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1. Linear regression

1.1. Linear regression basics. Linear regression is a technique used for modeling data Y condi-
tioned on random variables X.
It is often used for data analysis or for prediction problems.
It can be very useful in understanding the relationship between a quantitative variable Y and
variable X.

We will look at data that are IID - Independent and Identically Distributed

Our data today will consist of:

x :

 x1
...
xp


y : scalar in <

• X is a vector of predictors for linear regression

• Y is a scalar response variable

• β is a scalar coefficient.

Our goal in linear regression is to estimate the coefficients, including a slope and an intercept,
describing the relationship between X and Y :

• β0 : intercept

• β1 : slope.

Augment the vector X with a 1 to include an intercept term β0 in the model.

Then we can model the linear regression as:

Y = β0 + β1x

= βT X̂,

where the second equation assumes the augmented X. An example system we might model with
linear regression is shown in Figure 1.

We project x∗ onto our coefficient line, and, in this framework, this yields the best guess for what
y∗ will be.
We’re going to assume, for the time being, that our Y variables are quantitative, which means that
they are in <, the reals. Y can represent a quantitative trait, including many different clinical
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2 Linear Regression

Figure 1. Example linear regression. x* is our predictor for y*. We see larger
values of x correlated to smaller values of y in this linear regression.

traits, such as gene expressions, heights, levels of iron in the blood, etc.
What does the linear regression look like with n samples of paired data D = {(x1, y1), . . . , (xn, yn)},
where each xi is now a vector of length p?

yi = β̂0 +

p∑
i=0

xi,j β̂j

What this means is that y is a function of the intercept, plus a scaled Y , or an affine transformation
of X. Y can also be represented as:

y = x̃Tβ

where

x̃ :


1
x1
...
xp


How can we judge the fit of a line? What makes two coefficients β different?

We must first talk about what a residual is.

1.2. Residual Sum of Squares. A residual is:

yi − xTi β̂

We can write ŷi = xTi β̂, where ŷi is the estimate of yi from our model.

The residual quantifies the distance between the prediction ŷi and the actual yi.
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Figure 2. How can we tell the difference between our red and blue linear regression
estimates (left panel)? (right panel) shows the residuals (in red) between the points
yi and the predictions ŷi.

Residual Sums of Squares (RSS) computes the the residuals across the n data points (squared):

RSS(β) =

n∑
i=0

(yi − xTi β̂)2

We can look at two possible coefficients β now, and compare them to find which one has a smaller
RSS(β). But this would not be very efficient, because we would have to search through a large
number of β terms. Instead, let’s optimize this function directly. In order to do this easily, we can
put a distribution on the residual term and use the maximum likelihood framework.

We can describe the distribution of the residuals in terms of a normal distribution:

yi = xTi β + εi

εi = N(o, σ2)

We assume that the error term, ε, is distributed as a Gaussian with mean 0, variance σ2. At each
point on the line, there is a Gaussian distribution describing how far a point yi is from our residual
line, representing our best estimate of yi. The conditional expectation of Y , then, is

E[Y |X,β] = βTX,

and the expected residual, under this statistical model, is zero:

E[Y − Ŷ |X,β] = 0.

In our prediction framework, then, given an estimate of β̂ and a new x∗, our best guess for y∗ would
be β̂Tx∗.

Now we have some terms we can use to explain why we call this a linear regression.
The expected value E[Y |X,β] of Y conditioned on X and β is a linear function of the parameters
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of the system. The function must be linear in the parameters. Some examples of linear functions
are:

β0 + βx2

or

β0 + β
1

x
but not

β0 + β2x

What about the term regression? Initially, Dalton measured the heights of fathers and sons. He
found that tall fathers tend to have tall sons, and short fathers tend to have short sons; however,
he also found that if a father was very tall, his son would be shorter, and a short father would have
a taller son. He called this phenomenon ’regression to the mean.’

Figure 3. The Gaussian distribution of X and Y pairs around our residual line
represented in red.

1.3. Estimating coefficients β. We can estimate β in two different ways, and both give the same
answer. The first way we can estimate is using linear algebra without consideration of the statistical
model. The system we solve to obtain a solution for β is:

arg min
β

(RSS(β)) = arg min
β

((Y −XTβ)T (Y −XTβ))

where

Y : vector of length n

X : n×p matrix

β : vector of length p
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We are using matrix notation for Y and X to include all of the data samples n, combining the
individual samples into a vector Y and a matrix X.

We can write out our function explicitly, and solve for β without much difficulty:

arg min
β

(RSS(β))) = Y TY − (Xβ)TY − Y TXβ + (Xβ)T (Xβ)

= Y TY − 2(Xβ)TY + (Xβ)T (Xβ)

= Y TY − 2Y TXβ + (Xβ)T (Xβ)

Now, we can take the derivative of the last term with respect to β, and set it equal to zero, and
then solve the system. This means we are solving for β by optimizing the residual sum of squares
for this system:

∂RSS(β)

∂β
= −2Y TX + 2XTXβ = 0

And solving this system rewards us with our much desired β:

β = (XTX)−1XTY : Normal Equations

This tells us that β is a function of xT y and accounts for xTx, an estimate of the covariance of x.
This can also be called ’ordinary least squares,’ and is the easiest way to solve the system when
the matrix XTX is invertable or nonsingular.
The other way to think about this problem is by working in the probabilistic setting where the
conditional distribution is normal. We can write out the data likelihood, then take the log of the
likelihood. Then we can take the derivative of the log likelihood with respect to β, set this to zero,
and then solve. We are afforded some advantages for working with the MLE system, one of which
is that we obtain an explicit definition for the variance of the system.

