
A Proofs

Proof 1 (of Theorem 1) By writing the definition of the entropy, we have:

H(S1:T) = E [− logP (S1:T)] = E

[
− log

e−costθ(S1:T)∑
s1:T

e−costθ(s1:T)

]
= E [costθ(S1:T)]− dsoft(sgoal).

Proof 2 (of Lemma 1) By definition,∑
path∈Ξ

e−cost(path) =
∑

path∈Ξa

e−cost(path) +
∑

path∈Ξb

e−cost(path)

≤
∑

path∈Ξa

e−cost(path) +
∑

path∈Ξb

e−
ˆcost(path)

for ˆcost(path) ≤ cost(path). Equivalently, for d̂soft(s) ≤ dsoft(s): e−d
Ξ
soft(s) − e−d

Ξa
soft (s) ≤ e−d̂

Ξb
soft (s).

Proof 3 (of Theorem 2) Theorem 2 follows directly from Lemma 1 by choosing the set of paths in
the approximation set for Ξa and the set of paths not contained within the approximation set for Ξb.
The costs of Ξb are lower bounds estimated by adding the cost within the approximation set to the
heuristic found at the path’s first state outside of the approximation set.

Proof 4 (of Theorem 3) Following directly from Lemma 1, the paths can be partitioned into the
subset Ξ′S≈ and the subset of all other paths. The set of all other paths either terminate at S≈’s
neighbour set or have prefixes represented by the set Ξ̄′S≈ .

Proof 5 (of Theorem 4) We will prove by contradiction. Assume that the algorithm does not termi-
nate with guaranteed approximation. There are three cases to consider:
1. The algorithm terminates by satisfying the stopping condition. This case violates the stopping
condition’s approximation guarantee.
2. The algorithm terminates by exhausting the set of reachable states. By definition, the algorithm
has considered all paths and the estimated softmin distance function is exact.
3. The algorithm does not terminate. This case could arise if the algorithm encounters a loop in
which no “progress” towards correct approximation is made. We can define this progress primarily
by the softmin of the priority queue estimates. For monotonic softmin heuristic functions, expansion
of nodes is guaranteed to not increase the priority queue softmin. Thus, an infinite number of states
must be expanded for which the monotonic inequality is tight. This violates either the finite softmin
assumption or the bounded entropy assumption.

Proof 6 (of Theorem 5) By definition:

E [costθ(S1:T)] =

∑
path∈S≈ e

−costθ(path)∑
path∈S e

−costθ(path) ES≈ [costθ(S1:T)]

+

∑
path∈P e

−costθ(path)∑
path∈S e

−costθ(path) EP [costθ(S1:T)] ;

= e
dsoft(sgoal)−d

S≈
soft (sgoal)ES≈ [costθ(S1:T)]

+ edsoft(sgoal)−softmin(P)EP [costθ(S1:T)] .

Then: E [costθ(S1:T)]− ES≈ [costθ(S1:T)] =

edsoft(sgoal)−softmin(P)(EP [costθ(S1:T)]− ES≈ [costθ(S1:T)]
)
.

Replacing edsoft(sgoal) with ed
S≈
soft (sgoal) increases the positive scalar multiplier preceding the expecta-

tion difference, yielding our result.

B Synthetic Evaluation

In our synthetic experiment, we generate a random full cost matrix with 20,000 states. We compute
exact soft distance values via Equation 1(6), requiring over 10 minutes for the inversion of the

10

matrix and evaluate our approach using heuristic functions, ĥsoft(s) = αhsoft(s), with varying values
of α ∈ [0, 1].

Softmin Distance Estimation as a Function of Time

E
st

. S
o

ft
m

in
 D

is
ta

nc
e

0

5

10

15

20

25

Seconds
0 20 40 60 80 100

0% Heuristic 25% Heuristic
50% Heuristic 75% Heuristic
MCMC

Figure 4: Inference efficiency comparison using ratios of the softmin distance as heuristic values.

Figure 4 shows the efficiency of our approach with heuristic functions of varying tightness. Without a
heuristic (α = 0%), over 26 minutes of CPU time is required for the proposed algorithm to complete,
whereas for α ≥ 75% the softstar algorithm concludes in about 1 second. MCMC performs poorly,
getting caught in local optima and taking over 45 minutes of CPU time to converge.

C Evaluation Details

C.1 Feature expectations and gradient computation

In order to generate the desired path distribution we must first run the softstar algorithm in order
to generate the softened cost-to-go values, dsoft, on the ordered set, O. We then use Equation 5 to
compute the probability of each state transition in O as well as the expected feature distributions
needed to generate the gradient:

∇L(θ) = Eπ̂

T̂−1∑
t=0

f(st, st+1)

− Eπ̃

T̃−1∑
t=0

f(st, st+1)

 . (7)

We employ stochastic accelerated gradient descent with an adagrad learning rate and accelerated
momentum [10, 23] to estimate the cost parameters, θ, using the gradient computation in Equation 7.
We update θ by optimizing the loss function via Equation 7 and matching the estimated distribution
of the state-action features to the distribution in the demonstrated trajectories. This is the same
method used to update the cost function parameters in previous work [26, 18].

C.2 Character Drawing

Feature Representation The features are separated into three groups:

• Four initial transition features: Destination node distance from each side of the image
plane.

• Nine edge draw features: Angles of the edge being drawn, with respect to the previous
transition angle, to the horizontal, to the vertical, the inverse of these 4 features, and a
constant edge draw feature.

• 15 pen lift features: Each of the edge draw features and initial transition features as well
as the distance of the lift and the inverse of the distance of the lift.

An accurate model trained on these features should be informative as to the preferences of how the
handwritten characters are drawn in the training set.

Estimated parameters The learned weights indicate that the preferred starting position for a char-
acter is in the top left of the frame, drawing an edge is more desirable than a pen lift and that a
smoother transition angle is preferred when drawing an edge than executing a pen lift matching
previous empirical results on drawing preferences [11].

11

C.3 Professional Soccer

Feature Representation There are 28 Euclidean features for each action type and 29 that apply
to all action types resulting in 168 total features that form the cost of a state transition between the
current cell, the previous cell, and the destination cell. We use the same features as the character
drawing model and include a different set of features for each action type in order to learn unique
action based cost functions that better represent the individual characteristics of each action type. We
also include a set of 29 features that apply to all types and are used to learn common characteristics
between actions and speed learning for a total of 174 features.

Estimated parameters The learned weights indicate that the players prefer close range shots in
front of the goal, crosses from the sides of the field, and players tend to take actions that move
the ball closer to the goal in short distances. A more detailed analysis of learned behavior will be
reserved for future work.

12

