
at most one function defined from them by limited recursion.

On the other hand, it is not clear that there must be any
smallest class containing given functions and having the property
of computation-time closure. For if a function is in sqch a class,

the class is required to contain also some bound on the computation

time of the function. But there are many such bounds, corresponding

to many ways to compute the function, and there is no guide to se-
lecting which bouhd should be included in the class The problem
is quite real; indeed, one of the results in the sequel implies
that there are sets of functions such that there is no smallest
computation-time closed set containing the given set.

The next theorem relates the notions of computation-time

&
St

closure and closure under limited recursion; thus it. allows us to
generate computation-time closed classes having desired properties

without encountering the problem just discussed. The theorem also

=\

2.0

provides an alternative proof of the closure of the classes ﬁd under

limited recursion.

(14.8)

(14.7)

Proof.

vhere

Definition. If a class of functions is such that
every member of the class is bounded by an increas-
ing function in the class, the class is called
monotone. Also, for brevity, a class which is
closed under substitution and is computation-time

closed is called fully closed.

Theorem. Let C be a class of functions containing
32' Then ¢ is monotone and fully closed if and only
if C is the closure under limited recursion and sub-

stitution of a set of honest functions.

Pirst assume C is monotone and fully closed, and say

f(Xn,O) = g(;(n)
£(x >y +1) = h(x_,¥,f(x_ ,¥))

f(}zn)y) < b(}_(nyy)
g,h,b ¢ C. Define

f*(&,in,o) = min(&,qggeg,in,&))

f*(’&y;(n)y”‘l) = min(%’Un+2(eh’;{n’y’f*(f”;{n’y)’&)AI),

f*(’e/:;in:y) < L

where g and e, are indices for g and h, andAGeg and th are bounded
by functions in C. Notice that ¥ ¢ EZ. Now by the hypotheses on C,
let b’(in,y) > b(in,y), and say b' is in C and increasing. Likewise,
let 24 € C be an increasing function with &(in,y) > ®eg(in),

&(in,y) > ®eh(in,y,b'(in,y)), and &(in,y) > b(in,y). Then it is easy
to show that f(in,y) = (2% ;¥),% 5¥), so £ € C. That is, C is
closed under limited recursion; in fact, C is the closure under sub-
stitution and limited recursion of its honest functions.

Conversely, let C be the closure under limited recursion and

substitution of any set of honest functions. If f ¢ C,*ﬂf e C where

mf(in,o) =0

_ y+1 i £(E,me(R ,¥) < £(% Ly +1)
’W\f(xn;y+1) =

7ﬂf(xn,y) otherwise
mp(x 7)) <y

This function has the property that f(in,mnf(in,y)) is not less than
any of f(in,o),...,f(in,y); SO f(xn,w%(in,y))-+y is in C, is strictly
increasing in y, and bounds f. By applying of the same technique to
the other variables of f, one finds a function in C which bounds f
and is strictly increasing in each Variable; thus C is monotone.

Now since C contains 22, agi the honest functions of C have
computation times bounded by functions in C. Tt is easy to show
that if f is defined by substitution from functions whose computation

times aré bounded in C then the computation time of f is likewise

o

bounded in C. There remains the case in which f is defined by
limited recursion from g, h, b as above.

Given in’ Y, there is an obvious method for using a Turing
machine to compute f: first compute g(in) = f(in,o); use this re-
sult to compute h(in, 0, f(in,o)) = f(in,l); continue unti; f(in,y)
has been computed. If eg and e, are indices for g and h, the num-

h
ber of steps is bounded by

o, (x) +Zﬁi[=1 o (x,i-21,8(x ,i-1)) +féa)(max{>_<n,y})
g h

where the last term is added to cover the cost of bookkéeping.

Since C éontains 32, and Qeg, @eh, and £ are bounded by monotone

functions in C, this number of steps is less than some fupction of C.

By the containment of £2 in C, C has the function TMm for each MW

thus-C is computation-time closed. (A more detailed discussion of

the use of Turing machines to compute functions defined by limited

recursion is presented by Ritchie ER@%&J.)

(14.8) Theorem. If f is honest and increasing, the

iterate f is also honest.

(y) (x)

Proof. Define

k(y,z) % z
Z = .
v i=0 pl 2,
That is,
Z Z Z
k(y,z) = pyepy----opy

Then let

Then

k(.V:
2

) .
0 = 21 = 58 3 (L), = X1 L), = 21 Te(y.m)

w=0

which shows [f(y)(x) = z] is in §a~and f(y)(x) is thus honest.

(14.9) Theorem. ILet f be a recursive function. Then
there is an honest increasing function h so
h(x) > f(x); and if @ > 2 and € £y» b can be

chosen so h € Qa.

