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Abstract

Early in development, children learn to extend novel category
labels to objects with the same shape, a phenomenon known as
the shape bias. Inspired by these findings, Geirhos et al. (2019)
examined whether deep neural networks show a shape or tex-
ture bias by constructing images with conflicting shape and
texture cues. They found that convolutional neural networks
strongly preferred to classify familiar objects based on texture
as opposed to shape, suggesting a texture bias. However, there
are a number of differences between how the networks were
tested in this study versus how children are typically tested. In
this work, we re-examine the inductive biases of neural net-
works by adapting the stimuli and procedure from Geirhos et
al. (2019) to more closely follow the developmental paradigm
and test on a wide range of pre-trained neural networks. Across
three experiments, we find that deep neural networks exhibit
a preference for shape rather than texture when tested under
conditions that more closely replicate the developmental pro-
cedure.

Keywords: shape bias, inductive bias, neural networks, word
learning

Introduction
When presented with a new object and its label (e.g. “dax”),
how do humans determine how to generalize the label to other
objects? Starting around the age of two, children prefer-
entially generalize novel category labels to solid objects of
the same shape rather than the same size, color, or texture,
a phenomenon known as the shape bias (Landau, Smith, &
Jones, 1988). The standard experimental approach to mea-
suring the shape bias in developmental psychology involves
first presenting the participant with an anchor stimulus con-
sisting of a novel shape and texture (see Figure 1(a) for an
illustration). This is followed by the presentation of addi-
tional stimuli that match the anchor stimulus in either shape,
texture, size, or color (but not in any other dimension). Partic-
ipants are asked which of the additional stimuli are the same
category as the anchor; choosing the stimulus that matches
along the shape dimension at levels above chance indicates a
shape bias. The emergence of the shape bias indicates a cru-
cial developmental shift in which children begin to recognize
that shape information is a reliable indicator of object names,
facilitating the acceleration of noun learning (Smith, Jones,
Landau, Gershkoff-Stowe, & Samuelson, 2002; Diesendruck
& Bloom, 2003; Gershkoff-Stowe & Smith, 2004). The shape
bias strengthens as we grow older and gain more visual and
linguistic experience; in fact, by the time we are adults, shape
appears to serve as the primary predictor of our recognition
of familiar categories (Biederman, 1995).

Due to its importance in understanding generalization and
learning in humans, multiple computational accounts of the
shape bias have been proposed. These include models based
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Figure 1: Two different approaches to measuring shape bias.
In the standard developmental procedure (left), an anchor stimulus
(top) is presented and assigned a novel label. The participant is then
asked whether a shape match (bottom left) or texture match (bottom
right) has the same novel label as the anchor stimulus, and shape
bias is calculated as the proportion of participants who prefer the
shape match. In the shape bias procedure from Geirhos et al. (2019)
(right), a cue-conflict stimulus with a cat shape and elephant texture
is presented to a model, and a subset of the 1000 resulting ImageNet
class probabilities (small circles) are averaged to attain scores for
16 basic categories. For example, probabilities for the ImageNet
categories “Indian elephant” and “African elephant” are averaged to
obtain a score for the basic category “elephant”. All other ImageNet
probabilities (dark gray circles) are ignored. The model’s decision
is considered shape biased if it predicts the shape category (cat),
texture biased if it predicts the texture category (elephant), or is dis-
carded if it predicts any other category.

on associative learning (Samuelson, 2002; Colunga & Smith,
2005) or overhypotheses in hierarchical Bayesian models
(Kemp, Perfors, & Tenenbaum, 2007), although one limita-
tion is that these models used simplified feature representa-
tions for capturing shape rather than naturalistic images. In
the past decade, following the impressive achievements of
deep neural networks (DNNs) on tasks such as image clas-
sification (Krizhevsky, Sutskever, & Hinton, 2012), there has
been a push to better understand how machines encode and
process images and whether they can be used as computa-
tional accounts of human vision (Yamins et al., 2014; Geirhos
et al., 2021). In particular, this has led to a renewed interest in
the shape bias, with initial accounts demonstrating that DNNs
did have a preference for shape. Ritter, Barrett, Santoro, and
Botvinick (2017) showed that pre-trained convolutional neu-
ral networks (CNNs) preferred to categorize novel objects on
the basis of shape rather than color, and Feinman and Lake
(2018) found that simple neural networks could learn a shape
bias from very few examples.

