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Abstract

Recent work has paired classic category learning models with
convolutional neural networks (CNNs), allowing researchers
to study categorization behavior from raw image inputs. How-
ever, this research typically uses naturalistic images, which
assess participant responses to existing categories; yet, much
of traditional category learning research has focused on using
novel, artificial stimuli to examine the learning process be-
hind how people acquire categories. In this work, we pair a
CNN with ALCOVE (Kruschke, 1992), a well-known exem-
plar model of categorization, and attempt to examine whether
this model can reproduce the classic type ordering effect from
Shepard, Hovland, and Jenkins (1961) on raw images rather
than abstract features. We examine this question with a va-
riety of CNN architectures and image datasets and compare
ALCOVE-CNN to two other models that lacked certain key
features of ALCOVE. We found that our ALCOVE-CNN
model could reproduce the type ordering effect more often
than the other models we tested, but in limited situations. Our
results showed that success varied greatly across the various
configurations we tested, suggesting that the feature represen-
tations from CNNs provide strong constraints in properly cap-
turing this effect.

Keywords: category learning; convolutional neural networks;
exemplar models; attention

Introduction
Category learning is one of the oldest and most central ar-
eas of cognitive science, with a wide range of computational
models developed to explain its many facets (Murphy, 2004).
One challenge for these computational models is how to spec-
ify the underlying feature representation that is provided as
input. It is common to either directly use the hard-coded, ab-
stract features as inputs, or alternatively, one could use repre-
sentations derived using multi-dimensional scaling from sim-
ilarity judgments, which project a limited set of stimuli into a
low-dimensional representational space (Shepard, 1980). Ei-
ther way, traditional models work with a representation sev-
eral steps removed from the raw stimuli.

Recent progress in computer vision opens the door to cog-
nitive models that operate on stimuli in their raw form, just
as a human participant might see them on the screen in an
experiment. Rather than specifying features in advance, con-
volutional neural networks (CNNs) learn to extract useful
high-level features from raw naturalistic images (Krizhevsky,
Sutskever, & Hinton, 2012), providing a potential route to in-
terfacing cognitive models with more raw forms of category
learning stimuli.

Recent studies suggest that CNNs may see the right sorts
of structure in raw stimuli for modeling human perception

and categorization. For instance, CNNs pre-trained for im-
age classification have shown success in predicting category
typicality ratings (Lake, Zaremba, Fergus, & Gureckis, 2015)
and similarity ratings from natural images (Peterson, Abbott,
& Griffiths, 2018). More recently, researchers have begun
to combine CNNs with classic prototype and exemplar mod-
els of categorization (Battleday, Peterson, & Griffiths, 2020;
Guest & Love, 2019; Singh, Peterson, Battleday, & Griffiths,
2020; Nosofsky, Meagher, & Kumar, 2020), usually with the
aim of predicting human categorization decisions for images
of common categories such as animals and vehicles.

These successes in predicting human judgments on nat-
ural images do not, however, imply that such an approach
will be a successful psychological model of categorization as
studied in its most classic setting: artificial category learn-
ing tasks conducted in the lab. This is the question we take
up in our work here. One of the most influential findings in
this vein is the classic experiment by Shepard et al. (1961)
which has been replicated many times (Nosofsky, Gluck,
Palmeri, McKinley, & Glauthier, 1994; Crump, McDonnell,
& Gureckis, 2013). Shepard et al. (1961) showed that with
stimuli composed of three binary features, six distinct cate-
gory types consisting of two categories with four members
each, referred to as Types I-VI, can be constructed (see Ta-
ble 1 for the full set of category structures, and Figure 1 for
examples of the stimuli). They found a strong relationship
between the types of categories and the difficulty with which
they are learned by human participants: the Type I category
structure is the easiest to learn. This is followed by Type II,
which is consistently easier to learn than Types III, IV, and V,
which are about equally difficult. Finally, Type VI was found
to be the most consistently difficult to learn, as the learner
needs to attend to all three dimensions and memorize all pos-
sible configurations of the stimuli.

