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Modeling Unsupervised Perceptual
Category Learning

Brenden M. Lake, Gautam K. Vallabha, and James L. McClelland

Abstract—During the learning of speech sounds and other per-
ceptual categories, category labels are not provided, the number
of categories is unknown, and the stimuli are encountered sequen-
tially. These constraints provide a challenge for models, but they
have been recently addressed in the online mixture estimation
model of unsupervised vowel category learning (see Vallabha et al.
in the reference section). The model treats categories as Gaussian
distributions, proposing both the number and the parameters of
the categories. While the model has been shown to successfully
learn vowel categories, it has not been evaluated as a model of
the learning process. We account for several results: acquired
distinctiveness between categories and acquired similarity within
categories, a faster increase in discrimination for more acoustically
dissimilar vowels, and gradual unsupervised learning of category
structure in simple visual stimuli.

Index Terms—human learning, mixture of Gaussians, online
learning, unsupervised learning.

I. INTRODUCTION

T HE ability to categorize objects is critical for perception.
Knowing an object is in the category “chicken” provides

crucial information about that object—such as that it has
feathers, it is edible, and it can fly. A long history of modeling
work has investigated how categories are learned, e.g., [1]–[3].

While category learning is often facilitated by associating
objects with category labels, categories can also be acquired
by mere exposure to stimuli—no labels included. For instance,
during the first year of life, infants begin acquiring the speech
sound categories of their native language; sensitivity to nonna-
tive contrasts decreases [4] and sensitivity to native contrasts
increases [5]. In the visual modality, Rosenthal et al. [6] found
that subjects were sensitive to the cluster structure of the stimuli
in assigning them different categories without feedback.

We consider how category structure might be learned without
labels in situations posing the following additional challenges: i)
the number of categories to learn is unknown and ii) the stimuli
are encountered one by one in mixed order instead of all at
once [7]. The recent online mixture estimation (OME) algorithm
[7] addresses these challenges. It learns a generative model of
a sequence of stimuli using a mixture of Gaussian categories,
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proposing both the number and parameters of the categories.
OME can be seen both as an extension of competitive learning
models [8] and as an online variant of expectation maximization
(EM). The model is also somewhat biologically plausible since
a topographical network can serve as an approximation [7].

Past work has demonstrated OME’s power as a learning al-
gorithm. In [7], the OME algorithm successfully learned the
number and parameters of multidimensional vowel categories.
The model used training data from the speech of Japanese- and
English-speaking mothers to their children. OME attempted to
learn four vowel categories from either language and was suc-
cessful in most cases. However, successfully learning vowel cat-
egories does not imply the algorithm successfully captures un-
supervised category learning performance of human learners. In
this paper, we address this issue by comparing the OME model
to several findings on both the time course and the outcome of
learning from the human learning literature.

We begin by addressing a key qualitative feature of human
learning, seen in both supervised and unsupervised learning
situations: category learning is often marked by changes in dis-
crimination. There is evidence that learning leads to improved
discrimination across category boundaries (acquired distinc-
tiveness) [5], [9], [10] and decreased discrimination within
category boundaries (acquired similarity) [4], [11], terms from
[9]. In our first simulation, OME showed these effects and
thus captures two important aspects of the learning as seen in
human subjects. This is consistent with past modeling work. In
a related gradient ascent model formulated for one-dimensional
stimuli, McMurray et al. [12] found both acquired distinctive-
ness and acquired similarity.

After replicating this basic effect, we apply OME to two
other results from studies of unsupervised category learning in
humans. First, we find that acoustically more distinct vowels
acquire distinctiveness faster, consistent with [13]. Secondly,
we apply OME to an unsupervised visual category learning
task where both the time course and outcomes of learning
were investigated [6]. We find that OME captures the subjects’
gradual learning of the categories. Furthermore, we show OME
can also model the reaction time of categorization judgements,
accounting for an edge effect where a previous model failed [6].

II. THE ONLINE MIXTURE ESTIMATION MODEL

The OME algorithm treats categories as multivariate
Gaussian distributions and gradually estimates the category
structure from a sequence of stimuli. The model is initialized
with many (50 or more) initial guess categories randomly
spread over the input space. After learning is complete, the
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Fig. 1. OME learning stimuli in two-dimensional space. OME is initialized
with many guess categories spread over input space (gray ovals), with equal
mixing probabilities (grid of black circles). Learning involves presenting the
stimuli (black dots) one by one and updating the categories. After learning, un-
needed guess categories have mixing probabilities near zero (open circles in
grid), and OME has fit the remaining guess categories to the stimulus clusters.
(Reprinted with permission from [7]; copyright National Academy of Sciences,
2007.)

model proposes both the number of categories and their param-
eters (Fig. 1).