Proof. With our conventions for input and output, if @e is any re-

cursive function,
@e(x) < @e(x)-kx+-l

Let e be an index of f; then use the construction of Theorem (14.7)
to find an £, function m so @e(m(x)) is not less than any of
@e(o), @e(l),...,Qe(x). Take h(x) = ®e(m(x))-+x4-l; h is increasing,

and
h(x) = y] = [y >x} T ([2 = m(x)]-[o (2) = (y*x):1])
oA S X

so h is honest. Moreover, if f e £, e can be chosen so ¢, € Ly

o

(14.10) Definition. If f is any strictly inéreasing
function, f:N - N, then the inverse of f,
written f’l, is the function defined by: f"l(x)
is the largest y such that f(y) < x if such a

y exists; f_l(x) is 0 if y does not exist.

(14.11) Theorem. If f:N - N is a strictly increasing

function, f—l has the following properties:

1

(i) £ is nondecreasing, f £(x) = X, and if

1

x > £(0), £f “(x) < x;

s . . -1 . .
(ii) If £ is recursive, f is recursive;

(iii) If f is honest, e o

Proof. If x > £(0), there exists a y so f(y) < x, by taking y = 0.

Since f is increasing, there are at most finitely many y so f(y) < x,

1

S0 ful is well-defined. Now f f(x) = x, since fnlf(x) is the largest

v so £(y) < f(x); by the increasing property of f, x = y. Also

ff—l(x) < x if x > £(0). For in this case there is a y so f(y) < x;

ff~l(x) < x is immediate by definition. Also, f_l is nondecreasing;

for by definition, £(£ 1(x +1)+1) > x+1. But if £ N(x+1)+1 < £ 1(x),
. -1 c

since £ "(x) < x we have a contradition. This completes (14.11.1).

If f is honest, [f(y) = x]:is in EZ. Say

f'l(o) =0
. f*l(x) +1 if [f(f'l(x) +1) = x+1]
f (X'*‘l) = o .
f(x) otherwise
fkl(x) < X

S,

e

i’

f

-1 ’

Since f 7 is defined by limited recursion from functions in 32,
f-l € 32. We omit the proof that f-l so defined in the inverse of
f. Even if f is only recursive, [f(y) = x] is recursive and the

above limited recursion defines f_l effectively, so f—l is recursive.

This completes (14.11.ii) and (14.311.iii).

(14.12) Definition. Let r be an increasing, recursive
function, and let f, g be functions. If for all

s f(y)(x) < g{x), write

y and x, x > r(y) implie
f <y 8- If there exists an r so T <, 85 We will

also say £ < g.

It should be obvious that < is a partial ordering on functions.

It is easily shown that <, T where r(y) = 2-.y+ 1. If f and g

fa T O+l
are recursive, it is an interesting question whether the proposition,

"for all y, g majorizes f(y)"

, implies the existence of a recursive
r So f‘<r g.
The next lemma shows < provides a dense ordering on the multiple

recursive functions; it is basic for the major results of both this

section and $§15.

(14.13) Lemma. Suppose f and h are increasing, honest
functions and £ < h. Then there exists an in-

creasing, honest g so f < g < h.

Proof. Say f <, h. By Theorem (14.9), take s honest, increasing, cﬂ
Nee< r

and such that s(x) > hr(xz). Let ¢ = s and observe that t(x) <

et st e

(r'lh'l(x)). Now define g:

g2

reqalster |

g(x) = £ HI)

Since t is nondecreasing and f is increasing, g is increasing; g is
honest since t € Ez by Theorem (14.11.iii) and [f(y)(x) =z] € 52
by (14.8).

Next, f <rl g via r; = s. For if x > s(y), t(x)+1 >y so
£ () < ().

For typographical convenience, write F(y,x) for f(y)(x). We

assert that
e (x) < 7y + 1) (66 () + 1) %)

If y = 0, the assertion is immediate by definition of g. If y > 0,

assume the assertion for ¥s then

(y+2)(x) (Y+l)(x)

g = gg
= P () + 1,6 (x))
< FeeT D) + 1,((r+ 1) - (820 (x) + 1),%))

F(ee Y G0+ 1,E((0) - (1Y (30 + 1) ,%))

INA

]

F(te) (x) 41+ (y+ 1) - (5 () + 1))

F((y+2) (s (x) + 1) ,%)

©)(x) =

and the assertion is proved. Take rz(y) = r((y'kl)z); now f

X = g(o)(x) < h(x) if x > r(0). Since rz(O) > r(0), g(o)(x) < h(x)

if x > rZ(O).
It g(y)(x) < h(x) whenever y > rz(y), by substitution in the

inequality asserted above

}

eV (x) < F((y+ 1) (800x) +1), 1) for x> ry(y)
< F((y+1)- N (x)) + 1) ,x)
< F(r_l(

x),x) for r > rz(y+<l)