The relative rate of learning across these six category types
has provided the field with a strong empirical constraint,
whereby computational models are required to capture this
effect to count as a serious theoretical account of human cate-
gory learning (Kruschke, 1992; Nosofsky et al., 1994; Good-
man, Tenenbaum, Feldman, & Griffiths, 2008). However, to
our knowledge, no existing research has attempted to examine
whether categorization models interfacing with raw forms of
the stimuli can capture this effect. Relative to previous stud-
ies that have focused on naturalistic images, attempting to
capture this effect presents two challenges. First, the stimuli
used in these tasks are more abstract compared to naturalis-



Category Types
Stimulus I II III IV V VI
[0, 0, 0] A A B B B B
[0, 0, 1] A A B B B A
[0, 1, 0] A B B B B A
[0, 1, 1] A B A A A B
[1, 0, 0] B B A B A A
[1, 0, 1] B B B A A B
[1, 1, 0] B A A A A B
[1, 1, 1] B A A A B A

Table 1: The category structure for the six types in Shepard et al.
(1961). Each category type (I-VI) assigns four stimuli each to either
Category A or B according to different grouping patterns based on
the stimulus encoding. For each type, there are six possible permu-
tations for how the abstract encodings map onto the corresponding
features.

tic images. These images may not be well represented in the
kinds of datasets used to train CNNs, and such models may
not be able to extract the relevant features for categorization.
Second, the effect is based on the relative ordering across cat-
egory types. Whereas recent work using CNNs has examined
categorization behavior for known categories, here, we are
explicitly interested in the pattern of learning for novel cate-
gories and whether the same ordering learning curves can be
reproduced.

In this paper, we test this question by creating a hybrid
model that extracts features from images of psychological
stimuli using a CNN, and passes this to ALCOVE (Kruschke,
1992), an exemplar category learning model with learned at-
tentional weights, which we call CNN-ALCOVE-Attn. As a
control, we contrast our model against a variant with no atten-
tional learning (CNN-ALCOVE-No-Attn) and one where the
CNN features are passed into a multi-layer perceptron (CNN-
MLP). In the original ALCOVE paper, both of these variants
were unable to produce the correct ordering, and serve as
useful baselines here. We test these models against various
CNN architectures and image datasets, and across an exten-
sive range of hyperparameters. Our results show that while
our model can reproduce this effect, the successes were only
observed in a limited number of configurations tested.

Methods
Datasets We used three datasets for our simulations, each
containing 8 images of stimuli spanning all possible configu-
rations of the three binary features, as shown in Figure 1. The
image-based realization of each binary feature is different for
each dataset. In SHJ Set 1 (from Love (2002)), the three bi-
nary features are color (purple or blue), the presence of dots
(dots or no dots), and the presence of a line (line or no line). In
SHJ Set 2 (from Crump et al. (2013)), the images are varying
geometric shapes on a black background with a green bor-
der, with the three binary features being size (large or small),
shape (square or triangle), and color (black or white). Fi-
nally, in SHJ Set 3 (from Guest and Love (2019)), the three
binary features are the same as SHJ Set 2 but with different
values and visual appearance, with size (large or small), shape
(circle or square), and color (red or blue). Additionally, for
each dataset, there are six different mappings (permutations)
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Set 1
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Set 2

SHJ 
Set 3

Abstract  
Encodings

[0,0,0] [0,0,1] [0,1,0] [0,1,1] [1,0,0] [1,0,1] [1,1,0] [1,1,1]

Figure 1: The three image datasets in our simulations. Each of
the three rows depict a different set of eight stimuli. The fourth row
contains the corresponding abstract representations of the stimuli.
Each number encodes a value for one of the three binary dimensions
in each image.

between the abstract and image-based features. To computa-
tional models that take in the abstract feature representation
as input, these different image-based realizations are identi-
cal. However, each of the image sets are quite perceptually
different from one another, and therefore the different per-
mutations for each of the six types may differ. Furthermore,
using multiple image sets provided us with a good robustness
check for whether the type ordering effect would be consis-
tent across different image sets that are typically used in cat-
egory learning experiments.