Learning occurs online, such that the model parameters are
updated for every stimulus item . When an item is pre-
sented, the first step is to implicitly categorize that item. This is
accomplished by calculating the posterior probability
for each category with Bayes’ rule, which we refer to as the
responsibility of category Resp for stimulus

Resp
mix

mix
(1)

In this calculation, is the likelihood associated with the
Gaussian category . The mixing probability mix (also denoted
as ) denotes the probability that contributes a random
token to the stimulus sequence.

Now that the category responsibilities are calculated, the pa-
rameters of the model are updated. Each category is parame-
terized by a mean , a covariance matrix , and the mixing
probability mix . For each category , and are adjusted
with a local update rule to better account for the stimulus ,
with the update size proportional to the responsibility
and a learning rate. In contrast, mix is updated in a winner-
takes-all fashion, where the winning category has the largest re-
sponsibility for . For a precise description of the OME algo-
rithm, see Appendix A.

The winner-takes-all update of mixing probability has been
found to encourage competition amongst the categories and
more effective learning. In a related gradient ascent model
[12], which we discuss further in the next section, graded
updates in mixing probability across the categories cause
poor convergence to the correct number of categories. While
the model could be using a distributed representation of the
stimulus density, McMurray et al. found that the fit was not
good [12]. If the mixing probabilities are never updated and
all guess categories maintain equal weight, we have found in
unreported explorations that the algorithm does not represent
the stimulus density well. Alternatively, if and are
updated only for the winning category (a fully winner-takes-all
model), unreported simulations show that the model failed to
learn vowel categories as successfully when compared with [7].

We also extend OME to account for discrimination behaviors,
defining pairwise discrimination as

Discrimination (2)

which is the Euclidean distance between the responsibility vec-
tors for two stimuli and (the same approach was taken in
[12]). If two stimuli are likely to be categorized as the same, they
are hard to discriminate. If two stimuli are likely to be catego-
rized as different, they are easy to discriminate. Thus, discrimi-
nation is defined as a function of categorization, determined by
the current category representations during learning.

III. RELATIONSHIP TO PAST WORK

Our primary aim is to investigate whether OME captures
qualitative aspects of the human learning data, since our past
work has only evaluated whether OME could solve the required
learning problem [7]. While OME was specifically applied to
learning vowel categories, more generally, OME fits a mixture
of Gaussians to a set of stimuli. Other approaches to this
problem exist. For instance, de Boer and Kuhl [14] used EM
to learn vowel categories, which is a standard algorithm for
fitting a mixture of Gaussians. Both OME and EM can solve the
required learning problem and have been specifically applied
to learning vowel categories. To further evaluate their plausi-
bility as cognitive models, comparing the models to human
performance is a natural next step.

A priori, there are reasons to recommend OME as a candi-
date for modeling the human learning process. OME learns the
number of categories from the data—this does not need to be
prespecified. Furthermore, OME learns online, updating after
each stimulus. In contrast, EM as used in [14] repeatedly cycles
through the data, and the number of categories is specified in
advance. We agree with others who have argued that repeatedly
cycling through a data set is not cognitively plausible, and in the
tasks we consider, the number of categories is not provided to
the learner in advance [14].

There are other approaches, such as stochastic gradient as-
cent, that fulfill these desirable properties. In fact, OME is re-
lated to maximum likelihood estimation by stochastic gradient
ascent. Working independently from our group, McMurray et
al. [12] formulated a model for one-dimensional stimuli, de-
riving gradient ascent updates for the category means, variances,
and mixing probabilities. After modifying the model for winner-
takes-all mixing probability updates, their model and OME are
closely related. For one-dimensional stimuli, the mean and vari-
ance updates are roughly the same, except that with gradient as-
cent, the current variance of a category affects the magnitude of
the updates (see Appendix B for details). While the authors de-
rived the model for only one-dimensional stimuli, it could pre-
sumably be derived in the general multidimensional case. Fur-
ther work is needed to see if these two models make different
quantitative predictions. Currently, we see them as sharing the
same critical properties: unsupervised learning, online updating,
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TABLE I
TRAINING FREQUENCIES USED IN EXPERIMENT 1

estimating the number of categories from data, and enforcing
competition amongst the categories.