However, while this earlier work showed that DNNs dis-
played a shape bias, this may have been the result of limiting
the comparison to shape versus color. More recent work has
argued that deep neural networks actually rely on local texture
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Figure 2: Example triplets from several experimental conditions.
Each row consists of two triplet-based trials, each with an anchor
stimulus, a shape match, and a texture match. The first row demon-
strates two triplets created from the original cue-conflict stimuli. For
the second and third rows, the triplets on the left demonstrate the
40% size condition, while the triplets on the right demonstrate the
80% size condition. The textured silhouette stimuli in the second
row also demonstrate the aligned shape condition, while the novel
stimuli in the third row demonstrate the unaligned shape condition.

information rather than global shape information for classifi-
cation (Baker, Lu, Erlikhman, & Kellman, 2018; Brendel &
Bethge, 2019; Geirhos et al., 2019). In particular, Geirhos
et al. (2019) conducted a deeper examination by measuring
shape versus texture bias in ImageNet pre-trained deep neu-
ral networks. They created a set of novel cue-conflict stim-
uli by overlaying the shape information of one category with
the texture information of another category via style transfer
(Gatys, Ecker, & Bethge, 2016). Shape bias was then calcu-
lated as the proportion of trials in which a model classified a
cue-conflict stimulus as its shape category divided by the to-
tal number of classifications to either its shape or texture cate-
gory (and similarly for texture bias; see Figure 1(b) for proce-
dure details). Using this procedure, they found that ImageNet
pre-trained CNNs were actually strongly biased towards tex-
ture, while humans tested using the same stimuli showed a
strong preference for shape, highlighting a large discrepancy
between human and machine behavior. In light of this find-
ing, additional research has aimed to find ways of reducing
the degree of texture bias in deep neural networks, such as
work showing that shape bias can be increased via different
kinds of data augmentations (Hermann, Chen, & Kornblith,
2020), or that vision transformers show less of a texture bias
than CNNs (Tuli, Dasgupta, Grant, & Griffiths, 2021).

Despite the significant attention this finding has received,
there are a number of important differences between the pro-
cedure used by Geirhos et al. (2019) and the procedure used in
developmental psychology for assessing the shape bias, mak-
ing it difficult to directly compare these recent findings with
traditional findings. First, as shown in Figure 1, the style

transfer method for creating the cue-conflict stimuli from
Geirhos et al. (2019) produces stimuli where both the texture
information may be inadvertently emphasized and the shape
information de-emphasized, by covering the entire image—
both the shape itself and the background—with the texture
pattern. On the other hand, in developmental studies, the
stimulus texture is always contained within the shape bound-
ary, more closely reflecting how texture applies to objects in
the real world; in fact, physical objects are often used rather
than images of stimuli on a computer screen. Second, the
procedure is limited to evaluating shape bias for 16 highly
familiar categories (due to the use of a model’s output layer
from the set of 1000 ImageNet categories), whereas develop-
mental studies focus on testing shape bias via novel shapes.
Finally, the use of model classification outputs to determine a
shape or texture decision for each individual stimulus differs
from the typical procedure showing an anchor against shape
or texture matches. In fact, the procedure from Geirhos et al.
(2019) requires discarding a large proportion of trials that do
not result in a correct shape or texture classification in their
measure of shape bias.