MLE : L(y|x, β) = −n
2

log2π − nlogσ −
n∑
i=1

(yi − xTi β)2

2σ2

We should recognize this as the likelihood of a normal y with a mean xTβ and a variance σ2.
Now we can take the derivative with respect to β. But only one term will survive because only one
term has a β to derivate.

∂L(y|x, β)

∂β
−→−

n∑
i=1

(yi − xTi β)

2σ2

This is just a scaled version of the residual sum of squares, RSS(β). This illustrates an implicit
assumption of a Gaussian residual when we minimize the RSS for the system.

We can also write the normal equations in vector notation:

β =

(
1

n

n∑
i=1

XiX
T

)−1(
1

n

n∑
i=1

XiYi

)

As mentioned above, we can get a definition for the variance of the system using the MLE method.
We assume that the data are homoscedastic, which means that they all have the same variance σ2.
Then we can write out the variance estimate based on the maximum likelihood estimates of the
variance for the normal distribution:

σ2 =
1

n

n∑
i=1

(
yi − xTt β

)
.
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1.4. Coefficient of Determination. The RSS is one way of determining how well the linear
regression model fits our data, but there are other metrics we can use to quantify this relationship
too. For example, we can use the coefficient of determination, generally denoted by r2, and bounded
between 0≤r2≤1.

r2 =

∑n
i=1

(
XT
i β − ȳ

)2∑n
i=1 (yi − ȳ)2

,

where ȳ = 1
n

∑n
i=1 yi is the mean of y. Here, the numerator quantifies the variance of our predictions

with respect to Y , and the denominator is the variation in Y . This statistic quantifies how much
variation in Y is accounted for in the estimation of Ŷ , or the proportion of the total variation in
the response that is explained by the fitted line. If r2 is near 1, that indicates that our line explains
the data well. An r2 value near 0 indicates that the model does not fit the data well, and it is not
likely that there is a linear relationship between X and Y .

Figure 4. In the data on the left, we should expect a fitted line to have an r2

value near 1 because the data is linear in nature. On the right hand side, we
wouldn’t expect a fitted line to explain the data very well. In both figures, the
x-axis represents X and the y-axis represents the corresponding Y .

What are the assumptions implied of this method of regression investigation?

• We assume that the n samples (xi, yi) are IID

• the p dimensions of X are independent

• The data are homoscedastic, which means that all points share the same σ2 value.

If X or Y are not independent, we can use Bayesian regression for linked parameters (coming up
in a few lectures). If the X dimensions are correlated, it is called coordinated or collinear. This is a
violation of the assumptions we need for ordinary least squares, but we can use one of the models
mentioned above for modeling this kind of data.
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1.5. Generalized Least Squares. This is a form of ordinary least squares in which the variance
term is modeled as σ2i . We obtain the matrix Σ.

Σ =

 σ21 0
. . .

0 σ2n


This changes our estimate for β to:

β̂ =
(
XTΣ−1X

)−1
XTΣ−1y

We assume that, in this case, we know our σ2 : σ21, . . . , σ
2
n. If we don’t know that, we can use

iterative updates to find β and the ’weights’ Σ.

1.6. Relative Impact of Nucleotide and Copy Number Variation on Gene Expression
Phenotypes [Stranger et al., 2007]. Up until this point, we have been thinking about linear
regression in the context of prediction of our responses y. This is a common usage of linear
regressions, but it isn’t the only one. In the paper, linear regression is used to establish a relationship
between two variables. First, let’s just have a simple review of how genes lead to observable traits.

Chromosomes −→ DNA −→ mRNA −→ Proteins

Genes are transcribed into mRNA, and then translated into proteins. Most of the functions in
the cell are performed in the proteins. Proteins can be used to identify traits in a subject, but this
is a difficult and expensive task at the moment. It is cheaper and easier to measure mRNA levels.
So, the hypothesis is that we could use mRNA to measure protein level differences in individuals.
In other words, we can look at mRNA to identfy gene expression.
V. E. Cheung, in the mid 2000’s, published an influential paper in Nature that posed the question:

Are there genetic variants in humans that are associated with the levels of mRNA in an individual?

eQTLs, or expression quantitative trait loci, are genetic variants that associated with levels of
mRNA. eQTLs influence a continuous observable trait; they are thought to be involve in regulation
of the translation of specific mRNA. One way of quantifying the association between a locus and a
gene expression trait is by quantifying the effect size, often denoted by β, the coefficient in linear
regression models. In the current study, large β values correlate with a large impact of a locus on
gene expressions levels, small β values indicate weaker impact of a locus on gene expression levels.
The linear regression model discussed in this paper is one that can be used to identify eQTLs.

