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Abstract
People ask questions in order to efficiently learn about the world. But do people ask good questions? In this work, we
designed an intuitive, game-based task that allowed people to ask natural language questions to resolve their uncertainty.
Question quality was measured through Bayesian ideal observer models that considered large spaces of possible game
states. During free-form question generation, participants asked a creative variety of useful and goal-directed questions,
yet they rarely asked the best questions as identified by the Bayesian ideal observers (Experiment 1). In subsequent
experiments, participants strongly preferred the best questions when evaluating questions that they did not generate
themselves (Experiments 2 and 3). On one hand, our results show that people can accurately evaluate question quality, even
when the set of questions is diverse and an ideal observer analysis has large computational requirements. On the other hand,
people have a limited ability to synthesize maximally informative questions from scratch, suggesting a bottleneck in the
question asking process.

Keywords Question asking · Question generation · Information search · Active learning · Bayesian modeling

Introduction

Asking questions is a hallmark of human intelligence which
enables us to flexibly learn about, navigate in, and adapt to
our environment. For example, a simple question to a fellow
traveler (“Where is the uptown train platform?”) can save
us from wandering around until we find our way. Similarly,
a doctor asking a patient “Have you traveled internationally
in the past 21 days?” might be able to rule out a large
number of exotic diseases if the answer is “no.” Questions
also are important in course of cognitive development. For
example, Nelson (1973) found that most children acquire an
utterance for asking questions within their first few words
(e.g., “Eh?” or “Doh?” to mean “What is that?”). Such
words may actually help bootstrap the process of learning
language by coordinating information requests between the
child and caregiver (Nelson 1973). There is little doubt then
that asking questions is a powerful cognitive and linguistic
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tool, but are people actually effective at asking questions?
Specifically, given all the possible questions someone could
ask in a given situation, do people generally ask the best or
most informative questions?

In recent decades, there has been a growing scientific
interest in how children and adults ask questions. Much of
the past work on this topic is largely qualitative, essentially
cataloging the different types of questions people ask in
different situations. The quantitative work on this topic,
which has the potential to objectively assess the quality of
human questions, has tended to focus on relatively simple
scenarios where the range of allowed questions is limited to
the features and class membership of each object (e.g., in the
“Guess Who?” game, a question might be “Is your person
wearing a hat?”). As a result, it is unclear whether people
ask objectively good (or maximally informative) questions
given their knowledge and goals in more unconstrained
scenarios such as those encountered in everyday life.

In this paper, we attempt to explore this issue in a novel
way using a relatively unconstrained question asking task
which is nonetheless amenable to computational analysis.
After reviewing the past literature on question asking and
active learning, we describe the task we used to study
question asking. Next, we describe alternative models of
question evaluation that allow us to objectively measure the
quality of the questions people asked in the experiment.
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We then report empirical results from three experiments in
which people either asked questions in order to resolve some
ambiguous situation, or evaluated the questions generated
by other people. To foreshadow, our results highlight
interesting limitations in the intuitive question asking
abilities of humans which we argue results, in part, from
the immense computational demands of optimal question
asking.

Past Work on Question Asking

The way people ask information-seeking questions has
attracted considerable attention in cognitive science in both
laboratory studies and observational designs.

Qualitative Studies of Question Asking

Studies in psychology and education investigating human
question asking in classroom settings have focused on
rather general distinctions between good and bad questions
(see Graesser et al. 1993; Graesser and Person 1994;
Davey and McBride 1986; Chin and Brown 2002; Dillon
1988). For instance, Chin and Brown (2002) distinguished
basic information questions from “wonderment” questions,
characterized as deeper questions used for planning or
making predictions. In a reading comprehension study,
Davey and McBride (1986) judged participants’ questions
as better if the questions targeted central ideas, used a “wh”
stem, and required more than a yes/no response. Building on
a classification scheme of questions that children ask in the
classroom (Graesser et al. 1992), Graesser and colleagues
defined good questions as having a question type that
fits to the type of knowledge structure that the questioner
wants to learn about. If the questioner was learning about
a taxonomic structure of musical instruments, then “What
are the types of X?” (e.g., “To which groups does a soprano
clarinet belong?”) constituted a good question while “How
can you create X?” (e.g., “How do you build a soprano
clarinet?”) was a bad one because it targeted an answer
unlikely to be informative about the taxonomic structure
(Graesser et al. 1993). In subsequent work, Graesser and
colleagues defined some of their categories as “deep” (e.g.,
why, why not, how, what-if, what-if-not) in contrast with
“shallow” questions (e.g., who, what, when, where) and
found that the proportion of deep questions asked in a class
correlated with students’ exam scores (see Graesser and
Person 1994).

Although these studies offer interesting insight into the
causes and consequences of question asking, they leave
unresolved if any particular question is informative from
the perspective of an individual learner. For example,
even “deep” questions can be uninformative if the learner
already knows the answer. This is largely because in

observational classroom studies, it is difficult to measure
and control the amount of knowledge that different learners
have as well as to account for differing individual goals
during learning. In this paper, we focus on the quality of
questions from an individual’s perspective by controlling
the background and prior knowledge that participants had
about our experimental task as well as their goals.

Quantitative Studies of Question Asking

Although the above studies often focus on question asking
in natural settings such as a classroom, quantitative studies
often rely more heavily on laboratory tasks. Such tasks
typically create a scenario (such as a game) where a learner
must ask questions or perform certain actions in order to
acquire information (e.g., Coenen et al. 2015; Markant and
Gureckis 2014a, b; Meder and Nelson 2012; Nelson et
al. 2014; Ruggeri and Feufel 2015; Ruggeri et al. 2016).1

The key concern in this work is if children and adults ask
the “best” or most informative question as measured by
computational models.

In order to apply computational models to this data, often
these experiments are simplified relative to real-life inquiry.
One view of the purpose of question asking is to resolve
between alternative world states. For instance, when you ask
a question like “Is this the uptown train platform?” you are
attempting to resolve between two hypothetical worlds, one
where you are standing on the uptown train and one where
you are not. The answer to the question helps to resolve that
ambiguity enabling you to act accordingly. Good questions
are those that, from the perspective of the individual, rule
out alternative world states.

In most laboratory tasks that try to mimic these
real-life situations, the space of possible hypotheses (or
alternative world states) that the learner is trying to
discriminate is relatively curtailed, ranging from around 20
hypotheses (Ruggeri and Feufel 2015; Ruggeri et al. 2016;
Nelson et al. 2014) to as few as two (Meder and Nelson
2012; Coenen et al. 2015; Markant and Gureckis 2014a).
Similarly, many tasks allow only yes/no questions, which
constrains the size of the set of answers (e.g., Ruggeri et
al. 2016 only allowed yes/no questions but provided “some”

1In some studies, participants performed information-seeking actions,
such as clicking on a certain part of an object, to obtain information
about the object, which is, for our purposes, equivalent to asking
information-seeking questions. For instance, participants could click
on either the eye or claw of a plankton creature presented on a
computer screen, to reveal the eye/claw color and then categorize the
plankton based on that information (Meder and Nelson 2012), which
is equivalent to asking “What is the color of the eye/claw?” Similarly,
in Coenen et al. (2015), participants could click on one of three nodes
in a causal network and subsequently observe which of the other nodes
would turn on, which is equivalent to asking “Which nodes will turn
on when I activate this node?”
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as an additional, third answer; Coenen et al. 2015 had as
many as four possible nodes or components that could be
intervened on one at a time). Finally, a common strategy
in the laboratory literature has been to effectively provide
people with a predetermined list of questions allowing them
to select the best (e.g., Nelson et al. 2014; Coenen et al.
2015; Meder and Nelson 2012). Although this approach
simplifies data analysis considerably, it relieves learners
from the burden of generating interesting and informative
questions from scratch. As we highlight in the experiments
below, the distinction between question generation and
evaluation is a psychologically significant part of the task
of asking question in more complex tasks and everyday life.