= f(r'l(X))(x)

The third line follows since it is easily shown that (y+—l)-(Jir'l(x))+l)
< r-l(x) when x > (y-+2)2; but since r is increasing, rz(y4'1) =
r((y»+2)2) > (y+-2)2. Then since rr_l(x) < x if x > r(0), and since

for all y rz(y) > r(0), f(r—l(x))(x) < h(x)‘by the assumption on r.
Therefore g(y)(x) < h(x) for x > rz(y); that is, g <r, h. Lemma

(14.13) is proved.

(14.14) Theorem. Say 2 < B <a< u?i Then there is a
family D of classes of functions such that“
(i) If D e D, EB cDcfy
(ii) D has a dense, linear ordering.under set
inclusion;
(iii) If D € D, D is fully closed and closed
under limited recursiomn;

(iv) If D

B DZ € Dand D. c D,, D, contains a

1 2’ 72
universal function for Dl'
Proof. By Theorem (14.9), choose an honest, increasing function

tg € EB so tB(x) > fB(x). Let t () = téx)(x); then t, is increas-

ing, ty € £, and, by Theorem (14.8), t. is honest. Finally,

a

tg <y ty via r(y) = y+ 1.

Sl

Proof. The construction of Theorem (14.14) yields an infinite set

T of functions all of which are honest and increasing, and such

that T is linearly ordered by <; also, T c Ea and each member of A

T increases faster than any member of EB.
For each t € T, let dt be the function
t(x) if x € range t

0] otherwise

dt(x) = 1

Each dt is honest, for

[6(x) = ¥] 5t 3 [6(1) = x] 4 0
[a,(x) = y] =
[y = 0] otherwise

Then for each t € T, let the set J% be in I, where J% is the closure
under limited recursion and substitution of {dt, f, max, s}. As
before, s is the successor function. (14.15.i) and (14.15.iii) are

immediate.

Now consider a set J, € I. We assert that each function f € 7

t t
(ve) 1 .
has constants a, and b, so that nf(y) < fB t “(y), where nf(y) is
the function giving the number of n-tuples (in) with max{in} <y and
(af)

such that f(in) > f (y). That is, nf(y) is the cardinality of the

p

set

Geyr max()) < v & #5) > 150 (1)

Such constants certainly exist for fﬁ,;max, and s; and the cardinality

of

b x <y & a(x) > £5(y))

is no more than t'l(y).+1 < th_l(y). If £ is defined by limited
recursion from functions for which the assertion above holds, the
assertion holds for f immediately by the bounding condition. If

£ is defined by substitution, f may be written

£(3.) = nlg (%)), g (%))

and where we may assume there are suitable constants ah’bh’al’bl"”’am’
bm so that the assertion holds for h, AR - By taking some of
EEEED- to be constant or identity functions, any instance of sub-
stitution may be written in this form.

Let 8, = max{al,...,am}, bg.= max{bl,...,bm};'and say & = & e .
1f max{x } <y, £(x) > f(a)(y) only if all of gl(in),..;,gm(in) are

B

8 (3) vt gy () g, (7)) > £62)(5), or one or
)

bounded by fB

- - a ‘
g
more of gl(xn),...,gm(xn) exceeds fB (y). In other words, the
number of n-tuples (x) with max(X) < y and such that £(x_) > féa)(y)
is no more than nf(y), where

) (a_) m o (b))
n(y) = £ "t g Ey) 43, £ T ey

Now by examination of the construction of the function t € T in
Lemme (14.13), for each such t,there is a non-decreasing function

r so t{x) = fér(x))(x). Then for any c,

féc)t(x) _ féc+r(x))(x)
(c)
< f(cfrfB (X))(x)
= tféc)(x)

4)
»

By applying t_l to both sides of this inequality,

t—l féc)t(x) < féc)(x)

Putting t_l(y) for x,

0 <) rer v 2 6(0)

By choosing b sufficiently large, then

(a)
gy &) < 1508
But then () b) (b.)
' b, +b b b
n(y) <25 0 e ety B e) <55 T 4T

for suitable b_; this concludes the proof of our assertion. The

f;
next step in (14.15) is to show that if t, u € T and t < u, there
(b)

are no numbers a, b so ndt is bounded by fB u—l; we conclude that

dt ? Jﬁ. Because fB < t, for each number a there is a constant c

so the cardinality of
{x: x<y& dt(x) > féa)(y))

is greater than t_l(y) * c. Given any b, choose y_ so'u(yo) > t(z)(yo)

+ ¢ and t(yo) E'féb)(yo); this is possible because fﬁ <t <u. Then

-1(

ng, (u(v)) > ¢ u(y)) e

Ul(e,x,féa)(max{x,h(x)})) by the properties of U

Therefore, for no a, b is ndt bounded by f(b)u_l

; hence dt ? Jﬁ.