There are other models that also fulfill these desired proper-
ties, such as the rational model of categorization (RMC) [2] and
SUSTAIN [3]. While this paper does not attempt to discrimi-
nate between these alternative approaches, we discuss this as a
future direction in Section VII.

IV. EXPERIMENT 1: LEARNING ONE VERSUS TWO CATEGORIES

Changes in discrimination can be used to investigate the cate-
gory learning process. In this first experiment, we looked at two
central effects: acquired distinctiveness (improving discrimina-
tion across category boundaries [5], [9], [10]) and acquired sim-
ilarity (declining discrimination within category boundaries [4],
[11]). In McMurray et al.’s related model [12], both effects were
found when learning the bimodal voice onset time distribution in
English. Experiment 1 serves to replicate this result with OME,
specifically addressing the task and findings of an experiment
by Maye et al. [15] investigating learning from speech sounds
presented to infants.

In the infant study [15], the authors sensitized six- and eight-
month-old infants to a continuum of unaspirated coronal stops
ranging from a [da]-like sound to a more [ta]-like sound, which
is a contrast infants of this age have been found to discrimi-
nate without sensitization [16]. The continuum in the experi-
ment was drawn from either a unimodal or a bimodal distribu-
tion for each infant (Table I), and the authors hypothesized that
the infants would form either a one-category or a two-category
representation, respectively. From this hypothesis and from the
principles of acquired distinctiveness and acquired similarity,
they predicted that infants exposed to the bimodal distribution
would show better discrimination on the contrast than those ex-
posed to the unimodal distribution.

Post-sensitization testing confirmed their prediction. Infants
in both sensitization groups received two types of test trials: al-
ternating (a string of eight stimuli alternating between the end-
point tokens 1 and 8 in Table I) and nonalternating (a string of
eight identical tokens). Infants sensitized to the bimodal distri-
bution showed a significant difference in looking time between
the test trial types, while infants sensitized to the unimodal dis-
tribution did not. This indicates that infants in the bimodal con-
dition were sensitive to the contrast, and those in the unimodal
condition were less sensitive to it.

For the model, we trained OME on either the unimodal or bi-
modal distribution used in the study (Table I). If OME shows ac-
quired distinctiveness, exposure to the bimodal distribution will
increase discrimination of the speech contrast over the course
of learning. If OME also shows acquired similarity, exposure to
the unimodal distribution will decrease discrimination over the
course of learning.

Fig. 2. Time course of [da]-[ta] discrimination for the two distributions aver-
aged over runs. A bimodal stimulus distribution causes an increase in discrimi-
nation over time (gray line), while a unimodal distribution causes a decrease in
discrimination over time (black line). The error bars are standard error.

A. Model

Both the infants and model were presented with 64 stimulus
tokens. The stimuli presented to the model were simply the
values one through eight, presented in random order. To sim-
ulate multiple subjects, 24 models with different random ini-
tializations were run for each distribution. The parameters used
to initialize the model are listed in Appendix C and Table III.
The category centers and standard deviations were initialized
randomly so that the structure of the actual data was not antic-
ipated. Using the discrimination metric from (2), we measured
discrimination of the [da]-[ta] continuum endpoints (one versus
eight) as training progressed.

B. Results

OME was largely successful at finding the correct structure,
although six models trained on the bimodal distribution formed
only a single category (whether a subset of human participants
likewise failed to discover two categories in this condition is
not known). After learning, models trained on the bimodal dis-
tribution showed significantly better discrimination than those
trained on the unimodal distribution .
When compared before and after training, models exposed to
the bimodal distribution increased in discrimination

, and those exposed to the unimodal distribution
decreased in discrimination . The time
course of discrimination is plotted in Fig. 2.

The model accounts for two aspects of the infant data. First,
when comparing the two distributions, both infants and the
model exposed to the bimodal stimuli showed better discrim-
ination. Secondly, the infants who were familiarized to the
unimodal distribution did not significantly discriminate the
endpoints in [15], although a past study has shown infants of
this age can make this discrimination [16]. Thus, the unimodal
distribution likely caused a reduction in discrimination. The
OME model shows this reduction. By accounting for the data,
OME shows how the learning process could occur—through
small, online updates to the category structure as the infant
receives speech tokens.