One notable exception to this trend is the work by
Ruggeri and colleagues, who formally analyzed the question
quality of relatively unconstrained yes/no questions that
adults and children generated in order to identify a
target category (Ruggeri et al. 2016). They reported
relatively high performance by adults, who on average
asked a first question that was very close to optimal. Our
experiments similarly examine open-ended question asking
performance, but with a much broader range of questions
and a more complex task.

In summary, past work has tended to organize into
observational studies of real-world question asking, where
the issue of question quality is addressed relatively
qualitatively, or careful laboratory settings, which are more
simplified but allow precise measurement of the information
value of different queries. The goal of the present study is

to combine elements of both traditions by studying question
asking in a rich and unconstrained setting that is nonetheless
amenable for formal mathematical modeling.

Studying Question Asking in the Battleship
Game

In light of the issues laid out above, we identified a few
key features for studying question asking in an experimental
setting. First, we wanted to provide participants with
ambiguous situations, in which they can ask a variety of
questions with the goal of resolving the ambiguity. Second,
we wanted participants to share the same understanding
of what that ambiguity is. Thus, the situations should
be defined by instructions that are easy for people to
understand (e.g., as part of an intuitive task). Third, we
wanted situations that are amenable to formal modeling,
that is, constrained enough such that all possible ways to
resolve the ambiguous situation can be represented in a
mathematical model.

These features are ideally captured by an active learning
task that is called the Battleship game due to its similarity
to a single-player version of the popular children’s
game (Gureckis and Markant 2009; Markant and Gureckis
2012, 2014b). The goal of the game is to determine the
location and size of three non-overlapping rectangular
“ships” on a 6×6 grid (see Fig. 1). The ships have a width of
1 tile, are 2 to 4 tiles long, and are horizontally or vertically

Fig. 1 Battleship game boards
as viewed by participants.
Sampling phase: A participant
sequentially clicks on tiles to
turn them over. The revealed
color indicates a ship (blue, red,
or purple) or water (dark gray).
Painting phase: At a certain
point, the sampling phase is
stopped and the participant
guesses the color of the
remaining tiles. For each
correctly painted tile, one point
is awarded

.
.
.
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oriented. In past work that has used this information search
task, a participant sequentially clicked on tiles to uncover
either the color of the underlying ship part or an empty
water part (sampling phase, Fig. 1). An efficient active
learner seeks out tiles that are expected to reduce uncertainty
about the ship locations and avoids tiles that would provide
redundant information (e.g., when the hidden color can be
inferred from the already revealed tiles). At a certain point,
the sampling was stopped and participants were asked to
fill in the remaining tiles with the appropriate color, based
on their best guess (painting phase, Fig. 1). The score
they receive was a decreasing function of the number of
observations made in the sampling phase and an increasing
function of the number of correctly painted tiles.

The task is well suited for the present study because the
underlying hypothesis space (i.e., possible ship configura-
tions that define a possible gameboard) is relatively large
(1.6 million possible game boards) but is easy to explain
to participants prior to the start of the task. In addition,
the game is interesting and fun for participants while being
amenable to an ideal observer analysis (see below). In pre-
vious work using this task, the only means a participant
has for acquiring information is by sampling or turning
over individual tiles (Settles 2009; Markant and Gureckis
2012, 2014b). In this paper, we allow participants to ask
any question they want in natural language (e.g., “Are the
ships touching?” or “What is the total area of the ships?”).
This modification allows participants to use much more
powerful tools to gain information (e.g., general purpose
question asking) and allows us to study rich, natural lan-
guage question asking in the context of a well-understood
active learning task. Importantly, the design implied that
people were conversing with an English-speaking oracle
who knew the true hidden gameboard and would always
answer honestly, similar to the assumption that would apply
to clicking a tile to uncover it.

The Battleship domain has also proved useful to study
how a machine can generate informative, human-like
questions from scratch (Rothe et al. 2017).

Defining the Computational Problem
of Asking Good Questions

A computational-level analysis describes, in a formal way,
the goals and constraints of computations relevant for the
cognitive system to solve a task (Marr 1982; Anderson
1990). Let us begin with the very general notion that any
question we might ask has a certain utility with respect to
our goals. This idea can be formalized as the expected utility
of question x,

EU(x) = Ed∈Ax [U(d; x)] (1)

where d is an answer from the set of possible answers Ax to
question x, and U(d; x) is the utility of that answer for that
question. Using an expectation is required here given that, at
the time of asking, we do not know yet what the answer to
the question is going to be. Under this framework, the task
of asking the best question x∗ can then be cast as a search
over the set Q of all possible questions one could ask,

x∗ = argmax
x∈Q

EU(x). (2)

The utility of a question U(d; x) can include a range of
factors depending on the agent’s goals and situation. For
example, question asking is often a social activity implying
a listener and speaker, and assumptions about each along
with the limited bandwidth of spoken communication may
enter into the calculation of utility. For instance, research
has shown that a learner may consider how difficult a
question is to answer or how much information is conveyed
to the answerer about one’s intentions (e.g., Clark 1979;
Hawkins et al. 2015). Any of such social and pragmatic
considerations can be included as factors in the computation
of a question’s utility U(d; x).

Another issue concerns how much the utility of a
question is influenced by the costs and rewards of the
current task. For example, Chater, Crocker, and Pickering
distinguish between cost-insensitive (or “disinterested”)
utilities and cost-senstive (or “interested”) utilities (Chater
et al. 1998; Markant and Gureckis 2012). A cost-insensitive,
information-maximizing utility values knowledge by itself
without reference to task-specific rewards, as for example
reflected in the spirit of basic research or genuine curiosity.
For instance, attempting to reduce one’s uncertainty about
the position of the ships in the Battleship game as much
as possible follows this strategy and is captured by the
expected information gain (EIG) model (see below).

In contrast, a cost-sensitive, utility-maximizing strategy
values information only to the degree that it will lead to
later rewards or avoid costs, making it a more economically
oriented strategy. For example, students who want to
minimize their study time and decide to ignore information
that is unlikely to be tested in an exam engage in such a
strategy, where the cost structure is given by the time spent
studying as well as points lost in the exam. In the Battleship
game, one utility-maximizing strategy is captured by the
expected savings (ES) model (see below), which evaluates
information with respect to the errors that can be avoided in
the painting task.

In the present paper, we compare these two ways of
assigning utility to a question (ES versus EIG). The two
models provide alternative “yardsticks” for objectively
evaluating the quality of people’s questions with respect to
the goals of the task. To give an intuitive example, EIG
assigns a high value to a question such as “How many tiles



Comput Brain Behav (2018) 1:69–89 73

are occupied by ships?” because every answer allows the
learner to rule out many hypothesized ship configurations
that are inconsistent with the obtained answer. On the
other hand, ES assigns a low value because such abstract
information about the number of ship tiles does often not
help much with the painting task.

The EIG versus ES contrast is also interesting because
past work found that people’s strategies were more in line
with the cost-insensitive EIG than the cost-sensitive ES
model (Markant and Gureckis 2012). Before defining these
models formally, we introduce a Bayesian ideal observer of
our task, which forms the foundation of both measures of
utility for question asking.