()

On the other hand, every function in J, is bounded by t for

t
some ¢; but if t £ u, du is not bounded by t(c) for any c¢. Thus

d, ? I, 5 and so I and 7, are setwise incomparable, proving (14.15.ii).

t
(14.15.iv) will follow immediately from the next theorem, which is

interesting in its own right.

(14.16) Theorem. Let C and D be fully closed classes
containing £, with C - 9# @¢. Then there is

a characteristic function in C - 9.

Proof. Pick an arbitrary constant a and let f¥(x,b) be the smallest

number k so k is unequal to all of U (O,x,féa)(max{x,b])), '

1

x,x,f(a)(max{x,b})). It should be clear

Ul(l,x,féa)(max{x,b})),...,U 5

1 (
that £* ¢ £2 and f*(x,b) < x+2.

Now take any function g € C -9, and let h € Cbe a bound on
the computation time of g. Then put f(x) = £*(x,h(x)); £ € C by

closure under substitution. We assert that if ey is any index for

f, @el(x) > féa)(max[x,h(x)}) for almost all x. For if this is

false, there is an x > e

£(x) # Ul(g,x,féa)(max{x,h(x)})) by definition of f, but f(x) =

so & (x) < féa)(max{x,h(x)]); then
1

1° This is a contra-
I
-

diction.
Now let c(x,y) = [f(x) = y]; ¢ € C is immediate. Consider the

following procedure for computing f, given c: successively compute

[f(x) = 0], [f(x) = 1],...,[f(x) = x+2]; one of these must yield
1 as a result. Let f(x) be the y for which [f(x) = y] = 1. If e,

is an index for c¢, the number of steps required is bounded by
féd)(max(x, S 9 (x,y)))

yex+ 2
for some fixed d. Then if ®82(x,y) < h(x) for infinitely many x,
the number of steps required to compute f is less than
féd)(max{x,(x+3)-h(x)}) for infinitely many x. But we showed above
that any machine for f must require at least féa)(max{x,h(x)}) steps
for almost all x, where a was arbitrary; we conclude by this reductio

h
that every index e, for ¢ has @ez(x,y) > H(x) for almost all x. Then

2
if ¢ € D, a function bounding h would also be in D by the full closure
property of 9, and hence g would.be in D; but g € é- D, so ¢ ? D.
Then also c* € C- D where c¥(x) = C(Wl(x),vz(x)), for c(x,y) = c*(1(x,y)),
which proves (14.16). |

Theorems (14.14) and (14.15) may reasonably be interpreted as
casting doubt on the naturalness of the classes fa. For if, as im-
plied by Theorem (14.14), there is a dense, linearly ordered hierarchy
of clagses of functions whose union is the multiple recursive functions
‘such that all the classes have the same strong closure properties as
the £d’ the ﬁa themselves no longer seem so significant. For example,
given the dense hierarchy, we é%h‘find a subordering of any denumera-
ble order type we please. Theorem (14.14) even implies the existence

of uncountably many fully closed classes of multiple recursive functions

with a linear set theoretic ordering. ILikewise, Theorem (14.15) can

gﬁ

be extended to yield uncountably many incomparable classes which
are fully closed.

One development i1s possible which would restore the importance
of the classes ﬁa. Suppose C is any fully closed class of multiple
recursive functions. Say C[0] = C; given C[a] for a < ayﬂ let
C[a+'aF] for n > O be the closure under substitution of Cla] and
all functions obtainable by (n+ 1)-recursion from functions in C[a].
Then it seems possible that for any such C, there are o, B < dg)such
that Cla] = SB; that is, by applying multiple recursion several times
to any "in-between" class C, eventually one of the Ed classes is

reached. This possibility has not been seriously investigated except

by trying the few examples which suggested it.

&y

§15. Blum has recently published some remarkable results on the
complexity of recursive functions [g]. One of his theorems is the

following.

(15.1) Speed-up Theorem (Blum). Let r{ge a total recursive
function,lgth - N. Then there is a total recursive
characteristic function f with the property that to
every index 1 for f there corresponds another index

j for f such that for almost all x, @i(x) > r(x, ®j(x)).

Blum's theory is machine independent. For example, he does not
demand of the step-counting function QJ(X) that 1t actually give the
steps used by the j-th machine with input x, but merely that for each
J an@ X that ¢3(x) converge if and only if wj(x) converges, and that
the predicate [®j(x) = 7] be recursive. As we have seen, if ®j
measures the actual number of steps taken by a Turing machine,

[®j(x) = z] is in EZ’ that is, an elementary predicate.