More generally, OME demonstrates acquired distinctiveness
and similarity effects. This was originally shown in the Mc-
Murray et al. [12] model, and thus OME replicates the effects.
Both effects have empirical evidence from supervised and
unsupervised category learning in various modalities [4], [5],
[9]–[11] and follow naturally from the modeling framework.
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Fig. 3. Vowel categories estimated from Sabourin [13] and converted to the
Bark scale. The 1000 gray points are a random draw, and the black circles are
the categories OME found, plotted 1 standard deviation along each principal
axis.

Acquired distinctiveness is demonstrated by the gray line in
Fig. 2. As the model forms two categories, discrimination of
the contrast increases. This is because some guess categories
may overlap with both sides of the contrast initially until two
nonoverlapping categories dominate. Acquired similarity is
demonstrated by the black line. A single category provides no
discrimination with our metric, so the initial random configu-
ration supports better discrimination. Interestingly, the model
predicts an initial increase in within-category discrimination
before the eventual decrease.

V. EXPERIMENT 2: MORE WIDELY SEPARATED CATEGORIES

ACQUIRE DISTINCTIVENESS FASTER

We next consider the effect of the spacing of stimulus clus-
ters on unsupervised category learning. A study by Sabourin et
al. [13] addressed this and found better discrimination of more
widely separated clusters compared to clusters placed closer to-
gether. Here we show that OME also shows this same effect.

We model Sabourin et al.’s [13] study that tested
eight-month-old English monolinguals on their ability to
discriminate vowels /e/ versus /I/ and /e/ versus /E/ (Fig. 3).
The vowels were presented in a /tVb/ frame, and infants were
initially habituated to the stimulus /teb/. Each infant was
then tested on one of the possible discriminations. Test trails
consisted of Same trials (new instances of /teb/) or Different
trials (instances of either /tIb/ or /tEb/). The infants showed no
behavioral evidence of discriminating the closer vowels (/e/
versus /I/) and only weak support for /e/ versus /E/. Further
investigation using event-related potentials indicate some sen-
sitivity to both contrasts, with greater sensitivity to /e/ versus
/E/ than /e/ versus /I/.

We present a simulation of learning in OME that can account
for these findings. In this experiment, we trained the model on
points drawn from these three vowel categories (Fig. 3) and
tracked discrimination between the categories. The stimuli were
treated as points in a two-dimensional auditory space, corre-
sponding to F1 and F2 space. We would expect discrimination
to increase faster between /e/ versus /E/ than /e/ versus /I/. If the
initial guess categories are wide enough to spread across two
vowels, they might provide similar responsibilities to tokens of
neighboring vowels, contributing little to discrimination. How-
ever, these wide categories may aid discrimination between fur-
ther apart categories.

Fig. 4. This figure plots perceptual distance across training, averaged over ten
runs. The largest standard error, if shown, would be 0.036. In the legend, the
first three lines illustrate increasing discrimination between vowels and the last
three lines show decreasing discrimination within vowels. The more distinct /e/
versus /E/ contrast differentiates first.

The OME model was trained ten different times with different
draws from the vowel stimuli (Fig. 3). See Appendix D for de-
tails on generating the vowel stimuli and Appendix C (Table III)
for the model parameters.

A. Results

To calculate discrimination between two categories rather
than two stimuli as in (2), we simply drew 50 additional test
points from each vowel before training. Then we define the
perceptual distance between two categories as the mean pair-
wise discrimination between the test points of those categories
(with the first test point from each category paired, the second
paired, and so on). We use the analogous method of pairing
test points within a category to measure perceptual distance
within a category. Thus, acquired distinctiveness is increasing
perceptual distance between categories, and acquired similarity
is decreasing perceptual distance within categories.

OME learned three vowel categories in all ten runs. As in
Experiment 1, the model showed acquired distinctiveness and
similarity (Fig. 4). Thus these basic effects are also found when
learning multidimensional categories. We also found that the
model’s discrimination of vowels is affected by acoustic dis-
tance (Fig. 4). In particular, the perceptual distance between
vowels /e/ versus /E/ grew significantly faster than /e/ versus
/I/, accounting for the result in [13].1 In OME, further apart cat-
egories differentiate faster, consistent with the infant data.

VI. EXPERIMENT 3: VISUAL CATEGORY LEARNING

In the past two experiments, discrimination changed with
training, consistent with empirical findings. However, OME has
not yet been compared to experimental data where performance
was evaluated at multiple points throughout learning. In the
next experiment, we modeled data from an unsupervised visual
categorization task that provides data from multiple time points.