Motivated by these differences, we re-examine the tex-
ture bias claim and outline an alternative procedure for
measuring shape bias in artificial neural networks that is
more closely aligned with the developmental procedure.
In Experiment 1, we adapt the cue-conflict stimuli from
Geirhos et al. (2019) to parametrically reduce the saliency of
the background texture. Our main result shows that across
all models tested, removing the influence of background
texture results in a preference for shape over texture. In
Experiment 2, we conduct additional tests to check the
robustness of this finding by varying the size and position-
ing of the adapted stimuli, showing that this preference
for shape over texture holds across different presentation
conditions. Finally, in Experiment 3, we test the shape bias
using a set of stimuli with novel shapes and textures, which
most closely replicates the developmental procedure. We
find that the overall degree of shape bias across models
is lower for the novel stimuli compared to the adapted
stimuli from Experiment 2. Furthermore, pre-trained models
exhibit a higher rate of shape-based responses than their un-
trained counterparts, indicating that training increases shape
bias. The shape bias testing code and datasets are available at:
https://github.com/alexatartaglini/developmental
-shape-bias.

Methods

Measuring Shape Bias. In this section, we describe the pro-
cedure used in the following three experiments to measure
shape bias in the models. Following the developmental pro-
cedure from Landau et al. (1988), a trial consists of a triplet
of image stimuli: an anchor stimulus with a given shape and
texture, a shape match stimulus that shares only its shape with
the anchor, and a texture match stimulus that shares only its
texture with the anchor. We assembled a large number of



unique triplets for a given dataset by first considering each
stimulus in the dataset as an anchor, then selected shape and
texture matches for the anchor from other stimuli that have
the same shape or texture class respectively.1

To process a trial, all three images in a triplet were passed
individually to a given pre-trained model up to the penul-
timate layer to extract three embeddings of visual features.
We then determined whether the model considered the shape
or texture match to be more similar to the anchor by com-
puting the cosine similarity between the anchor and the two
matches.2 If the cosine similarity between the anchor and
shape match is higher, the trial is considered a shape decision.
Otherwise, it is considered a texture decision. The resulting
shape bias of a model is computed as the proportion of the
number of its shape decisions to the total number of trials.
Because no trials are discarded with this method, texture bias
of the models equals the remaining number of texture deci-
sions over the total number of trials.

Models. We measured shape bias for a variety of models
with different architectures, types of supervision, and train-
ing data. This included a ResNet-50 convolutional network
(He, Zhang, Ren, & Sun, 2016) and a ViT-B/16 vision trans-
former (Dosovitskiy et al., 2021). As a baseline, we first ran
all experiments with 10 randomly-initialized ResNet-50s and
ViT-B/16s then computed the average shape bias for each
across all 10 models. These models are referred to as ran-
dom ResNet-50 and random ViT-B/16 respectively. We also
tested supervised variants of ResNet-50 and ViT-B/16 that
were pre-trained on ImageNet (Deng et al., 2009), as well
as a self-supervised ResNet-50 trained via DINO (Caron et
al., 2021), that did not require labels during pre-training.

We also included CLIP ViT-B/16 (Radford et al., 2021),
which was pre-trained on a dataset of 400 million image-
caption pairs via contrastive learning, and was recently been
shown to be most comparable to human vision on a range
of benchmarks (Geirhos et al., 2021). Finally, we tested
SAYCam-S model (Orhan, Gupta, & Lake, 2020), which
uses a different convolutional neural network (ResNeXt-50,
Xie et al., 2017) and was trained using a self-supervised
objective on a longitudinal egocentric dataset of headcam
footage filmed from the perspective of one child sampled
regularly from the age of 6 months to 32 months. We in-
cluded this final model because the footage is recorded dur-
ing the developmental period and in the typical environment
that English-speaking children tend to acquire a shape bias
(although this model does not receive the kind of labeled su-
pervision thought to be important in acquiring the shape bias,
Smith et al., 2002; Gershkoff-Stowe & Smith, 2004).

1Only shapes and textures from the same source image are con-
sidered to be a match; for example, if two stimuli both have the shape
of a cat but use two different pictures of cats, they are not considered
shape matches, and similarly for texture matches.