The Speed—up Theorem implies, for example, that there is a re-

cursive function f so if ?; computes f, there is another index J for

o (x)
1(for almost all x; that is, given any machine

f so that ®j(x) <2
for f there is another machine which computes f and halts in only

about the logarithm of the number of steps required by the first ma-

Hovt uri 2z

chine. _Moreoyer, as Blum shows, the faster machines. cannot in general
be discovered effectively.
Blum also proved a more powerful version of the Speed-up Theorem

which shows that the r of Theorem (15.1) can be as large as,@i itself.

g3t

(15.2) Super Speed-up Theorem (Blum). Let g be a total
recursive fuﬁction. Then there exists a recursive
characteristic function f such that
(i) If i is an index for f, @i(x) > g(x) for

almost all x;
(ii) To any index i for f, there corresponds an

index j for f such that @i(x) > ®j®j(x)/h et M ¥

This theorem has the Speed-up Theorem as an immediate conse-
gquernce.

It might be thought that the function f whose computation can
be sped up must be enormously more complex than the r of Theorem
(15.1) or the g of Theorem (15.2). .By agreeing that ®j(x) has its
natural interpretation, the methods of Lemma (14.13) may be adgpted
to prove a stronger version of the Super Speed-up Theorem in which
f is, in a reasonable way, only slightly more complex than g, and
that there are functions lying very low in the Ea hierarchy whose

computation can be sped up quite considerably.

(15.3) Theorem. Let g be an honest, increasing function
with g(x) > 2%, and r be an unbounded, nondecreas-
ing recursive function. Then there is a recursive
characteristic function f such that:

(i) If i is any index for T, Qj(x) > g(x) for

almost all x;

(/‘W

(ii) There is an index j for f such that
¢j(x).§ g(r(x))(x) for almost all x;

(iii) For each index i for f, there is another
index J for f such that for all c,

@i(x) > @gc)(x) for almost all x.

Proof. The proof consists of a main Lemma (15.4), which is a strength-
ening of Blum's lemma for the Super Speed-up Theorem Lgi p.330], then

the construction of £, and finally several lemmas on the properties of
f. Two of these latter are slightly modified versions of Lemmas 1 and

4 .
2 used by Blum [&, p.327].

(15.4) Lemma. Let g and r satisfy the hypotheses .of Theorenm
(15.3). Then there is a function qs(x) such that
(i) For each s and all x, qs(x4-l),> qs(x);
(ii) For each s and all x,-qs+l(x) < qs(x);

(iii) For all s and ¢ and almost all x,

(c)

qs+l

(x) < q (x);
(iv) For all s and almost all x, g(r(x))(x)
> q_(x) > gx);

(v) As a function of s and x, qs(x) is honest.

Proof of Lemma. By (14.9), chdose an honest increasing function b

2

so for all x b(x) > x2, b(x) > £ (x), b(x) > eI (), ana

such that b_l(x) < r(x) for almost all x. Then let ts(x) = b<zs+2)(x).

As a function of s and x, ts(x) is honest by Theorem (14.11). Then

if y exists; t;l(x) = 0 if it does not. Then say

-1
a () = g I

Parts (i), (ii), (iv), and (v) of the Lemma are immediate. Now if

e, 9o
(.Y)(X) < g(y+l)(x) < qs(x); thus _3g_.<~:g§(_‘iq§ Since

ts+l(x) = bbts(x) = btsb(x) > qsts(x), by the argument of Lemma

x > ts(y)) g

(14.13),

‘qﬁ1<§w 1@

where rs(y) = ts((y4—1)2). This proves part (iii) and thus Lemma
(15.4).

The proof of (15.3) now continues with the construction of f.
First we define a function fuv and an associated set Kuv each of
which depend on the input x. Given x, compute fuv(x) and Kuv(x)

as follows.

set X__(-1) -

If x > 0, find the smallest k, k < x,
so that all of the following are true:
(a) x<v, or¥>vand k <u;

() 0, (x) < q(x); ¢

() k¢ Kuv(x-l).