Bayesian Ideal Observer Analysis of the Battleship
Game

In a given Battleship game context, a player aims to identify
a hidden configuration corresponding to a single hypothesis
h in the space of possible configurations H . We model
her prior belief distribution over the hypothesis space,
p(h), as uniform over ship sizes. The prior is specified
by first sampling the size of each ship from a uniform
distribution and second sampling uniformly a configuration
from the space of possible configurations given those
sizes. The player can make a query x (uncovering a tile
or asking a natural language question) and receives the
response d (the answer). The player can then update her
posterior probability distribution over the hypothesis space
by applying Bayes’ rule,

p(h|d; x) = p(d|h; x)p(h)
∑

h′∈H p(d|h′; x)p(h′)
. (3)

The semi-colon notation indicates that x is a parameter
rather than a random variable. The posterior p(h|d; x)

becomes the next step’s prior p(h|D; X), with X represent-
ing all past queries and D representing all past responses,

p(h|d, D; x, X) = p(d|h; x)p(h|D; X)
∑

h′∈H p(d|h′; x)p(h′|D; X)
. (4)

The likelihood function p(d|h; x) models the oracle that
provides answer d. The likelihood is zero if d is not a valid
response to the question x, and 1

n
otherwise, where n is

the number of correct answers that the oracle chooses from
uniformly. For most questions that we collected, there was a
single correct answer, n = 1. But for example when asking
for the coordinates of any one of the tiles that contain a blue
ship, n is defined by the number of blue ship tiles in the true
configuration. The posterior predictive value of a new query
x resulting in the answer d can be computed as

p(d|D; x, X) =
∑

h∈H

p(d|h; x)p(h|D; X). (5)

Cost-Insensitive Utilities: Expected Information Gain

A primary goal of most question asking is to gain
information about the world relevant for the learner’s goal.
In this case, the utility of a question and its answer is
entirely or at least heavily determined by their expected
informativeness. More precisely, we can define the utility
of a question and its answer as the amount of gained
information,

U(d; x) = I [p(h|D; X)] − I [p(h|d, D; x, X)], (6)

where I [·] is the Shannon entropy (uncertainty, Shannon
1948) of the previous belief distribution p(h|D; X) (i.e.,
before receiving an answer d to the new query x, but with
prior knowledge D and X; Eq. 4) and of the posterior belief
distribution p(h|d, D; x, X) (i.e., after receiving an answer
d to question x) over the hypothesis space.

For illustration, consider the example of asking a friend
about the location of your car keys. The hypothesis space,
H , spans the space of possible locations you can consider
(e.g., locations in your apartment). Assuming there have
been no previous questions X and answers D, p(h)

represents your subjective belief in these possible locations
(e.g., twice as likely to be in the office than the kitchen),
and the entropy, I [p(h)], indicates how uncertain you are
about the key location (this scalar measure will be zero
when you know its location and will be high if you assign
equal belief to each possibility). Likewise, I [p(h|d; x)] is
the uncertainty about the key location after the answer is
revealed. Some answers d can be far more informative
than others. For example, imagine asking your friend,
“Where are my car keys?”. The answer “Somewhere in
your apartment” is intuitively less informative than the more
precise answer “On your desk, to the left of your laptop.”

Of course, when asking a question such as “Where
are my car keys?”, we do not yet know which answer
we will receive, but under a computational analysis, we
can simulate how our uncertainty would hypothetically be
reduced for each possible answer. Combining Eqs. 1 and 6,
we define the expected utility of question x as the expected
information gain (EIG),

EU(x) := EIG(x) = Ed∈Ax

[

I [p(h|D;X)] − I [p(h|d,D; x, X)]
]

=
∑

d∈Ax

p(d|D; x, X)

[

I [p(h|D;X)] − I [p(h|d,D; x, X)]
]

(7)

or the average amount of information we can expect
from each of the possible answers to the question (e.g.,
Oaksford and Chater 1994; Coenen et al. in press). EIG is
a commonly used metric in machine learning approaches to
active learning (Settles 2012) and has a long history of study
as a model of human information gathering (Oaksford and
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Chater 1994). The value of a query is measured by EIG in
the unit of bits.

Assuming the learner is motivated to quickly gain
information, it would make sense for people to optimize
information with their questions. That is, out of the possibly
infinite set of questions, Q, we want to find the optimal
question, x ∈ Q, that maximizes the expected information
(see Eq. 2).

Cost-Sensitive Utilities: Expected Savings

According to ES, a query x is valued according to the
expected rewards or avoided costs that the learner is
expected to accrue after learning the answer to the question.
For example, some questions might have high utility not
just because they convey information but because they allow
the agent to act effectively in the world (e.g., “Is this
mushroom poisonous to eat?”). Cost-sensitive utilities are
highly task-dependent in the sense that they depend on what
the question asker plans to do with the acquired information
(asking about the safety of a poisonous mushroom is not
useful if you never planned to eat it, in which case the
same question is essentially trivia). As a result, these utilities
are defined differently for almost all tasks and goals the
learner might have (unlike cost-insensitive utilities, which
only depend on what the learner knows).

In the case of the Battleship, the primary goal might be
reducing errors in the painting task (Fig. 1), leading to the
following utility function,

U(d; x) = EC[p(h|D; X)] − EC[p(h|d, D; x, X)]. (8)

The function EC[p(h|v)] is used to denote the expected
cost when coloring tiles in the painting task according to a
particular belief distribution p(h|v), using v as shorthand
for past questions and responses. Expected cost is defined as

EC[p(h|v)] =
∑

i

∑

l

p(l|v; i) × [Chit p(l|v; i)

+ Cmiss(1 − p(l|v; i))], (9)

where the belief that tile i has color l is given by p(l|v; i) =∑
h∈H p(l|h; i)p(h|v). The choice to actually paint the tile

in that color is here given by p(l|v; i) again because we
assume during the painting phase participants will use a
probability matching decision strategy to choose the color
of each tile. Chit = 0 and Cmiss = 1 indicate the costs
associated with painting a tile correctly or incorrectly,
respectively.

As with EIG, the question asking agent does not know the
answer d to question x in advance. We define the expected
savings (ES) as the expected reduction of errors in the

painting task averaged across all possible answers Ax of the
query

EU(x) := ES(x) =
∑

d∈Ax

p(d|D; x, X)
[
EC[p(h|D; X)]

−EC[p(h|d, D; x, X)]
]
. (10)

Thus, in the Battleship game, ES measures a query’s value
in units of expected (average) number of correctly painted
tiles. As above, we want to find the optimal question,
x ∈ Q, that maximizes the expected savings. Note that
because of the conjunctive consideration of hypotheses and
actions (painting tiles, Eq. 9), ES cannot be recast as a mere
weighted variant of EIG, which only concerns hypotheses.

Example Calculation and the Computational
Challenge of Question Asking

To make the equations just described more concrete,
consider the computations involved in finding your lost
keys by asking questions according to EIG. If, based on
your prior knowledge p(h), the kitchen is an unlikely
place for the keys, then “Are my car keys in the kitchen?”
is an intuitively uninformative question. According to the
analysis above and Eq. 7, we would evaluate for each of the
two possible answers to this question, Ax = {“yes,”“no”},
how much our uncertainty would be reduced. If the answer
is d = “no” (which is very likely the answer), then our
uncertainty about the location did not change much relative
to what we believed already. If the answer is d = “yes,”
then we would rule out most of the other locations in our
apartment, accordingly update our belief p(h|d; x), and we
could see that our uncertainty I [p(h|d; x)] is much smaller
than before. Overall, since d = “yes” is unlikely given that
the kitchen is an unlikely place for the keys, the expected
information gain of the question is low, as captured by the
weighted expectation Ed∈Ax .

Although it might seem straightforward to simply ask
“Where are my car keys?” given the goal of finding them,
there are a myriad of questions one could ask instead (e.g.,
“What room did you go to after you parked my car?,”
“Where do you usually put the keys?,” “Are the keys in the
living room?,” etc.). Each of these has a slightly different
semantic meaning and provides additional information or
leaves additional ambiguity depending on our goal.

This computational analysis of question asking provides
one way to formalize the notion of a “good question.”
However, it raises interesting computational challenges. For
example, the computations under this information-theoretic
model grows with the number of hypotheses (computing
I [p(h)] and I [p(h|d; x)]), the number of possible answers
(computing Ed∈Ax ), and the size of the question space
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Fig. 2 Game boards shown to participants when eliciting questions. Each board is a partially revealed state of the game

(scoring each EIG(x) for x ∈ Q). Moreover, if Q is
defined in terms of natural language, as is often the case
in naturalistic inquiry, it is hardly a small enumerable set
of possibilities. Instead, it is a very large (possibly infinite)
set of options, each with a complex internal structure that
determines how the question x when applied to state h

determines a distribution on answers d. (Note, the same
argument applies to ES and any other model that seeks
to maximize an expected utility via Eqs. 1 and 2.) In the
methods and analysis of Experiment 1, we highlight some
of the complexities and challenges in characterizing both
the question space Q and particular questions x. In our
case, we formalize questions x as functions that can be
applied to a state h to return d. All things considered, it
is surprising that people can ask questions at all given the
immense computational demands this behavior implies for
most realistic situations (see Coenen et al. in press, for a full
discussion). The apparent difficulty of creating a tractable
computational account of optimal question asking raises the
core focus of the current study: Are people actually are good
or effective question askers?