Computational Model In this section, we describe our
variant of an attention-weighted deep exemplar model based
on the original ALCOVE model by Kruschke (1992), which
we refer to as CNN-ALCOVE. ALCOVE was chosen be-
cause the original model naturally captures the type ordering
effect through the use of selective attention, and is an end-to-
end differentiable model that is straightforward to attach to a
CNN front-end (although we leave an exploration of end-to-
end training of the combined model for future work). As a
baseline, we compared the CNN-ALCOVE model to a stan-
dard neural network architecture, replacing the exemplar cat-
egorization module with a set of feedforward layers, which
we refer to as the CNN-MLP model. The set-up of our mod-
els is shown in Figure 2, and the following section provides
additional details for each of these models.

CNN Architectures First, as a pre-processing step for both
models, the raw image of a stimulus, denoted x, was passed
through an ImageNet (Deng et al., 2009) pre-trained convo-
lutional neural network up to the penultimate layer to extract
a set of visual features,

f (x) =CNN(x) = [ f1, f2, . . . , fD]. (1)

This results in a high-dimensional, abstract representation of
the input stimulus, where the number of features D is equal to
the size of the penultimate layer of the CNN, and generally far
larger than the commonly used 3-dimensional abstract binary
representation. We chose to extract features from the penul-
timate layer because it allowed for a simpler comparison of
results across different CNN architectures and may be better
suited to representing abstract features like shape from the
stimuli in our simulations. In this work, we tested three stan-



dard CNN architectures: VGG-16 (4096 features; Simonyan
& Zisserman, 2014), ResNet-18 (512 features) and ResNet-
50 (2048 features; He, Zhang, Ren, & Sun, 2016). Since each
dataset only contained 8 images, the CNNs were fixed and
not fine-tuned.

CNN-ALCOVE Model For the CNN-ALCOVE model,
this high-dimensional representation of the stimulus is then
passed to our adaptation of the original ALCOVE model. In
ALCOVE, each of its input nodes are associated with a learn-
able attention weight vector α = [α1, . . . ,αD], the strength
of which indicates the relevance of that particular stimulus
dimension to the task. These attention weights are initial-
ized uniformly and are individually strengthened or weak-
ened over the course of learning. Our version of the model
also included learnable attention weights, but rather than the
attention being spread over three abstract features, it was
spread over the much larger set of D features from the CNN.

The attention-weighted stimulus is compared to the set
of eight possible exemplars, which consist of the high-
dimensional representations extracted from each of the stim-
uli by the CNN. For an input f (x), the activation a j of the jth
exemplar node h j is calculated by the similarity between the
exemplar and the input as follows:

a j = exp(−c∑
i

αi|hi j− fi(x)|), (2)

where c is a hyperparameter referred to as specificity. The
larger the specificity, c, the faster the similarity falls off as
the distance between the input stimulus and the exemplar in-
creases. Additionally, the psychological distance metric r and
similarity gradient q were set to 1 as in Kruschke (1992), and
not displayed above.

Finally, the CNN-ALCOVE outputs a predicted cate-
gory label ŷ by passing the exemplar node activations a =
[a1, . . . ,a8] through a single linear layer Wo and applying a
sigmoid operation with slope hyperparameter φ as follows:

ŷ = σ(φWo(a)). (3)

CNN-MLP Model The CNN-MLP model accepts the same
high-dimensional representation of the input stimulus that the
CNN-ALCOVE model sees. However, unlike ALCOVE, the
CNN-MLP does not contain any stored exemplars, nor does
it learn an attention weight vector. Instead, it passes the
CNN feature representation through a two-layer multilayer
perceptron (with corresponding weights Wh and Wo), contain-
ing eight hidden nodes to match the number of exemplars,
followed by a tanh non-linearity and a single sigmoid output
node. The predicted category label ŷ is then:

ŷ = σ(φWo(tanh(Wh( f (x)))), (4)

with bias terms omitted for clarity.
Because the CNN-MLP does not contain any exemplars

or attention-learning mechanisms, it provides a useful base-
line to determine whether or not the extra components in the
CNN-ALCOVE model are required.