1To check the significance of the faster growth, we fit a damped exponential
curve to each distance trajectory separately for the ten runs: ���� � ��� �
� �. Parameter � corresponds roughly to “rate of increase,” where a larger
value is a faster increase. Thus, we take � as an approximation for how fast two
vowels differentiate. By this measure, /e/ versus /E/ differentiates significantly
faster, ���� � ����� 	 
 ����.
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While previous modeling with OME has been auditory, OME’s
principles can also be applied to visual category learning: un-
supervised learning and online updating, without specification
of the number of categories.

OME was applied to Rosenthal et al.’s [6] unsupervised cate-
gorization task, where subjects categorized simple, one-dimen-
sional visual stimuli. Subjects saw a sequence of vertical stripes
with varying width, and they were informed “only that they
would see stimuli of one or more kinds and should classify them
accordingly,” with eight keys available for responses. The stim-
ulus width was drawn from a frequency distribution with several
Gaussian peaks [three peaks, four peaks, or a uniform distribu-
tion with no peaks; these distributions are illustrated as the black
curves in Fig. 5(a)]. Learning was divided into four sessions,
and learning progress was evaluated at the end of each session.
While subjects’ post-test frequency evaluations did not match
the actual frequency, their categorical decisions were nonethe-
less influenced by the stimulus frequency; subjects placed cate-
gory centers near stripe widths that appeared most frequently.

To account for this implicit learning, Rosenthal et al. pro-
posed a self-organizing neural network model utilizing Heb-
bian learning. While the neural network model accounts for the
gradual organization of category structure, it makes a wrong pre-
diction using their model network’s settling time as a measure
of reaction time (RT). Subjects showed lower RT for extreme
stimuli (extremely narrow or wide) than for peak stimuli, while
the Rosenthal et al. model showed the opposite. In this exper-
iment, we show that the OME algorithm can account for this
aspect of the data.

This unsupervised learning experiment is a much stronger test
of the adequacy of the OME approach, due to (a) a compar-
ison of learning three versus four categories, (b) observation of
learning performance session by session, and the additional (c)
availability of RT data. Each of these aspects provides a novel
test for OME compared with the previous two experiments.

A. Model

OME was trained for 4096 trials, as were subjects. There were
20 replications for each condition (three-peak, four-peak, and
uniform) with different random stimulus sequences and starting
guess categories. Rosenthal et al. [6] allowed the stripe width
to vary from one to 512 pixels, divided into 36 sample bins.
The model stimuli were integers from one to 36 drawn from
the same distributions, then perturbed by Gaussian noise with
standard deviation 2.3 before training OME. See Appendix C
(Table III) for the model parameters. Subjects were shown 256
trials that preceded the main experiment to acquaint them with
the task and distribution. Subjects pressed the same key in these
trials. The model was given an analogous 256 trials before data
was recorded.

B. Results

Both the OME model and human subjects organized their
category structures based on the distributional properties of the
stimuli. Learning was separated into four sessions in the exper-
iment, consisting of 1024 trials each. OME’s performance was
evaluated in the last session and throughout the sessions. Fig. 5
displays the behavior and model side by side.

Evaluated at the end of learning, OME and subjects learned
similar category structures. During the fourth session (last
quarter of training), the subjects and model showed a clear
tendency to organize category centers near peak frequencies
and category boundaries between peak frequencies. As seen in
Fig. 5(a), both subjects and models exposed to the three-peak
distribution learned category centers around those peaks, and
likewise for the four-peak distribution. Boundaries were learned
between peaks. For subjects and models exposed to the uniform
distribution, the learned structure was more arbitrary. Note that
the subjects tended to place extra categories at the extremes of
the stimulus range while OME did not. See Appendix E for
details on calculating the centers and boundaries. The number
of classes found varied across subjects (SD for the fourth
session in each condition) and also across different runs of the
model (SD ), though there was more variability across
subjects than across runs of the model.

RT was also evaluated at the end of learning. Previous sim-
ulations with OME have only evaluated the category structure
learned and discrimination, so RT provides a novel test for
OME. OME’s performance in strikingly similar to the behavior.
To simulate RT in the model for a stimulus, we took the largest
guess category responsibility [ calculated in (1)] minus
the second largest (best minus next), which is a measure of
confidence and is thus inversely related to RT. The confidence
score was fit to the subject RT data with linear regression.
If one guess category was clearly the most responsible for a
stimulus, the responsibility difference is large (confidence is
large) and RT is small. If two guess categories were similarly
responsible, the responsibility difference is small and the RT is
large. Fig. 5(b) compares RT in the subjects and the model for
the fourth session, finding a clear tendency for longer RT near
the midpoint between the category centers.