Experiment 1—Question Generation

There is an infinite number of questions that can be asked in
any situation. However, most of them would have little or no

information value while others would be highly informative.
Our first experiment explored how people generate free-
form, natural language questions in a modified version of
the Battleship game. After familiarizing participants with
the mechanics and parameters of the game, we collected
the questions they asked to resolve ambiguity about the
positions of ships on a game board. Our ultimate goal is to
relate open-ended natural language questions to the models
of information utility just described.

Participants

Forty participants recruited on Amazon Mechanical Turk
using psiTurk (Gureckis et al. 2016), with restriction to the
US pool, were paid a base of $2 with a performance-based
bonus of up to $3.60. Participants were awarded a bonus of
$0.20 for each generated question that was in line with the
task rules, encouraging a minimum level of question quality
without providing monetary incentives for especially rich
and creative questions.2

2We decided against paying people based on question quality.
Participants would have to reason about what we, the experimenters,
expect to be good questions.
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Method

Before eliciting the natural language questions, we took
a number of steps to help the participants understand the
task. These included detailed tutorial-like instructions that
explained the task and comprehension quizzes to verify
understanding. The comprehension quizzes had questions
such as “Howmany ships can appear on the grid?” and “You
will never see ships on the grid that...” and participants had
to select the correct multiple-choice answer (here, “Exactly
3” and “...have the same color,” respectively). In addition,
key task information about the number and the possible
colors as well as the possible sizes and orientations of the
ships remained visible on a side panel throughout the whole
experiment.

In a warm-up phase, participants played five rounds
of the standard Battleship game to ensure understanding
of the basic game play. Each warm-up round included
sampling (i.e., clicking on tiles to find the ships) followed
by painting (i.e., guessing the color of the remaining tiles;
see Fig. 1). Then, in the main phase, participants were
given the opportunity to ask free-form questions in the
context of 18 partly revealed game boards, presented in the
order shown in Fig. 2. To produce a variety of different
types of partial knowledge states, we varied the number of
uncovered tiles (6 or 12), the number of partly revealed ships
(0 to 3), and the number of fully revealed ships (0 to 2).

These factors were varied independently while excluding
impossible combinations leading to a total of 18 contexts.

Figure 3 shows the procedure of a trial in the main phase.
At the beginning of a trial, we introduced participants to
a context by requiring them to click on a pre-determined
sequence of tiles (which are the past queries X and answers
D in Eq. 4). We chose this format of tile-uncovering moves,
resembling the warm-up phase, to give the impression that a
human was playing a game that was paused in an unfinished
state. Subsequently, as a comprehension check, participants
were asked to indicate the possible colors of each covered
tile subject to the rules of the game (e.g., whether the tile
could plausibly still be hiding a piece of the red ship, see
Fig. 3, Ship indication). The task would only continue after
all tiles were indicated correctly (or a maximum of six
guesses were made).

Next, participants were given the following prompt: “If
you had a special opportunity to ask any question about the
grid, ships, or tiles, what would you ask?” (represented as x

in Eq. 4). A text box recorded participants’ responses. The
only two restrictions were that combinations of questions
were not allowed (i.e., putting two questions together with
“and” or “or”) and questions had to be answerable with
a single piece of information (e.g., a word, a number,
true/false, or a single coordinate). Thus, participants could
not ask for the entire latent configuration at once, although
their creativity was otherwise uninhibited. Due to practical

.
.
.

Fig. 3 One trial of the Battleship game in Experiment 1. Yoked
sampling Participants click on the question marks to reveal a pre-
determined sequence of tiles, leading them to a partly revealed
game board context. Ship indication To ensure participants’ attention,

participants have to indicate all possible ship tiles.Question generation
Participants type a question they would like to ask about the hidden
configuration in a text box
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limitations participants asked only one question per trial, no
feedback was provided and there was no painting phase. We
emphasized to participants that they should ask questions
as though they were playing the game they already had
experience with in the earlier part of the experiment.

Results

We recorded 720 questions (18 contexts × 40 participants).
Questions that did not conform with the rules or that
were ambiguous were discarded (13%). An example of
an invalid question is “Where is the red ship?,” which
cannot be answered with a single coordinate (in contrast
to the similar, legal question “Where is one tile of the red
ship?”). A few individual questions (3%) were not included
because they had features that made them computationally
challenging to model.3 The remaining 605 questions (84%)
were categorized by type (see Table 1), and the full data set
is available online.4

Question Content

We first manually coded commonalities in the meaning of
questions independent of the specific wording used. For
example, the questions “How many squares long is the blue
ship?” and “How many tiles is the blue ship?” have the
same meaning for our purposes and were formalized as
shipsize(blue), where shipsize is a function with parameter
value blue. Since the function shipsize also works with red
and purple as parameter values, it represents a cluster of
analogous questions. Within these coder-identified clusters,
we then calculated the frequency with which such questions
were generated across the 18 contexts to get a sense of how
the participants approach our task (first column in Table 1).

At a broad level, there are a few natural groups
of question types (Table 1). While this partitioning is
far from the only possible scheme, it helps to reveal
qualitative differences between questions. An important
distinction contrasts location/standard queries with rich
queries. Location queries ask for the color of a single tile
and are the only question type afforded by the “standard”

3An example from the small set of questions that were not formalized
asked whether the purple ship was larger than the part of it that was so
far revealed on the board. This question is equivalent with asking “Is
the purple ship larger than n?,” where n is the number of purple tiles
already revealed in the particular context. Interestingly, only a small
fraction (∼ 1%) of questions necessitated such dynamic reference to
the partly revealed board, while all others could be answered by only
accessing the information of the true underlying board. The dropped
questions did not seem to be especially informative; thus, it is unlikely
that leaving them out changed the results significantly. At least in
principle, all of these questions can be formalized in our model given
sufficient computational power.
4https://github.com/anselmrothe/question dataset

Table 1 A comprehensive catalog of the natural language questions
obtained in Experiment 1 (regularized across slightly different
wordings of the same question)

N Question

Location/standard queries

24 What color is at [row][column]?

24 Is there a ship at [row][column]?

31 Is there a [color incl water] tile at [row][column]?

Region queries

4 Is there any ship in row [row]?

9 Is there any part of the [color] ship in row [row]?

5 How many tiles in row [row] are occupied by ships?

1 Are there any ships in the bottom half of the grid?

10 Is there any ship in column [column]?

10 Is there any part of the [color] ship in column [column]?

3 Are all parts of the [color] ship in column [column]?

2 How many tiles in column [column] are occupied by ships?

1 Is any part of the [color] ship in the left half of the grid?

Ship size queries

185 How many tiles is the [color] ship?

71 Is the [color] ship [size] tiles long?

8 Is the [color] ship [size] or more tiles long?

5 How many ships are [size] tiles long?

8 Are any ships [size] tiles long?

2 Are all ships [size] tiles long?

2 Are all ships the same size?

2 Do the [color1] ship and the [color2] ship have the same size?

3 Is the [color1] ship longer than the [color2] ship?

3 How many tiles are occupied by ships?

Ship orientation queries

94 Is the [color] ship horizontal?

7 How many ships are horizontal?

3 Are there more horizontal ships than vertical ships?

1 Are all ships horizontal?

4 Are all ships vertical?

7 Are the [color1] ship and the [color2] ship parallel?

Adjacency queries

12 Do the [color1] ship and the [color2] ship touch?

6 Are any of the ships touching?

9 Does the [color] ship touch any other ship?

2 Does the [color] ship touch both other ships?

Demonstration queries
14 What is the location of one [color] tile?