Figure 2: Architecture for the two categorization models. In both
models, the image stimulus x is first passed through a pre-trained
CNN, which extracts a high-level feature representation. For the
CNN-ALCOVE model (top), this high-level representation is then
reweighted based on the learnable attention parameters and its sim-
ilarity computed to all of the other exemplars, then passed into a
feedforward layer to predict its category label. For the CNN-MLP
model (bottom), the extracted features are passed into a simple two-
layer neural network which computes the category label without any
attention or exemplar comparisons.

Abstract Models For an additional comparison, we also
tested variants of the two models that were trained using the
standard binary feature encodings of SHJ stimuli as inputs
rather than raw pixel images, replacing the CNN front-end
with an input layer of three units. These are equivalent to
the models in Kruschke (1992), with the exception of the loss
function as described below. We referred to these models as
Abstract-ALCOVE and Abstract-MLP respectively.

Training Details Each model was trained for 128 epochs.
We used a binary cross-entropy loss for all simulations1, and
gradient updates were performed in batches containing all
eight stimuli. Optimization was performed using stochastic
gradient descent, using separate learning rates for the atten-
tion and associative weights, based on the hyperparameter
ranges outlined below.

We tested each model, image set and loss combination
on a range of hyperparameters centered around Kruschke’s
(1992) original values2. For CNN-ALCOVE and Abstract-
ALCOVE, this meant varying c, φ, the attention learning
rate, and the association learning rate, while for the CNN-
MLP and Abstract-MLP models, we varied φ and the associ-
ation learning rate. For the CNN-ALCOVE model, we varied
the attention learning rate over the values [0,0.0025,0.005],
where models trained with a positive attention learning rate
were further grouped as CNN-ALCOVE-Attn models, while

1We tested a number of other loss types, including the humble
teacher loss originally described in Kruschke (1992), but found that
the binary cross-entropy loss yielded the best results.

2The original hyperparameter values reported were attention
learning rate = 0.0033, association learning rate = 0.03, c = 6.5, and
φ = 2.0.
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Figure 3: Histogram of correlation scores across all models, datasets and CNN architectures. Each panel shows the histogram of corre-
lation scores for that simulation, with rows indicating the three models, and columns indicating each possible CNN and dataset combination.
The vertical dashed line indicates the threshold for a correlation to represent a successful type ordering, thus the colored bars to the right of
this line represent the set of simulations that produced correct type orderings. Our results show that all three models can produce correct type
orderings with most CNNs, but only for two out of three datasets and for a subset of permutations.

the subset with a zero attention learning rate was grouped as
CNN-ALCOVE-No-Attn. We included this set of models
with no attention learning in order to assess the importance
of CNN-ALCOVE’s attention weights for reproducing the
type ordering. The Abstract-ALCOVE simulations were sim-
ilarly grouped as Abstract-ALCOVE-Attn and Abstract-
ALCOVE-No-Attn. The association learning rate was varied
over the values [0.01,0.025,0.05]; c over [2.5,5.0,7.5]; and φ

over [1.0,2.5,5.0]. Each simulation consisted of training the
model with six category types, across six permutations for a
total of 36 separate models trained per simulation.

Scoring the Results In order to determine whether the
CNN-ALCOVE or CNN-MLP models could capture the type
ordering effect, we first needed an automated method to deter-
mine whether a given simulation’s learning curves matched
the intended type ordering. For each simulation, we calcu-
lated the learning curves for each of the six category types as
the average probability of assigning the correct category label
to each stimulus per batch across all 128 epochs. For each of
the six types, we then calculated the integral, or the area under
the learning curve, using the trapezoidal rule, whose value de-
termined the rate at which a given category type was learned
(see Figure 5 for examples of some learning curves). Gener-
ally, a category type that was learned faster than other types
would have produced a larger integral, while a category type
that was learned slower would have produced a smaller inte-
gral. We chose the integral as our learning metric because we
were primarily interested in the type orderings of the learn-
ing curves rather than their precise shapes. A more precise

comparison would be difficult due to differences in the num-
ber of training epochs. These values were calculated for two
separate cases: one where the learning curves were first av-
eraged across all six permutations within a given simulation,
and another where the learning curves for each permutation
were treated as distinct simulations.