2We also ran all experiments using the dot product and Euclidean
distance as alternative measures of perceptual similarity. We found
that the results were very similar across all distance metrics used, so
only results using cosine similarity are reported.

Experiment 1
In this experiment, we examined the possibility that the tex-
ture bias observed in convolutional neural networks may be
due to an over-emphasis of texture in the cue-conflict stimuli
used in Geirhos et al. (2019). Specifically, the texture infor-
mation in these test stimuli is highly salient, covering both
the shape and background and obscuring some of the under-
lying shape information (see the top row of Figure 2). This is
in contrast to the stimuli used in the developmental setup, in
which the texture is contained within the shape of a stimulus
and presented on a white or neutral background.

Dataset. In order to bridge these visual differences, we
modified the original cue-conflict stimuli created by Geirhos
et al. (2019) by parametrically decreasing the opacity of the
background texture in varying degrees. This was achieved by
making use of the separate “filled silhouette” dataset (Geirhos
et al., 2019), which contained a silhouette of each shape in-
stance used in the original cue-conflict stimuli. The silhou-
ette of each shape instance was used to create a mask of the
background for each matching cue-conflict stimulus. These
masks were then superimposed onto the corresponding cue-
conflict stimuli, obscuring the texture background with white
pixels and highlighting the shape of the stimulus. We refer
to these modified stimuli as the “textured silhouette” stimuli.
The opacity of the white background mask was controlled by
a variable α ∈ [0,1], where α = 0 is equivalent to the orig-
inal cue-conflict stimuli, and α = 1 removes all background
texture and replaces it with a white background. We created
distinct datasets for 6 equally spaced α values, as shown in
Figure 3.

All possible (anchor, shape match, texture match) triplets
of stimuli were generated as described in the Measuring
Shape Bias section for each α-valued textured silhouette
dataset. In the original dataset used by Geirhos et al. (2019),
stimuli with certain shapes and textures appeared more fre-
quently than others, which resulted in a larger number of
possible triplets with these anchor stimuli. To ensure that all
shape and texture classes were equally represented in the fi-
nal shape bias computation, we randomly selected 28 unique
triplets for each of the 1,200 anchor stimuli, producing a total
of 33,600 triplets used for evaluation. We repeated this pro-
cedure a total of 3 times, reporting the average measurements
across replications.

Results and Discussion. When α = 0 and the background
texture is fully salient, we predictably find a pattern of results
that mirrors the observations made by Geirhos et al. (2019).
Across the board, the models are highly texture biased, with
the notable exception of the random ResNet-50 and DINO
ResNet-50, which are weakly shape biased (see Figure 3).
Surprisingly, we observed an even stronger texture bias than
Geirhos et al. (2019); for example, they observed about a 20%
shape bias in a pre-trained ResNet-50 compared to the mere
2% shape bias we observed using the triplet-based procedure.
As α increases and background texture salience decreases,
all models displayed a monotonic increase in shape bias, al-
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Figure 3: Shape bias vs. α. Under each α value on the x-axis, there
is an example of a stimulus demonstrating the degree of background
transparency. Each line represents a different model (see the leg-
end to the right); CNN architectures are represented with circular
markers, while vision transformers are represented with triangular
markers. Results for randomly-initialized models are plotted with a
dashed line. The horizontal, dotted gray line represents chance lev-
els of shape bias; any model above this line is shape biased, while
any model below is texture biased. All models show an increase in
shape bias as the texture in the background becomes more transpar-
ent.

though at varying rates. The vision transformer models in-
cluding the CLIP model and the SAYCam-S model showed
a substantial increase in shape bias, and were between 70-
80% shape biased when the background is completely white.
On the other hand, the supervised ResNet-50 remained rela-
tively texture biased throughout, only attaining a slight shape
bias when α = 1. Still, this increase is surprising given the
extremely strong texture bias observed for ResNet-50 when
α = 0. DINO ResNet-50 is the most shape biased for all α

values and attained nearly 100% shape bias when the back-
ground texture is completely removed. This may be the re-
sult of the data augmentations used when training DINO
such as Gaussian blur and color augmentation, which have
been shown to increase shape bias in CNNs (Hermann et al.,
2020). Finally, random ResNet-50 also displayed a rather
strong shape bias with low variance across seeds throughout,
which is curious given its lack of training.3