28 At what location is the top left part of the [color] ship?

5 At what location is the bottom right part of the [color] ship?

Column N reports the number of questions people generated of that
type, and brackets denote an argument (“[size]” can be replaced by
2, 3, or 4). Questions are organized into broad classes (headers) that
reference different aspects of the game

https://github.com/anselmrothe/question_dataset
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Battleship task (Markant and Gureckis 2012, 2014b). Rich
queries incorporate all other queries in Table 1 and reference
more abstract properties of the game. Of the rich queries,
demonstration queries ask for an example given a reference
label (the term demonstration comes from the fact that the
learner is essentially asking the oracle to demonstrate a
positive example). In the case of Battleship, demonstration
queries ask for an example tile of a ship, whereas most
other rich queries ask about a part or feature of the
game board configuration. Demonstration queries can be
especially helpful in active learning settings where the set of
positive examples is relatively small (Cakmak and Thomaz
2012; Hendrickson et al. 2016), as is the case in Battleship.
Examples of high value demonstration queries are questions
e) and f) in Context 4 in Fig. 4c.

Question Frequencies

Among all 605 questions, only 13% were of the loca-
tion/standard query type. In other words, being freed from
the constraints of typical active learning studies, our par-
ticipants creatively invented a vast array of questions. Only
47 questions (8%) were demonstration queries despite the
fact that these can be especially useful (see below). In sum,
there were 139 unique questions that were repeated with dif-
ferent frequencies. The most popular questions was “How
many tiles is the [blue/red/purple] ship?” (n = 185). When
grouping the questions, almost half of all generated ques-
tions (n = 289) addressed the size of one or several ships
(Table 1). Another large group of questions targeted the
orientation of the ships (n = 116).
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Expected Information Gain

Fig. 4 Four game contexts and example questions produced by par-
ticipants. The partly revealed configuration (a) is shown next to
the corresponding histogram of question qualities (EIG; (b)), for
all of the questions produced by participants in Experiment 1. Red
bars signify simple queries of the type used in earlier Battleship

experiments (Markant and Gureckis 2012), and blue bars signify rich
queries. For reference, a yes/no question in a context where both
answers are equally likely has EIG = 1. The six questions in (c)
were sampled from those obtained in Experiment 1 and used in
Experiments 2 and 3
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Question Quality

The computational analysis laid out in the introduction
assumes that people ask the best possible question (or at
least the best one found through a mental search process).
One way to assess the quality of a participant’s question
is to compute its utility according the two “yardstick”
models described above, EIG and ES. Even assuming that
people have somewhat noisy estimates of either of these
two measures (e.g., following a softmax function), one
reasonable prediction is that there should be a positive
relationship between the frequency a question is asked and
its objective quality. That is, the better a question, the more
often it will be asked by people.

To compute EIG and ES scores, all questions were
represented by functions or programs that would return the
answer computed against a true or hypothesized game board
configuration. Formally, if a question x was represented
by a function f(), then f(h) = d, where d is the answer to
question x given the true or hypothetical configuration h.
The functions were written by the experimenter by hand

to capture the semantic meaning of the natural language
questions asked by participants. To give an example, with
h being the particular configuration shown in Fig. 1, the
question “How many tiles is the blue ship?” would return
shipsize(blue, h) = 3. This process could be repeated for
all hypothesized configurations. The function itself would
access a representation of the true gameboard configuration
and run a short algorithm to determine the answer. The same
function could be run on representations of a hypothetical
gameboard (i.e., those that are plausible solutions to the
game). In conjunction with Eqs. 4 to 10, this provided the
machinery to evaluate all 605 questions by the EIG and
the ES model. Specifically, for each question-context pair,
where the context was the partly revealed game board in
which the question had been generated, one EIG and one ES
score were computed, providing objective quality scores for
people’s questions.

A few uninformative questions (i.e., EIG = ES = 0)
where asked (n = 19, 3%, by 11 participants across
13 trials). These questions asked for information that
was already given by the context (see question (a)
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Fig. 5 Histograms of question qualities in Experiment 1. Dashed lines mark the upper limit on the quality of the location queries (i.e., the best
possible location query). Note that the mode of each distribution is in the intermediate range of the distribution and not at its right end
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in Fig. 4c). Surprisingly, most questions having some
potential information concentrated at an intermediate level
of informativeness while the objectively best questions were
generated rarely. The histograms in Fig. 4b demonstrate this
pattern for a few example contexts. For reference, labels
were added that mark the quality of the example questions
listed in Fig. 4c. For the histograms, the bin width was
chosen such that a single count of a question resulted in
a square. Notably, each histogram showed a pronounced
peak, indicating that people preferably asked questions in
a particular quality range. However, this peak was nowhere
near the range of high-quality questions. Indeed, it turned
out that in all 18 contexts, the histogram had a mode which
was substantially below the maximum range of values (see
Fig. 5).

A second analysis corroborated the finding that a better
question was not necessarily asked more often. There was
only a very weak relationship between the frequency of
a question and its quality scores (i.e., EIG or ES). The
correlation between frequency and EIG was computed for
each context and then averaged across contexts, leading to a
mean correlation of 0.16 HDI = [0.08, 0.23].5 For ES and
question generation frequency, the mean correlation was
0.04, HDI = [−0.06, 0.15].

Another interesting comparison considers the quality of
rich queries and location/standard queries. In every context,
there were a number of rich queries that people asked which
outperformed the best standard queries (based on EIG). In
all but one context where there was a draw, rich queries even
beat standard queries when using the theoretical upper limit
for standard queries as benchmark (indicated by a dashed
line in Fig. 5). When using ES to measure question quality,
rich queries were similarly dominant, defeating standard
queries in 16 out of 18 contexts. The mean EIG for standard
queries was 0.75 HDI = [0.64, 0.85] compared to 1.26
HDI = [1.18, 1.35] for rich queries, suggesting increased
informativeness of the more sophisticated natural language
questions (see red vs. blue in Fig. 4b). The difference of
the two means had HDI = [0.38, 0.64], and 100% of the
posterior probability mass were above 0, indicating high
confidence that rich queries performed better. The mean
ES for standard queries was 0.62 HDI = [0.47, 0.77]
compared to 0.72 HDI = [0.62, 0.83] for rich queries. The
difference of the two means had HDI = [−0.08, 0.29],
and 87% of the posterior probability mass were above
0. Therefore, the advantage of rich queries over standard
queries was less pronounced when measuring question
quality with ES instead of EIG.

5For each estimation, we report the 95% highest density interval
(HDI), based on Bayesian data analysis. In all of these estimations,
broad priors as described by Kruschke (2013) were used.

We tested whether removing questions that participants
asked after failing the ship indication all six times resulted
in a cleaner data set. Since participants failed often, almost
a fifth of the questions would need to be removed under
this criterion. However, when doing so, the average EIG
score of questions goes up by only 0.06 HDI = [0, 0.11]
(by 0.03 for ES, HDI = [−0.03, 0.09]). In retrospect, the
ship indication task might have been overly difficult at times
for some participants. We therefore decided to not exclude
questions based on ship indication performance.

Question Length

The produced questions varied in their number of words
from 1 (a participant chose to make a simple location query
by typing “1C”) to 18, with M = 7.07, SD = 2.15. An
analysis of question length found that shorter questions
were not asked more often. Equivalent to the analysis of
EIG and question frequency described above, we correlated
frequency with the average number of words (while the
EIG values were constant across questions with identical
meaning, the number of words vary and hence we needed to
take the average). As above, the correlation was computed
separately for each context, resulting in a mean correlation
of 0.04 HDI = [0.02, 0.06].

Context Specificity

A good question in a certain context is not necessarily
a good question in a different context. To estimate the
context sensitivity of the generated questions, we permuted
the contexts each question was associated with across all
605 questions and evaluated the EIG for each new context-
question pair (see Fig. 6). Note that this was only possible
because the formalized question functions were entities
that represented the meaning of the question independently
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Fig. 6 Context specificity in question asking. If the questions are
evaluated in a different context (black, 100 bootstrap samples), they
clearly lose quality compared to the original context they were asked
in (red)
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from the context they were asked in. Thus, every question
function could be evaluated in a variety of new contexts.
The average EIG across questions in the original data set
was larger than in all 100 permutation sets (p < 0.01). An
analysis for ES on a subset of the contexts obtained the same
result (due to the higher computational demands of ES the
analysis could only be run on six contexts). In summary,
people produced a range of questions that were both rich
and context-sensitive.