Interestingly, Rosenthal et al. [6] found that stimuli near the
edges of the range (very narrow or wide lines) were categorized
faster (particularly for the four-peak and uniform cases). Rosen-
thal et al.’s neural network model of the task makes the opposite
prediction using settling time as a measure of RT. The model is
a layer of fully interconnected units utilizing Hebbian learning,
where a stimulus excites consecutive neurons in up to 1/3 of the
network. When presented with a peaked stimulus distribution,
the network forms an attractor for each peak. When stimulus set-
tling time is interpreted as RT, extreme stimuli (like boundary
stimuli) take considerable time to settle into an attractor. This
leads the Rosenthal et al. model to make the wrong prediction
[Fig. 5(b)].

OME makes the correct prediction regarding this effect
[Fig. 5(b)]. The guess category situated closest to the edge
of the stimulus space would have nearly all the responsibility
for extreme stimuli near that edge. This category will have
little competition for these extreme stimuli, producing a small
“second largest category responsibility” and consequently a
low simulated RT. Because of this, OME accounts for the edge
effect.

Rosenthal et al. [6] also investigated the time course of cat-
egorization. In Fig. 5(c), the histogram displayed in Fig. 5(a)
was calculated for each of the four sessions and averaged across
multiple peaks (edge stimuli were removed for consistency with

Authorized licensed use limited to: Stanford University. Downloaded on June 29, 2009 at 19:33 from IEEE Xplore.  Restrictions apply.



40 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 1, MAY 2009

Fig. 5. All figures labeled “behavior” use subject data from an experiment in [6]. (The image under “Rosenthal model” is reprinted with permission from [6],
copyright National Academy of Sciences, 2001.) Note that some bars in this figure extend beyond 60%. (a) For the fourth session, this figure shows the histogram of
center and boundary locations for the subjects and the model. The bars on the histogram represent the percent of subjects (or model runs in the case of OME) having
a center or boundary in that stimulus bin. The �-axis denotes the width of the stripes, with the stimulus frequency distribution illustrated by the black curve. (b) For
the fourth session, this figure shows RT for the behavior and OME, averaged across subjects (or runs). The right column shows convergence time of the Rosenthal
model, which increases at the edges where the behavior and OME do not. The error bars are standard error for the behavior and standard deviation for the models
for consistency with [6]. OME RT was fit with linear regression with parameters (three-peak, four-peak, uniform): RT � ����� �����RT � ����� �	�� ,
and RT � 
����
	� . (c) For all four sessions, this figure shows the histogram of center and boundary locations, averaged across peaks. Thus, the bars represent
average percent of subjects having a center/boundary within a certain distance from a distribution peak. Error bars are standard deviation.

[6]). This plot illustrates how learning evolved across sessions.
As with the subjects, the model’s centers and boundaries were
increasingly influenced by the stimulus distribution as the ses-
sions progress. A particular feature of the behavioral data is that
the three-peak distribution is learned faster, evident in both the
centers and boundaries. OME also shows this effect, which is
related to the noise parameter in the model. Since the categories
are better separated in the three-peak distribution, high noise in
the stimuli hinders learning more dramatically in the four-peak
distribution. Although the model shows this effect, the fit to the
details of the time course data is not perfect; the subjects reach
near asymptotic performance levels relatively quickly, while the
model improves more gradually over sessions.

The behavior of OME is not independent of its free param-
eters, although OME accounts for the basic effects in this sim-
ulation across a substantial range. A particularly important pa-
rameter is the initial width standard deviation (s.d.) of the guess
categories. If the width is too large, such that all 100 initial
categories begin with an s.d. of five or larger (where the total
stimulus range was 35), OME incorrectly merges categories. In
the presented results, the initial s.d. of each guess category was
picked randomly from 0.97 to 48.5 (Table III). Since the initial

categories can vary widely in width, and many are too large to
be viable, both the number and initial placement of viable cate-
gories are random. With these parameters, the model often, but
not always, recovers the correct category structure. We find this
best approximates the aggregate behavioral results.