1

If such a k exists, set Kuv(X) = Kuv(x—l) U {k},
and put fuv(x) = 1,iqk(x); if no such k exists,

put Kuv(x) = Kuv(x-l), fuv(x) = 0.

ts (x) is in ﬁz, where by t;l(x) we mean the greatest y so ts(y) <x

Then the function f of Theorem (15.3) is We can also construct

fb0°
fuv more formally, so that it is clearer that it has the properties
we ascribe to it. To simplify the presentation, we will use certain
notations not yet introduced. If P(in,y) is a predicate, the pre-

dicates (g y)< XP(xn,y) and (\fy)< « P(xn,y) are obtained from P

by limited quantification; the meaning of the former, for example,

is @y) (y<x& P(in,y)). The predicates of ﬁz are closed under
limited quantification; this follows immediate from the closure of
ﬁz under limited sum and limited product. The predicates of £2 are

also closed under the Booﬂbﬂﬂ operations &, V and ~. Finally, ﬁz

is closed under limited minimization; obtaining uk< X P(in,k) from g
predicate P, where the notation means the least k such that k < x and
P(in,k) is true; or zero if there is no such k. Tge closure of EZ
under this operation follows directly from the closure of EZ under
limited recursion. Grzegorczyk discusses ali these operations more
fully [a].

Construct functions c, K¥, f* as follows.

c(u,v,b,K,x) = Mk X+l{((X <Vv) V(x>v&k>u))

& (By) f[a () = v] & B [0(x)=

& (Vi) [(K), £ k+1]

~VI[k=x+1]]

an

w])

1 if C(u,V,b,l,O) = 1
K*(u,V,b,O) =

2 otherwise

(u,v,b,x) if c(u,v,b,K(u,v,b,x),x+l) = x+ 2

K*¥(u,v,b,x+1) = ‘
1+c(u,v,b,K*(u,v,b,x),x+1)

K*(u,vgb,x)-fx+l otherwise
~x+]
K*(u,v,b,x) < W fe,
L4x
0 if (K*(u,v,b,x))X =0
f*(u,v,b,x) = .
l:'Ul((K*(u,v,b,x))Xi 1,x,b) oI vk

£,(0) = £(u,v,q (v) + g (x),x)

If, in the informal algorithm, Kuv(x)—-Kuv(x— 1) = {k}, we will say P

is spoiled for x in K . Notice that if ¢ is spoiled for x in K _,
—————— uv k uv

then fuv(x) = 1< wk(x) # @k(x). (Blum uses the term "cancelled".)

It is clear that’f* defined above 1s elementary. It 1s not so
clear that fuv(x)=f*(u,v,q0(v)-+qu(x),x); nevertheless, we will omit
the detailed proof. The representation of Kuv used by K¥ is as fol-
lows: if P has been spoiled for some y < x in Kuv’ then the prime-
k+1

power decomposition of K*(u,v,qO(v)—%qu(x),x) contains a factor Py,

and no other prime in the factorization has an exponent k+ 1. If P

&
L

has not been spoiled for any y < x in Kuv’ the prime-power factoriz-

ation of K*(u,v,qo(v)1~qu(x),x) contains no prime with an exponent of
\4

k+ 1. The crucial fact which assufles that f* has the correct proper-

ties is that in the calculation of fuv for u < v, we are called upon

Sul

.
k“"&«,.), ,,

to know the values of qu(x), qu+l(x),...,qx(x) if x > v, and

qo(x), ql(x),...,qx(x) if x <v. 1In view of (15.4.1) and (15.4.ii),

all of these are bounded by qo(v)-+qu(x) = b. Then since k < x, the

truth value of (:iy)S b([qk(x) =v] & (E]W)S y[@k(x) = w])is the same

as that of ®k(x) < qk(x).

(15.5) Lemma (Blum). For each u there exists a v such

that fuv = fOO = f.

Proof. For each u there are only finitely many k with k. < u, and in
particular there are only finitely many @k with k < u ever spoiled for

any x in X

00" Choose v > u so v bounds all x such that k < u and @k

is spoiled for x in KOO'
Now KOO(—l) = Kuv(—l) =ﬂ§; assume x > O is the least number so

KOO(X) 4 Kuv(x). Then clauses (b) in the definitions of K . (x) and

00
Kuv(x) have identical truth values for each k; likewise for clauses
(c). But then if Kuv(x) 4 KOO(X), it must be that x > v and there

is a k < u so ®k(x) < qk(x) and k § Kuv(x -1) = KOO(X -1). But then
@k is spoiled for x in KOO(X), and by choice of v, if k < u and @k is
spoiled for x in KOO then v > x. Since we proved above that x > v, we

have a contradiction. Therefore, we have shown Kuv(x) = KOO(X) for

all x, and thus fuv = fOO' .

(15.6) Lemma (Blum). If ¢; = T, then @i(x) > qi(x)

for almost all x.