Discussion

In Experiment 1, we observed that people generated a
variety of natural language questions targeting various
aspects of the Battleship game boards in a context-sensitive
fashion. By formalizing these questions as functions, we
could compute their exact information-theoretic value with
respect to the Battleship game’s massive hypothesis space.
We found that people asked more informative questions than
when limited to simple location queries, which only return
the color of a particular board tile. The context sensitivity
analysis shows that people flexibly altered their questions to
adapt to the idiosyncratic circumstances of particular game
contexts. This finding appears to rule out heuristic strategies
that only target questions generally useful for the overall game
(e.g., always asking “What is the size of the red ship?”).

On the other hand, the very best questions in our dataset
were asked by only a small fraction of participants. This
indicates that the questions that came to people’s minds
where not perfectly tuned to the informational structure of
the game (otherwise all or most participants would ask the
objectively “best” questions). This also means that neither
EIG nor ES is a complete account of human question
generation.

There are a variety of possible reasons that our subjects
failed to universally select high information (or expected
savings) questions. One hypothesis is that people had
difficulty thinking of good questions to ask, effectively
limiting the search for the best possible expression (i.e.,
Eq. 2). Alternatively, people may have difficulty evaluating
the questions (thinking that an intermediate quality question
was actually better than a more informative one). To
decide between these alternatives, in Experiment 2, we
removed the demand of generating question by providing
people with a list of possible questions, thus separating
question generation from question evaluation. If people
have difficulty identifying the best questions to ask, we
expect to see a similar pattern of results in Experiment 2.
Alternatively, if the process of creatively generating a highly
informative question is the major bottleneck, we expect
people’s behavior will be more aligned with our models in
Experiment 2.

Experiment 2—Question Evaluation

The results of Experiment 1 showed that people failed to
agree with the models about the best questions to ask.
In Experiment 2, we instead provided people with a list
of question selected from those asked by participants in
Experiment 1.

Participants

Forty-five participants on Amazon Mechanical Turk were
paid $2 with a potential performance-based bonus of up to
$3.78.

Method

The materials and procedure were nearly identical to
Experiment 1, except that instead of entering a question into
the text box at the end of each trial, participants ranked
a provided set of natural language questions according to
perceived informativeness for the given setting. Participants
viewed the same 18 board configurations (contexts) along
with a selection of six natural language questions. They
were asked to rank the questions for quality by positioning
them from best to worst in a sortable list. After sorting, they
were asked to select their favorite question, presumably the
question at the top of the ranked list.

For each context, the six question options were sampled
from the full list of human-generated questions from the
corresponding trial in Experiment 1 (see Fig. 7c). This
reduction was necessary, as the intention of this experiment
was to study question evaluation without the burden of
having to consider a large number of possible questions.
We used a simple algorithmic sampling procedure designed
to include the most frequently generated questions, the
highest quality questions (according to EIG), and some
questions that were neither frequent nor high quality.6 The
questions were regularized into a simple grammatical form,
removing typos and odd constructions from the original
human generated versions while preserving the semantic
meaning.

To ensure that people read each question they ranked,
they were asked to classify each question by the form
of its possible answers (either a color, a coordinate on
the grid, a number, or yes/no, which span all possible
answers to the questions in Table 1). Participants were
awarded a bonus of $0.015 for each correct answer, and
they did not receive feedback. As in Experiment 1, this

6The free-from questions for each context in Experiment 1 were placed
in a 2D space with EIG and generation frequency as dimensions. We
then sampled 1000 six-question subsets and took the sample with the
largest average pairwise distance between questions in the subset.
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Fig. 7 a Four selected contexts exemplifying the partly revealed con-
figuration. b Participants’ rank orderings of the questions (higher rank
score means better question) strongly correlated with the Bayesian
expected information gain (EIG) and Bayesian expected saving (ES)

model scores. c Participants ranked six questions that were sam-
pled from those obtained in Experiment 1 (for comparison, identical
questions were shown in Fig. 4C but in reversed order for readability)

bonus encouraged attention but did not provide a monetary
incentive tied to the quality of the ranked question list.

Results

In the following, we will present three comparisons. First,
we will compare the two dependent variables in Experiment
2 (choosing and ranking), then, we will compare the results
from Experiment 2 with those from Experiment 1, and
finally, we will compare the two models EIG and ES.

Question Evaluation

Participants ranked the six questions and subsequently
selected their favorite from the list. In our analysis, a
higher rank score represents a better question (i.e., 6 for the
highest position and 1 for the lowest). In 74% of the cases,
participants selected the question they also had ranked
highest. Vice versa, for all questions that were selected,
across participants and contexts, the mean and median rank

scores were 5.4 and 6, respectively. This suggests that the
two measures were capturing similar (but not completely
identical) variables. For brevity, the following analyses
only used the rank data as it provides a more fine-grained
measure of people’s judgments. A detailed presentation of
the ranking of the questions in four of the contexts, plotted
against the scores that the EIG model and the ES model
assigned to those questions, is shown in Fig. 7.

Question Generation Versus Evaluation

Figure 8 shows data for all 18 contexts, with the data for
Experiment 1 constrained to the subset of questions that
were also used in Experiment 2. Restating the finding for
the full data in Experiment 1, the frequency with which
people generated questions was not significantly correlated
to the questions’ quality as measured by the models, both
in the full set of generated questions and the subset used
in Experiment 2. The mean correlation across contexts
was r = −0.04, HDI = [−0.14, 0.06], for EIG (panel a)
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Fig. 8 Comparing judgments of question value for people versus the
Bayesian ideal learners. In Experiment 1 where participants generated
questions, questions that score highly according to the ideal learners
(EIG and ES) were not necessarily asked more frequently (a+b). In
Experiment 2 where participants evaluated questions, questions that
score highly according to the ideal learners tended to be ranked more

highly by participants (c+d). The x-axis showing the ideal learner
scores was normalized so that the maximum value is 1. The same
six questions per context are shown in (a+b) versus (c+d) for com-
parison, meaning these six were only a subset of the questions in
Experiment 1 while constituting the full set for Experiment 2
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and −0.11, HDI = [−0.28, 0.06], for ES (panel b). In
contrast, people’s ranking of the questions in Experiment 2
was highly correlated with the model scores, with mean
correlation r = 0.89, HDI = [0.84, 0.94], for EIG (panel c)
and 0.78, HDI = [0.66, 0.89], for ES (panel d) (see Fig. 7b
for detailed examples). Only context 7 did not follow this
pattern and basically showed no correlation, but this might
be a floor effect as the list of questions shown to participants
in Experiment 2 was less diverse in its EIG/ES scores than
for other contexts (participants did not produce any high-
quality questions for context 7 in Experiment 1). A Bayesian
analysis for EIG confirmed the strong difference between
the correlations in Experiment 2 (ranking vs. EIG) and
Experiment 1 (generation frequency vs. EIG) with HDI =
[0.81, 1.05] and 100% of the posterior probability mass
above 0. Equivalently, for ES there was a strong difference
between Experiment 2 (ranking vs. ES) and Experiment 1
(generation frequency vs. ES), with HDI = [0.66, 0.89] and
100% of the posterior above 0.

Which “Yardsticks” of Question Quality?

We analyzed which of the two models of question quality,
EIG and ES, provides the best fit to participants rankings
of natural language questions. The key distinction between
the models is that the EIG model purely focuses on the
uncertainty reduction about the correct configuration, while
the ES model takes the tile-painting task into account and
focuses on minimizing the number of painting mistakes, and
therefore considers the overall task costs.

The different preferences of the models become clear
with the example of the question “How tiles is the red
ship?” in Context 15 (question (d) in Fig. 7). Under EIG,
this question is useful because every answer will allow the
learner to rule out all hypothesized configurations that are
inconsistent with that answer. Under ES, this question is
hardly useful because in Context 15, the learner does not
know yet where on the board the rep ship is located at
all, so the abstract information about the ship size would
barely increase the chances of painting the red ship correctly
(compare Fig. 7b, c).