OME is a particularly good model of unsupervised catego-
rization when stimuli are drawn from a Gaussian mixture. As
with the subjects, the inferred center and boundary locations
were influenced by the distribution frequencies, with the in-
fluence evolving over training time. Furthermore, as with the
subjects’ RT, it seems natural that OME would be more certain
about a categorization query for peak and edge stimuli.

VII. GENERAL DISCUSSION

Categorization is essential to perception, and much of percep-
tual category learning is unsupervised. How can category struc-
ture be learned from just a sequence of stimuli? The OME algo-
rithm [7] has provided some progress, showing that the number
and parameters of vowel categories can be learned through on-
line updating. However, showing the algorithm can solve the
required learning problem [7] does not show the algorithm is a
model of the process as it occurs in human learners.
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From this work, there are several results to recommend OME
as a model of human category learning. In both Experiments
1 and 2, discrimination between vowels increased over time
(acquired distinctiveness) and discrimination within vowels de-
creased over time (acquired similarity); both effects have em-
pirical evidence from various modalities and follow naturally
from the modeling framework. To further investigate how dis-
crimination develops over time in Experiment 2, we found that
OME acquired distinctiveness faster for more acoustically dis-
similar vowels, consistent with infant data [13]. Experiment 3
provided the strongest test of OME, due to a comparison of three
versus four categories, observation of learning performance ses-
sion by session, and the availability of RT data. OME provided
an account for this rich array of data, including an edge effect
in RT that a previous model failed to show. OME’s success
demonstrates that the same principles governing auditory cat-
egory learning in the model can be applied to visual category
learning.

A. Advantages of OME

More generally, OME provides an elegant solution to the
problems of 1) scalability, 2) revisability, and 3) cross-modal
fusion in category learning. Regarding scalability, OME’s com-
putational complexity is with training examples,

initial guess categories, and stimulus dimensions. Speed is
independent of the number of actual categories and is strictly
linear in the number of training examples, using each one in
turn to provide a gradually evolving estimate of the category
structure in the training data. Speed can be further improved by
deleting guess categories with low probability during learning.
Furthermore, with high-dimensional data, a restriction to guess
categories with diagonal covariance matrices reduces the com-
plexity to .

Although not shown in the simulations we have presented
here, the model is able to revise its solution if presented with
a changing profile of category structure over the course of
learning. If a data category is removed from presentation,
OME’s corresponding guess category will progressively drop
in mixing probability. If a new data category is added during
learning, an unused guess category can be recruited, provided
these have not been eliminated during the learning process.

Furthermore, OME can learn cross-modal categories. Com-
bining auditory and visual dimensions, such as speech and the
speaker’s mouth position, is entirely compatible with the ap-
proach.

OME can also be approximated by a nonparametric algorithm
“topographic OME” (TOME, from [7]) that moves closer to a
possible neurobiological interpretation and removes the strong
Gaussian constraint on categories. Instead of a Gaussian, a cat-
egory is represented nonparametrically by dividing the input
space into regions and estimating the proportion of inputs in
each region. This representation scheme has a “neural network”
interpretation: the proportions can be encoded as connection
weights between neuron-like units standing for small regions
of the input space and units standing for category representa-
tions. We refer interested readers to [7] for the details of this
algorithm.

B. Future Directions

Further research is needed to understand how people estimate
the number of stimulus clusters during unsupervised category
learning. OME takes a unique approach to solving this problem,
starting with an initial overabundance of guess categories. With
the exception of the related gradient ascent model [12], alterna-
tive models such as the RMC [2] and SUSTAIN [3] often start
with one guess category and add additional ones as necessary.
Future work will investigate whether this difference leads to dif-
ferent behavioral predictions.

What if the category learning problem is semisupervised
rather than unsupervised, where both labeled and unlabeled cat-
egory examples are presented as stimuli? This more accurately
describes many types of naturalistic learning problems such as
learning object categories. A further complication of labeled
feedback is that Gaussian categories are no longer a reasonable
simplification. For example, the visual category “boat” includes
both sailboats and motorboats, which is certainly bimodal
with regard to sail-related features. If labels are introduced,
very different types of categories can be learned. Can OME
be extended to semisupervised learning? By representing a
category label as an additional binary feature of each data point
[2], labeled categories can be represented across a collection of
Gaussians in OME. Future work will explore this approach.