Proof. Suppose for contradiction that there are infinitely many

X = x5, X such that @i(xj) < qi(xj). Since i is a fixed number

EREE
there are only finitely many k(with ; with k < ij therefore, there

must be a number x which bounds all those y for which there exists a

k < i such that @k is spoiled for y in K .. If X, is the least of

00

Xgs Xysee which exceeds this x, the conjunction of clauses (a), (b)

and (c¢) in the definition of fOO = is true for x = x , k = 1 and
for no smaller k. Thus@i is spoiled for x . But then @i(xn) # f(xn),

a contradiction.

(15.7) Lemma. There is an increasing EZ function h so for each

u, there is an index j for f such that

hg, (x) > ®,(x)
for almost all x.

= ¥ * .
Proof. Recall that fuv(x) £ (u,v,qO(v)+~qu(x),x) and f* € £2

By the honesty of 4 and a,’ there are 22 functions to and t‘L SO

the computation times of g and q_ are bounded by to(v,qo(v)) and
t‘(u,x,qu(x)) respectively; also, the computation time of f*(u,v,z,x)

is bounded by t.(u,v,z,x) and t_. is in EZ. Thus there is an EZ

f(f

. function t so t is increasing %pdvt(u,v,qo(v)+-qu(x),x) bounds the
computation time of f*(u,v,qo(v)4cqu(x),x). Let h(z) = t(z,z,2.2,2).

Given u, use Lemma (15.5) to find a v so fuv = fOO = f, and let j

be the index of £ . Then
uv

t(u,v,qo(v) +qu(X):X) > (Dj(X)

for all x. But for large x, qu(x) exceeds all of x, u, v, and qo(v);

therefore for large x,

h((lu(x)) = t(q,u(x);qu(x)yz’qu(x):qu(x))
> t(u)V;qO(x)'*' Q,u(x))x)

> ®j(x)

which completes Lemma (15.7).

sy

gﬁM

Proof of Theorem (15.4) (concluded). By Lemma (15.6), if i is an

index for f then for almost all x,

0,(x) > g, (x)
By Lemma (15.4.i1ii), for every 4 and almost all x,

EASERHRICS

Since by hypothesis 9G4 > ZX, if h is any EZ function, d can be made

large enough so

- (a)
a3 1(x) > a5y hgg b gy ah(x)

In particular, if h is the function of Lemma (15.5), use the lemma
to find an index j for f such that h(qi+l(x)) > ®j(x) for almost all

X3 thén

o, (x) > ®§C)(x)

for each ¢ and almost all x. This completes (15.3.iii). (15.3.1)
follows from Lemmas (15.6) and (15.4.iv); (15.3.1ii) follows from
Lemmas (15.7) and (15.4.iv). Thus (15.3) is complete..

Theorem (15.3) is stronger than Blum's Super Speed-up Theorem
in two ways: first, as mentioned, we have shown that functions capa-
ble of being sped up lie low iﬁithe Eduhierarchy; fo? example in EB,
by taking g(x) = 2% in (15.3). Second, given an index i for f, we

have an index j for f so @i(x) > ®gc)(x) for every ¢ and almost all

g&@

(2)

x; Blum's theorem had a 3y 50 @i(x) >0y (x), a Jo 80 @i > ®(5)(x),...

J1 J2
Thus, as an example, let g(x) = 2% in Theorem (15.3). Then

there exists an f so if 1 is any index for f, there exists another

index j for f such that all of the inequalities

®j(x) <oy Qi(X)
¢j(x) < logfog @i(x)

0,(x) <nlndn 0, (x)

.
L4

hold for almost all x. Also, f € ES, and, in fact, if r is a non-

decreasing, recursive, unbounded function, no matter how slowly in-

(r(x))

creasing, then f can be computed in appfoximately fz

(x) steps.

s

gt

Then by Lemma (14.13), there ié a set T of honest, increasing
functions, all of which bound tB’ all of which are in Ea, and which
has a dense, linear é@ering under <. For each function t ¢ T with
t # ty and # tB, put Dt in D, vhere Dt is the closure under sub-
stitution and limited recursion of (%, s, max}; here s is the suc-
cessor function, s(x) = x+1. Each Dt € D is fully closed by Theorem

(14.7). Clearly every function in D, is bounded by t(c) for some

fixed ¢, so by definition of <, if tl < t2 then Dtl o th; thus D 1is
densely ordered. Finally, if D € D, Eg cD c:Ea and for each t € T,

t t.

B<

Finally, if Dtl, th € D and Dtl c:DtZ, t, < t2; thus

1
Ul(e,x,tg(x)+-e) is universal for the one-place functions of Dt by

exactly the same arguments as Theorem (6.12). This proves (14.14.iv).

(14.15) Theorem. Say 2 < B < @ < &°. Then there is an

infinite family I of classes of functions such

that

(i) If 7€ I, ‘QBCJC‘@O&;

(ii) The members of I are pairwise incomparab;e
under set inclusion;

(iii) If 7 € I, ¢ is fully closed and closed under
limited recursionf -

(iv) If o, 7, € I and A 4 J,; there is a charac-

1’ 2

teristic function in Ji— Jé.