On the other hand, model simulations showed that
there are many questions for which both models make
very similar predictions. With respect to the human data,
Fig. 8 shows how EIG and ES make predictions that
are not identical but overall are quite similar. Instead of
comparing correlation coefficients, we conducted a more
sensitive model comparison that takes guessing behavior
into account. Model scores were transformed into choice
probabilities via the softmax function,

p(x) = e−βM(x)

∑
xe

−βM(x)
(11)

where M(x) is the model score (i.e., EIG(x) or ES(x))
and β is the free temperature parameter, capturing more
guessing behavior as β → 0. For each model, β was
fit per participant to the choice data from Experiment 2,
and the resulting log-likelihood computed, logp(data) =∑

x∈data logp(x). We found that ES had a higher log-
likelihood for 36 out of 45 participants (80%).

Discussion

Both the EIG and ES models were highly predictive for the
people’s rankings of provided questions. This is impressive
given that the models incorporate a Bayesian ideal observer
analysis without any free parameters. The finding that
people were able to objectively evaluate question qualities
in line with the models is striking.

In our direct comparison, we found that the expected
savings (ES) model accounted better for human judgments
than the expected information gain (EIG) model. This
suggests that people were somewhat congnizent of the
cost structure of the task (i.e., guessing the colors of
the remaining tiles in the painting task immediately after
learning the answer to the question), which is better
captured by ES than EIG. Interestingly, Markant and
Gureckis (2012) reported that EIG provided a better fit
to participant’s query behavior than does ES in a similar
task. A possible explanation for the reversal of findings is
that the natural language question asking exposes a broader
range of possible queries, some of which might more clearly
distinguish the different sampling models.

One remaining concern is that in Experiment 2 the cost struc-
ture of the task may not have been sufficiently obvious.
For example, people were not actually provided answers to
their questions and they did not actually have to perform
the painting task. In Experiment 3, we conducted a concep-
tual replication of Experiment 2 but made the cost structure
of the task much more apparent. Specifically, participants
received an answer to their question and a bonus payment
based on their performance in the painting task. Our expec-
tation was that this would increase the use of the ES strategy
and remove some of the variance from the prior experiment.

Experiment 3—Question Evaluation
with Explicit Cost Structure

We replicated Experiment 2 while providing people with
a clear objective when they evaluated the natural language
questions. People received the answer to their chosen question
and subsequently guessed the underlying game board
configuration, through the process of explicitly performing
the painting phase task (Fig. 1). A monetary bonus payment
was based on their accuracy in this final phase.
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Participants

Forty-one participants on Amazon Mechanical Turk were
paid $6 with a potential performance-based bonus of up to
$3.60. We paid more than in Experiments 1 and 2, as this
experiment was longer.

Method

The materials and procedure were nearly identical to
Experiment 2, except that participants received the answer
to their selected question and could use this information
in a subsequent painting phase. Also, we streamlined the
question selection procedure in that the top-ranked question
was automatically coded as the participant’s “chosen”
question, and the trial order was randomized. The same six-
question subsets from in Experiment 2 were used, albeit 9%
of the questions were different due to resampling.

For each question, we precomputed the answers assum-
ing a randomly chosen underlying “true” configuration
that was consistent with the partially revealed gameboard
(this target configuration was constant across participants).
After a participant had ranked the questions, the top-ranked

question was highlighted and the corresponding answer dis-
played. This information remained visible painting phase,
where the participant painted in the empty tiles in the partly
revealed game board. For each correctly painted tile, we
awarded a potential bonus of $0.10. For fairness, already
revealed tiles were counted as correct, thus resulting in a
possible bonus of $3.60 for all 36 tiles. The bonus was only
paid for a single trial, selected by a lottery at the end of the
experiment. This allowed us to award a higher bonus per tile
and also kept people motivated for the entire task.

Results

Overall, we obtained results very similar to those in
Experiment 2. Figure 9 shows again high correlations
between human rank scores and model scores (for EIG,
see panel a, mean r = 0.87, HDI = [0.73, 0.98]; for
ES, see panel b, mean r = 0.86, HDI = [0.80, 0.93]).
Equivalently to the analysis in Experiment 2, we compared
the correlations between Experiments 3 and 1. Again, a
Bayesian estimation of μdiff = μExp3 − μExp1 found a
strong difference between the correlations in Experiment 3
(ranking vs. EIG) and Experiment 1 (generation frequency
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Fig. 9 Comparing judgments of question value for people versus Bayesian ideal learners. There were strong correlations between human rank
scores and EIG scores (a) as well as ES scores (b) in Experiment 3
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vs. EIG),HDI = [0.73, 1.08], 100% posterior mass above 0,
and a similarly strong difference when replacing EIG with
ES, HDI = [0.78, 1.15], 100% posterior mass above 0.

To test the similarity between the correlations in
Experiments 3 and 2, μdiff = μExp3 − μExp2, we defined
−0.1 to 0.1 to be a region of practical equivalence (ROPE)
around the null value of μdiff (Kruschke 2013). If nearly
all of the posterior (e.g., 95%) falls into this region, we
can accept the null hypothesis that there is no practically
relevant difference between the correlations. For EIG, the
HDI of μdiff ranged from −0.06 to 0.09 and thus fell
completely into the ROPE. Therefore, the result with respect
to EIG was practically the same in both experiments. For
ES, theHDI ranged from−0.03 to 0.21, and while only 60%
of the posterior fell into the ROPE, 92% of the posterior
mass were above 0. This result indicated slightly stronger
correlations with ES in Experiment 3 than in Experiment 2.

For a direct model comparison, as in the Experiment 2
analysis, a softmax temperature parameter was fit to
the choice data (i.e., highest-ranked question) for each
participant for each model. We found that ES had a higher
log-likelihood than EIG for 30 out of 41 participants (73%),
which was slightly below the 80% in Experiment 2.

Discussion

Experiment 3 used the same stimuli as Experiment 2, but in
contrast to Experiment 2, participants received answers to
their chosen questions and then had to complete the painting
task. As a result, Experiment 3 had a more explicit incentive
structure that encouraged participants to ask questions in
order to perform well in the painting task. Given these
differences, we expected people’s choices to be more in line
with the ES model than before because ES exactly captures
the incentive structure of the experiment. Overall, the results
were very similar to the results of Experiment 2. The ES
model provided a good account of people’s question ranking
in both experiments, and the correlations were slightly
stronger in Experiment 3. In the direct model comparison,
ES outperformed EIG in both experiments for predicting the
judgments of individual participants, although by a slightly
smaller margin in Experiment 3 than Experiment 2. This
is somewhat surprising given that participants could have
used their experience with receiving answers and painting
to inform their question selection strategy. Overall, the ES
model is still a strong predictor of how the participants
evaluated questions.

General Discussion

We began this paper by asking, “Do people ask good ques-
tions?” Although we are still far from a complete account,

our experiments and analyses represent a step forward in
understanding the effectiveness of human question asking
in computational terms. Bridging previous qualitative and
quantitative approaches to the study of question asking, we
studied free-form natural language question asking in a rich
and intuitive setting that was nonetheless still amenable
to Bayesian ideal observer analysis. Through these ideal
observer measures of question quality, we were able to ana-
lyze the wide variety of natural language questions that
people asked, placing them together on a common scale for
comparison. The design additionally allowed the compari-
son of question generation and question evaluation within
the same framework, providing insight into when and why
people may fail to ask the best possible question in a
particular scenario.

In Experiment 1, we found that people asked a variety
of rich and interesting questions that grouped into various
identifiable subtypes and were highly tuned to the particular
contexts in which they were asked. Some of the questions
people came up with were rather direct attempts to ascertain
hidden properties of the game board such as “Is the red ship
3 tiles long?” or “Is the red ship horizontal?”. Yet other
were striking in their creativity. For example, in context
4, four participants asked, “What is the top left part of
the purple ship?” a clever approach (obtaining information
about the location and, potentially, orientation and size of
the purple ship in a single query) that even the authors of this
paper did not consider. In addition, we found that questions
were highly context sensitive, responsive to the particular
situation on the partially revealed gameboard rather than
being driven by blind heuristics. However, interestingly,
people rarely asked the objectively best questions relative to
more mundane, intermediate quality questions.

