
SFAmix: the sparse factor analysis model with a

mixture of sparse and dense components

Chuan Gao

December 2013

1 Compilation

SFAmix is written in C++. Both the source code and a compiled binary
executable are provided. SFAmix used the scientific library GSL, Eigen
and Boost, all three libraries need to be installed before compilation. To
compile, edit the Makefile file by changing the -L/ and -I/ line to your
linker and header file location, then in the terminal,
$ make

this generates the binary executable file: SFAmix. This binary only support
Linux for the moment.

2 Run SFAmix

SFAmix takes a tab or space delimited file of all numbers (strictly numbers,
no headers) as its input, and writes its estimates in a specified directory.
It uses the default value of a = b = c = d = e = f = 0.5 to recapitulate
the horseshoe, and a starting value of α = β = 1 for the mixing propor-
tion of the sparse and dense components. SFAmix infer the factor numbers
non-parametrically by shrinking a big starting value down. It evaluates con-
vergence by checking the number of nonzero values for the loading matrix,
and assume convergence if the number fixes for 200 iterations. It also writes
parameter values to a specified directory for every 200 iterations, so that
when the algorithms takes unbearably long, some intermediate values are
available.
To run SFAmix, issue the following command in terminal:
$ SFAmix --nf 20 --y your gene expression file --out dir result --sep

tab

where each argument is specified by a flag, more details about the flags are:

• --nf specifies the starting factor number, users should make it rea-
sonably big but not too big to burden the program.

1



• --y specifies the input file.

• --out specifies the output directory.

• --sep specifies the delimiter of the file, takes two values, ”space” or
”tab”.

The files that are written into the specified directory are:

• command.txt: a file that records the command that is given.

• LAM, THETA, DELTA, PHI, TAU, GAMMA, ETA: the MAP esti-
mates that correspond to the parameters in the model.

• Z: a 2×K matrix indicating whether a factor is dense or sparse. For
a factor, a top row value of 0 and bottom row value of 1 indicate that
it is sparse, vice versa. Because the expected value of this hidden
variable is used, a value in the range of [0, 1] is sometimes observed.

• EXX: the value of 〈XTX〉 = 〈X〉T 〈X〉+ p ∗ ΣX

• PSI: the diagonal values for the variance matrix Ψ

• itr: the iteration number the program is currently at.

• final: shows if the algorithm has converged, has value of ’done’ if it is
converged.

3 Simulations

A toy data has been provided, where a gene expression file of n = 200
samples and p = 500 genes is simulated. Files in the data directory are:

• Y: The gene expression file

• LAM sparse: Sparse loading matrix

• LAM dense: Dense loading matrix

• EX sparse: Sparse factor matrix

• EX dense: Dense factor matrix

To run SFAmix on the data
mkdir result

./SFAmix --nf 50 --y ./data/Y.txt --out result --sep tab

2



4 Speed

We have implemented a few tricks to speed up the algorithm. For the
provided toy data with a dimension of 200 samples and 500 genes (Ψ in this
case is 500 × 500), starting from a factor number of 50, on a 3 processor
Intel Xeon CPU 2.90GHz workstation, it takes ∼600 iterations to converge
in a matter of ∼8 seconds. If the statically compiled binary is used directly
on a different machie, the time may be slightly longer.

The time taken for the first few iterations is not in proportion to the
time taken for the later iterations, as the algorithm run, it shrunk the factor
numbers, so the algorithm gradually run faster.

3