These results demonstrate that the degree of shape bias us-
ing the cue-conflict stimuli from Geirhos et al. (2019) is vari-
able across architectures and can be modulated by altering
the background of the stimuli. In the developmental test, the
background is irrelevant, so shape bias as measured in arti-
ficial neural networks should also reflect this in their set-up.
However, there may be alternative explanations for the pat-
tern of results we observed in this experiment. One possibil-
ity is that the higher degree of shape bias is an artifact of the
perfect alignment in position and size of the shape informa-
tion between the anchor stimulus and shape match stimulus.

3We also ran Experiment 1 for all supervised models using the
original classification decision procedure from Geirhos et al. (2019)
and found a very similar pattern of results.

In particular, this could explain the high degree of shape bias
for the randomly-initialized ResNet-50, which may be espe-
cially sensitive to pixel overlap.

Experiment 2
In this experiment, we expand upon the results from Exper-
iment 1 and examined whether the high level of shape bias
observed in all models when α = 1 is robust to the size and
position of the shape information in the stimuli. Real world
objects vary in these factors, and thus, it is useful to under-
stand how these properties influence model behavior.

Dataset. Starting with the subset of the textured silhou-
ette stimuli with a white background (α = 1), we created five
different stimulus size conditions ranging from 20% to 100%
of their original size, with each triplet being uniform in size.
We also created two positional alignment conditions. In the
aligned shape condition, all stimuli occupied the center of an
image, resulting in perfect overlap between the anchor and
shape match stimuli. In the unaligned shape condition, all
stimuli were individually placed in random locations of the
image; thus, in a given triplet, the three stimuli occupy dif-
ferent parts of the image. Figure 2 provides examples of both
the size and alignment variations.4

Results and Discussion. When the shapes of the stimuli
are aligned, all models were highly shape biased across all
stimulus sizes, although they were relatively more shape bi-
ased for smaller stimuli (Figure 4, top left). When the shapes
were 20% of their original size, all models demonstrated a
shape bias between 90% and 100% percent; for the largest
stimuli, shape bias for the models ranged between 60% and
100%, with the ImageNet-trained ResNet-50 demonstrating
the most significant decrease in shape bias. One possibility
for this decrease is that shape bias decreased for larger shapes
because a greater surface area allowed for a larger, more de-
tailed patch of texture to be visible, thereby increasing the
salience of the texture information. Another possibility is
that the receptive field size or patch size in different models is
smaller relative to the larger size conditions. When the shapes
were randomly positioned in the image and no longer overlap
in the shape unaligned condition, the models displayed more
variation in their degree of shape bias but were still above the
chance level for all stimulus sizes (Figure 4, top right).

These results show that a robust shape bias can be observed
in all models by removing the background texture from the
stimuli used by Geirhos et al. (2019) despite the different
variations in size and positioning we explored in this simula-
tion. This strengthens the findings in Experiment 1 by ruling
out the hypothesis that pixel-overlap between the anchor and
shape match are driving the preference for shape; rather, the
sensitivity to shape is preserved despite the lack of pixel-level
overlap.

4Note that the 100% size condition in Experiment 2 is technically
always aligned and is equivalent to the α = 1 textured silhouette
stimuli from Experiment 1, so the rightmost data points of Figure 3
are the same as the rightmost data points of the top two plots in
Figure 4.
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Figure 4: Results from Experiments 2 and 3. The rows indicate the experiment, while the columns represent the shape alignment condition
with aligned shape results on the left and unaligned results on the right. Top row: using textured silhouette stimuli in Experiment 2, we
find that all models are shape biased but respond differently to variations in shape size and alignment. Bottom row: using novel stimuli in
Experiment 3, we find that all models are less shape-biased overall than Experiment 2. Unlike most of the models, DINO ResNet-50 increases
in shape bias as shape size increases; also, for the unaligned shape condition, the random ResNet-50 hovers around chance levels of shape
bias for all stimulus sizes with low variance.