In contrast, in Experiment 2, we found that people
strongly preferred the objectively best questions, once
they were provided with the questions and did not have
to generate them from scratch. We found evidence that
people’s rankings of question were better described by
the expected savings (ES) model that values questions
that improve people’s performance on the inference task
directly (i.e., the painting phase), compared to the expected
information gain (EIG) model that values information
irrespective of the costs and benefits for the immediate
task, something we discuss further below. Moreover, the
close correspondence with the models also rules out that
participants in the first experiment were not capable of
evaluating or agreeing upon the quality of the questions they
asked.

In Experiment 3, we replicated the finding from the Experi-
ment 2 in a setting with a much more explicit cost structure.
In this experiment, people received the answer to their
selected question and were paid for their performance in a
subsequent test, for which the answers provided potentially
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useful information. Once again, people’s preferences among
questions were better described by ES than EIG, and the
results sharply diverged from the results of Experiment 1.

The free-form question asking task in Experiment 1
contrasts with past work on active inquiry, which has often
provided participants with lists of question or queries. We
argue that such a procedure dramatically simplifies the
computational problem, resulting in a more favorable view
of human performance in inquiry tasks than might be true in
everyday life. Our results also highlight the need for further
computational work aimed at understanding question and
query synthesis, given its key role in human inquiry in
naturalistic settings.

Question Evaluation

The finding in Experiments 2 and 3 that people’s evaluation
of questions aligned more closely with the cost-sensitive ES
model is surprising in light of previous work, which found
the opposite pattern in a similar task (Markant and Gureckis
2012). Markant and Gureckis (2012) explain that a cost-
sensitive strategy can be computationally more demanding
as every piece of information needs to be evaluated in light
of the decision policy the learner will adopt in the test
phase. However, there are reasons to suspect that people
could intuitively align more with ES even without direct
calculation. For example, as noted above some high-EIG
questions are seemingly abstract (e.g., “What is the total
number of water tiles?”) in the sense that they provide
a lot of information but do not help the learner with the
immediate task of painting the tiles to complete the game
board. In contrast, if one tile of the red ship is revealed and
the learner asked “What is the orientation of the red ship?,”
they can use this to make more informed guesses about the
location of the red ship in the painting phase. The possible
discrepancy between our results and those of Markant and
Gureckis (2012) may stem from the fact that these types of
differences are much more apparent in the case of natural
language question asking due to the rich space of possible
queries.

The finding that people’s question evaluations were so
well captured by the Bayesian ideal observer model is
surprising in light of the immense computation required
in our models to determine the quality of each question,
and the fact that the models have no free parameters.
In part the large computational burden stemmed from of
the massive hypothesis space, H , and the large space
of possible answers to certain question types, Ax (c.f.
Eq. 7 in the introduction). While the sets of answers in
our task domain were straightforward, everyday life ques-
tions often have an potentially infinite amount of possi-
ble answers, escalating the computational problem even
further.

Although our ideal learners are defined at the computa-
tional level, additional work is needed to understand how
these computations can be approximated or mimicked at
the algorithmic level. A recent review article, Coenen et al.
(in press), provides a fairly extensive consideration of these
issues. A key point though is that whatever mechanism peo-
ple use to evaluate questions it seems to correlate strongly
with the information-theoretic, probabilistic analysis of the
problem that we advanced.

Question Generation

In interpreting the results of Experiment 1, we consider
three alternative explanations for why people rarely
generated the best questions. First, it is possible that
participants were just not motivated to ask good questions
in the game. This seems unlikely, however, given that
the incentive structure was basically identical between
the generation and evaluation experiments (Experiments 1
and 2), and unmotivated participants would have also
failed to recognize the best questions in the evaluation
experiment. Second, it is possible that participants were
not sure what questions were allowed and did not want to
risk asking a good but illegal question. Points that speak
against this objection are that the instructions were fairly
simple to follow and that we had extensive and explicit
checks of participants’ understanding. Participants were
also repeatedly reminded of the allowed answer types (a
word, a number, true/false, or a single coordinate), making
clear what counted as a question that could be answered by
a single piece of information. Third, it is possible that it is
difficult for people to come up with good questions from
scratch when they are unfamiliar with the settings of the
task, but one good example question is all they would have
needed to prevail. This claim is challenged by anecdotal
evidence showing that even after having seen the many
examples in this paper, it is hard to generate novel highly
informative questions. For instance, we invite the reader to
consider what question would be better than any of those
in Fig. 7. A participant that just repeats or slightly tweaks
a previously seen question is not engaging in the creative
generation process we intend to study here. In fact, we were
careful to not provide any examples of rich questions in the
instructions of the generation experiment to avoid biasing
participants by influencing their creative process.

What then makes the generation of questions so difficult?
Although the exact mechanism by which people synthesize
novel questions remains elusive, one idea is that question
asking is akin to a search for the maximally useful question
(i.e., Eq. 2) within some defined syntactic and semantic
space, Q. As a consequence, as this space of candidate
questions, Q, grows, the search task becomes harder for
an agent with limited computational resources (e.g., limited
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memory or time). In fact, in many situations, including our
experiment, the question space is approximately infinite,
rendering an exhaustive search a futile effort. Instead,
people might settle on local minima in the space (i.e., “good
enough” questions), perhaps by terminating the search after
a certain time and then asking the best question discovered
so far.

A key takeaway from our study is that any computational
account of question asking not only needs to model the
evaluation of questions (such as Eq. 1) but also has to
account for where questions come from (i.e., the question
space Q in Eq. 2). Many of the generated questions
shared concepts that resembled game features that the
instructions of the experiment had “built-in” (e.g., the size
or the orientation of a ship). However, participants also
referred to features that are inductive in nature (e.g., about
ships touching each other, about one ship being larger
than another, or about ships having parallel orientation).
A computational model of question generation must be
able to synthesize such new features or transfer them
from previously seen tasks. We have begun laying out the
groundwork for such a model, building on the data set of
rich questions obtained in the present study (Rothe et al.
2017). In brief, a probabilistic generative model can be
defined over a space of questions Q to provide an estimate
of how likely a person is to ask any particular question in
the space, given the current context and knowledge state
of the question asker. As in the current paper, questions
are formalized as functions/programs, and the space of
questions Q can be defined compositionally with a context-
free grammar that incorporated building blocks such as
the size of a ship and the color of a tile, as well as
generic sub-functions for performing logical, arithmetic,
and set operations. Although the approach still requires
domain-specific engineering, it demonstrates how novel and
informative questions can be generated in new contexts that
the model has never been trained on. We see this, and related
efforts to formally characterize Q and develop generative
models, as an important tool for further exploring the
computational mechanisms for question asking and more
precisely characterizing its successes and limitations.

Conclusion

Do people ask good questions? In this paper, we addressed
this question through a series of behavioral and compu-
tational experiments, using rich game-based scenarios that
were tractable for ideal observer measures of question qual-
ity. Even in these games, the computational burden of an
ideal question asker is immense, scaling with factors that
can be intractably large: the number of possible questions,
the number of possible answers to each question, and the

size of the hypothesis space. Nevertheless, with only min-
imal familiarity with the task at hand, people generated
a catalog of interesting and creative questions that were
goal-directed and context sensitive. By the standards of
contemporary AI systems and active learning algorithms,
no algorithm comes close to matching the flexibility and
sophistication of human question asking. On the other hand,
people rarely asked the best question available in any given
scenario (Experiment 1), even though they could accurately
estimate the value of the best questions when presented as
a set of fixed alternatives (Experiments 2 and 3). However
impressive, the human ability to ask questions is not with-
out limitations, and we see additional computational work
addressing query synthesis as key to further unraveling the
mystery of human question asking.
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