After obtaining the integrals for each category type, we
computed the ordering of the integrals to determine which
category types were learned in the inverse order (so that the
fastest learned type would have a value of 1, and the slow-
est learned type would have a value of 6). Then, we set the
true ordering to be the vector [1,2,4,4,4,6], treating Types
III, IV and V as equal reflecting the interchangability of these
types, and calculated Spearman’s rank correlation coefficient
between our inverted ordering and this true ordering. Our
results showed that all six possible type orderings that were
consistent with the SHJ type ordering effect achieved a Spear-
man rank correlation coefficient of 0.94, while a single incor-
rect ranking produced a Spearman rank correlation of 0.82.
Therefore, we set a threshold of 0.9, and this value served as
the floor for detecting whether a given simulation resulted in
correct ordering.

Results
Average Learning Curves We first report results on our
simulations where we calculated learning curves averaged
across permutations (counter-balancing the assignment of
physical to abstract features). We found that for the CNN-
ALCOVE-Attn model, only 19 (3.9%) of the 486 simulations
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Figure 4: Histogram of correlation scores for the abstract sim-
ulations. Each panel shows the histogram of correlation scores for
each of the abstract models. The vertical dashed line indicates the
threshold for a correlation to represent a successful type ordering,
and thus bars to the right of this line represent the set of simulations
that produced correct type orderings.

resulted in correct orderings. Further inspection revealed that
100% of these correct orderings were produced within one
CNN architecture (ResNet-18) and from one dataset (SHJ Set
1). For the CNN-ALCOVE-No-Attn and CNN-MLP models,
we found that 0% of the simulations resulted in successful
orderings. However, we noticed that many of the remain-
ing simulations produced almost correct orderings where two
adjacent ranks were swapped, which were almost always in-
stances where Type II was learned more slowly one of the
three Types III, IV or V. For CNN-ALCOVE-Attn, we found
that 25.5% (166/486) simulations were almost correct in this
manner.

On the other hand, when using the abstract feature repre-
sentations, we found that 57% of the simulations from the
Abstract-ALCOVE-Attn model resulted in correct orderings,
showing robust success across a wide range of hyperparam-
eters, and much more so than the CNN variants.3 Further-
more, 0% of the Abstract-ALCOVE-No-Attn simulations and
Abstract-MLP simulations resulted in correct type orderings,
matching what Kruschke (1992) observed and highlighting
the importance of attentional learning. A histogram showing
the correlation scores and proportion of correct orderings is
shown in Figure 4.

There were some positive signals in the current results;
by modifying an existing, well-known model of category
learning with a CNN front-end, we observed runs where we
were able to reproduce the same type ordering as observed
in Shepard et al. (1961), albeit not reliably so. Moreover,
the successful simulations that displayed the effect were from
our CNN-ALCOVE-Attn model, highlighting the importance
of both the exemplar model representation and the atten-
tional learning components of the model relative to the CNN-
ALCOVE-No-Attn and CNN-MLP models, which lacked
one or both of these components. However, there was also an
unsatisfactory aspect to these results: why was the type order-
ing effect only observed in a very limited subset of CNN sim-
ulations? The lack of generalization across architectures and
image sets suggests serious robustness issues in using pre-

3One third of the failures occurred in the simulations where c =
2.5, suggesting that the failure occurred due to the generalization
gradient being too wide.