Another interesting issue is how repeated stimulation affects
sensitivity. In [17], monkeys placed their fingers in contact with
a rotating disk in exchange for reward many times a day over
months. This repeated stimulation of the fingertips resulted in
shrinkage of receptive fields and expanded cortical area for the
stimulated surface, likely improving sensitivity in this region.
In contrast, repeated and concentrated stimulation in OME
would likely form a category, resulting in decreased sensitivity
due to acquired similarity. The issue here is empirical as well
as theoretical; it is not yet clear why some experiments show
increased sensitivity within regions densely populated by pre-
sented stimuli while others show decreased sensitivity within
such regions. We are examining whether modifications to OME
could produce the opposite behavior, potentially providing
insight into this question.

APPENDIX

A. Operation of OME

OME is initialized with Gaussian distributions, each pa-
rameterized by a mean , covariance matrix , and mixing
probability mix . The mixing probabilities mix are initialized
to be 1 , and each and is initialized randomly within
a certain range.

On each trial, the algorithm goes through six steps, summa-
rized as follows.

1) Get the input stimulus .
2) Calculate the likelihood of for each category multi-

plied by the prior probability mix .
3) Calculate the responsibility for each category .
4) Update the parameters for each category .
5) Update the mixing probability for winning category .
6) Ensure mixing probabilities sum to 1.
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TABLE II
OME VERSUS SGA

TABLE III
OME INITIALIZATION

Below, Resp is the responsibility of category for data point .

1: Get a data point
2: For mix
3: For Resp
4: For

Resp
Resp

5: Resp mix mix
6: For mix mix mix

B. Comparing OME to Stochastic Gradient Ascent

As described in Section III, OME is related to a model by
McMurray et al. [12] for one-dimensional stimuli derived by
stochastic gradient ascent (SGA). When compared with OME
in one dimension, the operation of the algorithms is largely the
same. The updates of the category means and variances are re-
lated, but not identical [Step 4) above]. Table II specifies the
difference in parameter updates. denotes the update to the
mean of category and the update to the one-dimensional
variance. Notice that in SGA, as the variance of a category in-
creases, the magnitude of the parameter updates decreases.

C. Initialization of Model Parameters

The parameters for each simulation are listed in Table III. The
initial guess category means and standard deviations are
randomly drawn from a uniform distribution in the range indi-
cated. The other parameters are as follows: is the number of
guess categories, is the learning rate for means and covariance
matrices, is the learning rate for mixing probability, and
guess categories that fall below a mixing probability of delete
are removed for efficiency. In Experiment 2, the categories were
initialized with no off-diagonal terms in the covariance matrix
as indicated for the dimensions F1 and F2. In the Experiment
3 row of the table, and is the standard deviation of a
peak in the three-peak frequency distribution (for comparison,
the s.d. of a four-peak is 1.46).

D. Vowel Stimuli for Experiment 2

We drew vowel data for /e/, /E/, and /I/ from Gaussian dis-
tributions to be learned by OME. The authors [13] provide the

means but not the standard deviations for the vowel categories,
so they were estimated as 1/3 the range along F1 and F2 with
no off-diagonal terms in the covariance matrix. With these es-
timated parameters, we drew a total of 1000 points with equal
probability from each vowel. The points were then converted
to the Bark scale (1 to 24, corresponding to the first 24 critical
bands of hearing). We ran ten simulations with different draws
for the vowel points and initial categories for OME.

E. Calculating Category Centers and
Boundaries in Experiment 3

Fig. 5(a)–(c) relies on the “centers” and “boundaries” of the
categories learned by subjects (or by OME) during the experi-
ment. For the subjects, these clearly must be inferred from the
category responses. While we could directly find the centers and
boundaries in OME by looking at the learned category parame-
ters, the procedure used for the subjects was followed for closer
comparison.

The procedure for calculation of centers and boundaries fol-
lowed [6]. First, the authors defined a sorting coherence func-
tion, for a particular subject, as the fraction of presen-
tations a stimulus in bin was classified as class . To sim-
ulate this measure in OME, we defined a classification for a
particular stimulus as the guess category with the highest re-
sponsibility (1). Then, calculating the sorting coherence func-
tion for a session is straightforward. Secondly, the center and
boundaries must be calculated for each category chosen for
classification in a particular session. The center was defined
as left boundary left boundary . The

location of the left (right) boundary was the last bin in which
, when starting at the leftmost (rightmost) bin and

moving towards the right (left). The edge bins were the bound-
aries for the edge categories [18].
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