Experiment 3
The previous two experiments demonstrated that we could
produce a robust shape bias response in a variety of artificial
neural networks using cue-conflict stimuli based on familiar
categories. In this final experiment, we take one more step
towards matching the developmental paradigm and measure
shape bias using novel shapes and textures, differing from the
categories the networks were trained on. This procedure is
similar to that taken by Ritter et al. (2017) in which they also
measured shape bias in DNNs using triplets of novel stimuli.
However, while their work focused on testing shape versus
color bias, our aim is to test shape versus texture bias.

Dataset. We created 256 unique novel stimuli using 16
high-quality textures (Brodatz, 1966) and 16 simple shapes
(Parks, Griffith, Armstrong, & Stevenson, 2020) by overlay-
ing random patches of each texture with a mask of each shape,
resulting in misaligned textures between texture matches. As
in Experiment 2, we varied the size and alignment of these
novel stimuli, and generated all possible triplets as described
in the Measuring Shape Bias section. Unlike Experiments
1 and 2, all anchor stimulus classes were equally represented
in these datasets, so shape bias is measured once for a given
condition using all 57,600 possible triplets. See Figure 1(a)
and the bottom row of Figure 2 for examples of these stimuli.

Results and Discussion. When the novel stimuli are
aligned in shape, all models were shape biased for the small-
est size (see Figure 4, bottom-left). As shape size increased,

most models showed a decrease in shape bias (whether
aligned or not), leading some models to display a texture bias
in the largest size conditions. To our surprise, DINO ResNet-
50 was an exception, showing an increase in shape bias as the
shapes become larger. It is not entirely clear why DINO be-
haves qualitatively differently to the other models we tested,
and we leave this as an open question for future research.

When the stimuli were unaligned in shape, all models made
fewer shape-based decisions when compared to the aligned
stimuli (see Figure 4, bottom-right); the one exception was
ResNet-50, which maintained the same pattern of behavior
regardless of shape alignment. This drop may be due to the
impoverished nature of the silhouettes compared to natural
images, or the fact these stimuli are further out-of-distribution
compared to pre-training. An advantage of this test setting
is the neutral performance of the untrained random ResNet-
50, which hovers around chance. Notably, ResNet-50, ViT-
B/16, and CLIP ViT-B/16 all exhibited a shape bias relative
to their untrained counterparts, indicating that they acquired
more sensitivity to shape for novel stimuli during their train-
ing. This is consistent with the developmental picture, in
which children acquire a shape bias as they learn more words
(Smith et al., 2002; Gershkoff-Stowe & Smith, 2004).

Discussion
We outlined a more developmentally consistent procedure for
testing shape bias in artificial neural networks. One advan-



tage of using embedding similarity instead of model output
is that it allows for the measurement of shape bias for both
pre-trained and randomly-initialized models, and for both fa-
miliar and novel stimulus categories. We measured shape
bias using this procedure and three different types of cue-
conflict test stimuli for a range of architectures with vary-
ing pre-training data and learning objectives. In Experiment
1, we augmented the cue-conflict stimuli used by Geirhos et
al. (2019) by removing the textured background in varying
degrees. We found that shape bias in all models increased
as background texture salience decreased, demonstrating that
the sensitivity of shape bias measurements could be explained
due to characteristics of the cue-conflict stimuli. In Experi-
ment 2, we tested whether the shape-based responses in Ex-
periment 1 are robust to variations in shape size and posi-
tion. We found that all models showed more shape-based
than texture-based responses regardless of stimulus size or
alignment. Finally, in Experiment 3, we generated triplets of
stimuli with novel shapes and textures that varied in size and
position over a white background. We found that the Ima-
geNet pre-trained ResNet-50 and ViT-B/16 models exhibited
a marked increase in shape bias over their randomly initial-
ized variants, especially when the stimuli were randomly po-
sitioned, suggesting that these models had learned an induc-
tive bias for shape that generalized to novel stimuli. Further-
more, shape bias across models was generally lower for the
novel stimuli compared to the adapted stimuli containing fa-
miliar categories in Experiment 2.