trained CNNs as a means of feature extraction for models of
categorization.
Individual Learning Curves Rather than taking the result-
ing learning curves by averaging across all possible permuta-
tions per simulation, we also applied the same ranking pro-
cedure to obtain correlation scores for each possible permu-
tation separately for the CNN simulations. One reason why
examining permutations separately might be useful has to do
with how the Type II rule works. The Type II rule is governed
by an exclusive-or (XOR) rule, which requires attending to
two out of three features for correct classifications. Tradition-
ally, when modeling this task using the abstract encodings,
there was no difference in the various possible permutations,
and thus it was common to average results. However, when
looking at the raw images as is relevant for the CNN models
here, there are three separate possible combinations of two-
out-of-three features. For example, in SHJ Set 1, the Type II
rule across the permutations may involving attending to either
color and dots, or color and a line, or dots and a line, and there
is the possibility that the feature representations for different
permutations result in large learning differences.

Figure 3 shows the histogram containing these correlation
scores, with each row depicting a different model, and each
column depicting a different combination of stimuli and CNN
architecture used. Here, a very different pattern emerges, with
three interesting findings. First, in contrast to above, all mod-
els show evidence of successful type orderings in some of
the conditions, suggesting that even the CNN-MLP architec-
ture is sufficient to produce a correct type ordering result.
However, we found that the proportion of successful order-
ings was highest for the CNN-ALCOVE-Attn model with
19.6% of simulations producing correct type orderings. This
was followed by the CNN-ALCOVE-No-Attn with success in
15.4% runs, and then the CNN-MLP with 9.3% of runs. Fur-
thermore, the set of successful runs across the three models
were generally from the same image set and CNN architec-
ture combinations, suggesting that the initial feature represen-
tation extracted from the pre-trained CNN plays a key role in
whether a type ordering is observed, but that adding the ad-
ditional components of ALCOVE such as the exemplar layer
and attentional learning can enhance the success rate. While
the total portion of successful simulations was still quite low,
overall the correlation scores were quite high and produced
many close orderings.

Second, the successes are concentrated among certain per-
mutations, following our earlier hypothesis. For example, for
SHJ Set 1 and SHJ Set 3, almost all of the successes are due
to permutations 4 and 5, where the relevant features are color
with line and color with shape respectively. However, the
fact that we observed failures with the remaining permuta-
tions suggests that the initial feature representation from the
CNN for both image sets was still insufficient for learning a
Type II rule quickly in the other permutations. Additionally,
we find very few successes for SHJ Set 2 (with the excep-
tion of a few runs with the CNN-ALCOVE-Attn model with
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Figure 5: Sample learning curves from each model. In this figure,
we display five randomly selected successful runs of each model
where the type ordering effect was observed. While the CNN-
ALCOVE models show smooth learning curves, the learning curves
from the CNN-MLP were disjoint despite a correct ordering.

VGG-16), despite having the same set of abstract features as
SHJ Set 3. These results suggest a failure at the feature rep-
resentation level from the feature extraction process from the
CNNs, affecting learning for all possible permutations.

Finally, some of the the individual learning curves for a
single simulation are shown in Figure 5. We noticed that
the learning curves from the CNN-ALCOVE models looked
smooth and qualitatively similar to human data on this task.
On the other hand, in the CNN-MLP model, despite the suc-
cessful ordering based on our rank correlation analysis, there
were very large oscillations the learning curves for certain
category types.

Discussion
In this paper, we presented the CNN-ALCOVE model, an ex-
tension of the original connectionist category learning model
ALCOVE proposed by Kruschke (1992) that adds a convolu-
tional neural network as a front-end to facilitate learning from
raw images as input. We examined whether such a model
could reproduce the classic type ordering effect from Shepard
et al. (1961). We compared this model (CNN-ALCOVE-
Attn) to a variant of our model without attentional learning
(CNN-ALCOVE-No-Attn) as well as a model without at-
tentional learning or exemplar comparison (CNN-MLP), and
variants of these using the abstract feature encodings; these
models served as controls and allowed us to assess the im-
portance of CNN-ALCOVE’s attention learning and exem-
plar comparison. We tested each of these models on three

different image datasets as well as a wide range of hyperpa-
rameters. Overall, our results presented a mixture of success
and failure. When examining for successful type orderings
by averaging learning curves across all permutations, we only
observed successes with the CNN-ALCOVE-Attn model for
one CNN architecture with one dataset, although many of the
other simulations produced almost correct orderings. On the
other hand, the equivalent model with the abstract feature en-
codings (Abs-ALCOVE-Attn) produced a high proportion of
correct type orderings.