[1]

2]

[3]

[4]

[51]

(6]

7]

[8]

[e]

[10]

[11]

[12]

[13]

[14]

REFERENCES
Ackermann, W., "Zum Hilbertschen Aufbau der reelen Zahlen'
Math. Annalen 99 (1928), pp. 128-133.

Axt, P., "Iteration of primitive recursion" Notices Amer.
Math. Soc. 10, 1 (1983), Abstrzct 597-182.

, "Enumeration and the Grzegorczyk hierarchy"

Zeit. f. math. Logik u. Grundiagen d. Math. 9 (1963),

pp. 53-65. -

Blum, M., "A macnlne—i:dcpeniv"u Theory of the complexity of
recursive functions" J. Assoc. Comp. Mach. 14, 2 (1967),
pp. 322-336.

Cleave, J. P., "A hierarchy of primitive recursive functions"
Zeit. f. math. Logik u. Grundizgen d. Math. 9 (1963),
pp. 331-345.

Cobham, A., "The intrinsic computational complexity of functions"
Proc. 1964 Cong. for Logic, Methodology, and Pnilosophy of
Science, North-Holland, Amsterdam (1964).

Davis, M., "Computability and Unsaivab 1lity" McGraw-Hill, New
York (1958).

G5del, K., "Uber die unentscheidtzre Qatze der Pr1nc1n1a
Mathematica und verwandter Systsme I" Monatshefte f. Math.
u. Physik 37 (1931), pp. 349-320.

-

-

Grzegorczyk, A., "Some classes of recursive functions”
Rozprawy Matematyczne 4 (1953}, pp. 1-45.

Hartmanis, J. and Stearns, R.E., "On the computational com-
plexity of algorithms" Trans. Zimer. Math. Soc. 117, 5
(1965), pp. 285-306.

of natural numbers”

Kleene, 3.C., "General rec

Math. Annalen 112 (22936)
Jw¥rﬂxcb¢Elwm

, "Emsbruesion o Me-zmathematics" Van Nostrand,

5
o
ct
5
0
5

Princeton, (1950).

zctively generaf
~quium Math. 6 (18

, "Extensizn of an =7

functions by enumersiion” Col

S

= (‘f“

Ly . ' E v it g o mm
Meyer, A. R., epth <¢f nezting =n3d
f'ed
c

Notices Amer tiath. 3o

P} . o H
the Grzegorczyx Hie

(1965), Abstract 822

}...

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Meyer, A. R., and Ritchie, D.M., "Computational complexity
and program structure" IBM Research Report RC-1817 (1967).

, and , "The complexity of Loop
programs” Proc. 22nd Nat. Conf. Assoc. for Comp. Mach.,
Thompson, Washington (1967), pp. 465-470.

Minsky, M.L., "Computation: finite and infinite state machines"
Prentice-Hall, Englewood Cliffs, N.J. (1967).

Myhill, J., "Linear bounded automata" WADD Technical Note
60-185, Wright-Patterson AFB, Ohio (1960).

Péter, R., "Uber die mehrfache Rekurs1on" Math. Annalen
113 (1963), pp. 489-527.

, "Die beschrankt-rekursiven Funktionen und die

Ackermannsche Majorisierungsmethode" Publicationes

Mathematicae Debreczen & (1956), pp. 367-375.

, "Recursive functions" Academic Press, New York and

ILondon (1967). (Translation by Istvéan Fsldes of "Rekursive

Funktionen", Mlodimunehen Vedas, Budopat (145;)

Ritchie, D.M., "Complexity classification of primitive recursive
functions by their machine programs" Notices Amer. Math. Soc.
12, 3 (1965), Abstract 622-59.

Ritchie, R. W., "Classes of predictably computable functions"
Trans. Amer. Math. Soc. 106 (1963), pp. 139-173.

, "Classes of primitive recursive functions based

on Ackerman's function", Pacific J. Math. 12, 3 (1965)
pp. 1027-1044.

Robbin, J. W., "Subrecursives hierarchies" Doctoral Dissertation,
Princeton (1965).

Shepherdson, J.C., and Sturgis, H.E., "Computability of recursive
functions" J. Assoc. Comp. Mach. 10 (1983), pp. 217-253.

Suppes, P. "Axiomatic set theory" Van Nostrand, Princeton (13960).

e

Turing., A.M¥., "On computable numbers, with an application to
the Entscheidungsproblem"” cc. London Math. Soc., series 2,
42 (1938) pp. 230-2865