The relationship investigated in this case was between gene expression values and SNPs (singular
nucleotide polymorphisms), or CNVs (copy number variants). SNPs refer to a difference in a single
nucleotide in the genome. CNVs refer to a natural variation in the number of copies of a genomic
segment. Insertions and deletions (often referred to as indels) refer to single or groups of nucleotides
being added into or deleted from the genetic code.
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A C A T
SNP −→ ↓

A A A T

SNPs tag for other polymorphisms. This means that there is a correlation between the causal SNP
and the identified, tag SNP. It has been estimated that on the order of 80% of common CNVs are
tagged by common SNPs, so SNPs can be used to identify CNVs with associations to the phenotype
of interest. SNPs only consider a single nucleotide, and genome-wide arrays can assay millions of
SNPs easily, which makes them easier to measure than CNVs directly.

When investigating genotype-phenotype associations, large sample sizes improve your statistical
power. In this study, 210 people provided genetic and gene expression information: 45 Han Chinese,
45 Japanese, 60 Nigerians, and 60 Europeans. Given these population groups, what might happen
if a single gene is expressed differently in each group? In sorting the gene expression values from
these data, we see gene expression levels often differ by population ancestry.

In this paper, the authors modeled each data set separately to avoid this problem. They could have
projected the gene expression data for each gene and each population to the quantiles of a normal
distribution, which would eliminate the differences in population-specific expression, but might be
too large a correction and eliminate some of the eQTL signals as well.

In this paper, they used r2 values to quantify possible associations. They identified how much of
the total variance of each gene was explained by a SNP. They chose the r2 threshold for gene-SNP
pairs that were called significant using permutations of their data.

The minor allele frequency (MAF) is the proportion of the minor allele copies in the population.
Allele is short for allelomorphs, which variants of a particular genetic locus, and in this case, there
are two possible nucleotide alleles for each SNP. MAF quantifies how rare the less frequent allele is
in the population, and it is quantified by MAF (B) = 1

2n

∑n
i=1 01(gi, AA)+11(gi, AB)+21(gi, BB),

where 1(gi, XX) is the indicator function that takes value 1 when the genotype for individual i is
XX, and zero otherwise.

Linkage disequilibrium (LD) is a way to consider the relationship between linked (or co-evolving)
SNPs. LD can be best explained using an example (Figure 7). Your grandparents DNA were
paired to form your parents’ DNA, and your parents DNA created you. The two strands of DNA
recombine in the parent to form half of the genome of the offspring. In this model, we can see
that segments of the genome that are close together are more likely to be from the same ancestor
than what a truly random distribution would predict (meaning: the two loci are independent).
This means that segments of the genome close together have a higher probability of coming from
the same ancestor than those that are far apart; correspondingly, their probability of occurring
together in a genome is not the product of their marginal frequencies in the population.

The additive assumption makes the claim that the distance between the means between {0, 1} are
the same as the distance between the means between {1, 2}. This is an important assumption to
take note of in this system, as it appears to be a commonly observed relationship between SNPs
and quantitative phenotypes.

There are other types of models of associations. In recessive associations, we see that the levels
of gene expression expected for genotypes with zero or one copies of the minor allele are expected
to be the same. We can encode the data with similar response as the same genotype to test for
an association in this framework. Similarly, we can consider the over-dominant model, where the
homozygotes (AA or BB) at a particular SNP have the same expected gene expression values, but
the heterozygotes (AB) have a different expected level of gene expression. It appears in the data
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Figure 5. Grandparents donate genetic information to parents, who in turn donate
genetic information to offspring. Genetic information is combined between parents
in offspring, with one half of each (autosomal) chromosome inhereted from each
grandparent. Areas in the chromosomes close to each other are more likely to come
from the same ancestor. Linkage disequilibrium is a measure of correlations in
nearby sites in a genome.

Figure 6. Genotypes are coded as SNP’s. The number on the X axis refers to
the number of copies of the minor allele. The height on the Y axis refers to the
response variable, gene expression. In this graph, we have a lot of collinearity
because individuals have 0, 1 or 2 copies of the minor allele (scattered a bit along
the x-axis in this plot to show the relationship). This graph would suggest a strong
correlation between number of copied minor alleles and gene expression. The β in
this case would be greater than 0, because there is a positive slope in the fitted line.

that people have looked at, that the additive association is much more prevalent in eQTLs than
any other model.
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Figure 7. This graph shares axes with Figure 5. In this graph, there is no as-
sociation between the minor allele copies and the gene expression. Increasing the
independent variable does not affect the dependent variable. The β here would be
approximately 0.

Figure 8. Here, we see an example of a recessive model, and an example of an
over-dominant model. On the left, entries 0 and 1 have been grouped together. On
the right, we could group entries 0 and 2 in the way 0 and 1 were on the left, which
would change the over-dominant model into a recessive one.
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