A different pattern emerged in our analysis when consid-
ering each permutation of the stimuli as distinct. Here, we
found many successful orderings for all three models and
for each of the CNN architectures on two out of the three
image datasets. The highest number of correct orderings
was observed in the CNN-ALCOVE-Attn model, followed by
the variant without attentional learning (CNN-ALCOVE-No-
Attn), and then the CNN-MLP, confirming previous findings
that both exemplar comparison and attentional learning are
crucial ingredients (Kruschke, 1992). However, we failed to
observe successful orderings for certain permutations of the
SHJ stimuli, and very few runs with the SHJ Set 2 images
yielded success. This work was motivated by the question
of whether ImageNet pre-trained CNNs could be used as a
drop-in visual front-end to replicate patterns of human cate-
gory learning for novel categories, and the answer appears to
be no, at least not reliably so in the cases we examined.

There are also a few potential explanations for this. First,
the feature representations extracted from the pre-trained
CNNs may have not been conducive to learning in certain
category structures or permutations. Recent work has shown
that pre-trained CNNs are in some ways quite unlike human
vision, such as a preference for texture rather than shape
(Geirhos et al., 2018), or being manipulated through adver-
sarial examples (Szegedy et al., 2013). Since these extracted
feature representations are the starting representation for all
of our models, one can imagine that a poor input represen-
tation would cause downstream difficulties in accounting for
human performance.

Second, instead of distributing attention over three inter-
pretable features as the original ALCOVE model does, the
CNN-ALCOVE models must learn to distribute attention
over a much larger set of distributed, high-dimensional fea-
tures that do not correspond one-to-one with the relevant ab-
stract dimensions of the problem to be learned. Additionally,
attending to the underlying abstract feature (e.g., color, shape,
size) may be easier or harder depending on the initial feature
representation the model is working with. Our results suggest
that perhaps a combination of these factors may be at play
here, and future work should examine both more human-like
CNN architectures (Kubilius et al., 2019), or to use CNN ar-
chitectures that have been pre-trained on larger datasets con-
taining both natural and abstract images.

Another possible explanation is that the type ordering ef-
fect is a more complicated phenomena than previously as-



sumed. Despite the original finding replicating multiple
times, the empirical data on human type orderings is quite
mixed, with a body of work demonstrating that the origi-
nal SHJ type orderings are not always reliably reproduced
in human participants. Particularly relevant is the work by
Kurtz, Levering, Stanton, Romero, and Morris (2013), which
showed that human participants only learn Type II categories
reliably faster than Type IV when they are told this is a rule-
learning task. This seems to parallel the majority of our CNN-
ALCOVE results, where the model learns Type II slower than
Types III-V.

The success of convolutional neural networks have been
instrumental in stimulating a variety of deep categorization
models that capture patterns of human categorization with
naturalistic stimuli (Battleday et al., 2020; Singh et al., 2020;
Nosofsky et al., 2020). In this paper, we add to this line of
research by proposing an attention-weighted exemplar model
with a CNN front-end which we call CNN-ALCOVE. How-
ever, rather than testing our model with naturalistic images
where previous deep categorization models have been more
successful, we examine the conditions that can reproduce the
classic type ordering effect from Shepard et al. (1961), where
rule-based categories play a more important role. Overall, our
results suggest that these approaches hold promise, but there
are difficulties in applying CNNs out of the box to interface
with raw experimental stimuli. We also hope our work pro-
vides a useful starting point for examining how attention can
be deployed in neural networks for categorization (Lindsay,
2020).
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