Our results suggest that the previously observed texture
bias in DNNs arises, in part, from how texture is empha-
sized in both the foreground and background (Geirhos et al.,
2019). In fact, our results from Experiments 1 and 2 show
that, despite variability in architecture and training, most
models demonstrate a robust shape bias given stimuli with
clean backgrounds when tested using a procedure that more
closely aligns with developmental tests. However, there are
still discrepancies between human and machine behavior that
deserve more exploration. Geirhos et al. (2019) observed
that humans tested using the original cue-conflict stimuli still
showed a strong shape bias despite the exaggerated texture
present in the stimuli. One possible explanation is that hu-
mans’ shape decisions were influenced by the specific testing
procedure used. In their experiments, despite the neutral in-
structions to not bias judgments towards shape or texture, par-
ticipants selected their classification decisions by clicking on
one of 16 shape-based icons (Geirhos et al., 2018). It is pos-
sible that the participants identified both the shape and tex-
ture classes in many stimuli, and since the task was somewhat
ambiguous, the icons could have encouraged them to respond
based on shape. Alternatively, models may be responding dif-
ferently than people due to difficulties in segmenting the fore-
ground of the images (i.e. the shape) from the background.
Further work is needed to understand precisely why neural
networks struggle with exaggerated background textures and
if there are other ways for DNNs to match human behavior

on the original cue-conflict stimuli.
It is worth noting that both Baker et al. (2018) and Geirhos

et al. (2019) performed other experiments in which they fill a
silhouette (shape) from one class with a texture from another,
similar to our α = 1 condition in Experiment 1. Unlike our
results, they find that texture is emphasized over shape. Their
stimuli, however, are notably different. Filling a silhouette
with a cutout from another image can not only erase internal
features of the first category but can also introduce recogniz-
able features from a different familiar category. These differ-
ences further highlight that the degree of shape bias in current
models is highly dependent on task and stimulus details. Of
the evaluations we consider, our Experiment 3 most closely
mirrors the developmental procedure as run with children, al-
though no single test seems to tell the whole story.

The developmental account of the interrelationship be-
tween the shape bias and word learning in children seems
to align with our observations that models with pre-training
on labels or linguistic data exhibit a stronger shape bias than
their untrained counterparts. However, the strong shape pref-
erence exhibited by the self-supervised models in some con-
ditions is somewhat puzzling from the developmental point
of view given their complete lack of language exposure. It
remains unclear why a robust shape bias is observed in all
models regardless of their pre-training objective. Moreover,
it is unclear why models display substantially more variation
than people with regards to the shape bias.

As deep neural networks have continued to demonstrate
impressive performance on visual tasks and have thus seen
an expanding range of applications, it has become increas-
ingly important to understand the nature of the biases they
employ to classify objects and how these biases compare to
those learned by humans. The recent explorations into the
existence of a shape bias in DNNs have yielded a number of
unexpected and significant results. In this paper, we add to
this line of research by measuring shape versus texture bias
in a range of DNN architectures using a procedure that more
closely matches the developmental setup, highlighting that
close attention needs to be paid to all aspects of the evaluation
in order to conduct a “species-fair comparison” (Firestone,
2020). Ultimately, the shape bias is only one of many induc-
tive biases employed by the human mind to understand and
make sense of the world. Both machine learning and cog-
nitive science stand to gain from further investigation into
models that capture a range of inductive biases as well as
methods for most fruitfully comparing human and machine
intelligence.
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