
btctrackr : Finding and Displaying Clusters in Bitcoin

Aaron Doll, Shaheed Chagani, Michael Kranch, and Vaidhyanath Murti
{adoll, schagani, mkranch, vmurti} @cs.princeton.edu

https://github.com/adoll/btctrackr

COS 598B Privacy
14 May 2014

Abstract

Bitcoin is the most widely known and accepted
of a rapid growing set of online, virtual crypto-
currencies. Many users are attracted to these
new crypto-currencies because they are decentral-
ized and are not controlled by any authority. They
are also adopting crypto-currencies because they
provide pseudonymity - an individual can make on-
line transactions with the virtual currency without
any direct link to their real world identity. Because
of this psuedonymity, many users believe they can
use crypto-currencies freely without any risk of their
transactions being traced back to their real iden-
tity; however, several recent papers on bitcoin trans-
actions increasingly demonstrate that this belief is
false. In fact, an individual’s spending habits may
be more easily tracked by an adversary due to the
public nature of the bitcoin transaction ledger, espe-
cially when compared to more commonly accepted
online payment methods like credit cards. Continu-
ing the work presented in “A Fistful of bitcoins” by
Meiklejohn et. al.[2], this paper revisits the heuris-
tics for identifying clusters, or the subset of bitcoin
addresses likely controlled by the same entity. We
then implement these heuristics in a real-time and
publicly available web service. This service helps
individuals identify their own linked clusters to in-
crease privacy as well as check the recipient’s ad-
dress cluster prior to making a transaction to avoid
addresses with possible links to theft or fraud.

1 Introduction

In this section, we present a brief overview of tech-
nical aspects of bitcoin. We then describe several
known methods of linking bitcoin addresses pre-
sented in previous work. Finally, we discuss issues
with these methods and the motivation for a real-
time heuristic utility.

1.1 Bitcoin

Bitcoin is an experimental, decentralized digital cur-
rency that uses peer-to-peer technology to operate
with no central authority. Bitcoins are sent from one
address to another with each user potentially hav-
ing many, many addresses. Each payment transac-
tion is cryptographically signed by the owner to pre-
vent illegitimate spending and then broadcast across
the peer-to-peer network to be included in the list
of previous transactions (more commonly known as
the block chain). Miners are special types of users
that participate in the network. Miners are respon-
sible for verifying the authenticity of an announced
transaction based on the previous transactions in
the block chain and including that transaction in
the next block (update) to the block chain. Once
a transaction is included in the block chain, that
transaction can not be altered or reversed.

In the bitcoin protocol, transactions are simply
a list of inputs with a corresponding list of trans-
actions as outputs. To generate an address, a user
creates a cryptographic key pair with a public and
private component. The bitcoin address is an al-
phanumeric representation of the hash of the pub-
lic key, while the private key is kept secret and is
used to sign transactions to verify their authentic-
ity. Each input is the hash of a previous transac-
tion, as well as an index into the outputs of that
transaction, and a script, which is a bitcoin specific
language used for verifying transactions. Each in-
put tuple of (transaction hash, index) is a unique
reference to an output of a previous transaction. In
order for a transaction to be valid, the sum of all
the inputs must be greater than or equal to the sum
of all the output address with the difference being
claimed by the miner (an optional small fee for pub-
lishing the transaction). Figure 1 shows an exam-
ple transaction where Alice pays Bob 12 BTC. This
example also shows Alice paying herself 2.9 bitcoin
into what is commonly called a change address and



Figure 1: Example Transaction

leaving a transaction fee of 0.1 BTC.

1.2 Address Clustering

We must first introduce some definitions to assist
in our discussion of bitcoin. In traditional banking,
account “control” is defined as the individual or set
of individuals that are authorized to access to that
account to transfer funds and initiate transactions.
In bitcoin, we similarly define control as individual
or set of individuals who can make transactions with
the address through possession the address’ private
key.1 Due to the nature of private keys, we also as-
sume that the individual(s) that control an address
will retain control of that address for life.

Another concept unique to crypto-currencies is
the concept of clustering. As referenced earlier, a
single individual or entity might control many bit-
coin addresses. The bitcoin protocol actually rec-
ommends using a new address as the outputs from
every transaction to increase user privacy, and the
majority of wallet applications 2 default to generat-
ing a new change address in every transaction. We
will use the term cluster to mean the group (sub-
set) of bitcoin addresses that are controlled by the
same individual. In Figure 1, Addresses A and B are
both inputs to a single transaction so we can infer
these addresses must both be controlled by the same
individual and, therefore, belong to the same clus-
ter. This observation leads to the very well-known
method of bitcoin clustering introduced in the orig-
inal bitcoin paper by Satoshi himself[3] and named
“Heuristic 1” in Meiklejohn et. al.’s paper[2],

There are several more advanced methods of clus-
tering. Another common method of clustering is to
predict the change address from a transaction and
cluster that with the inputs. In Figure 1, Address
D (the change address) is part of Alice’s cluster.
This heuristic is relatively fragile compared to the

1Refer to [2] for a more nuanced definition of cluster and
control.

2Wallets are bitcoin specific software systems designed to
help users manage their addresses and make transactions.

inputs heuristic, and aggressive implementations re-
quire large amounts of hand tuning to prevent false
positives. In the early blockchain, there was a bug
in the bitcoin implementation, causing change ad-
dresses to always be the first output in a transaction.
This allows such addresses to be added to clusters
with greater confidence and less hand tuning, but
due to time constraints we did not implement this
heuristic in btctrackr. Meiklejohn et. al also pre-
sented “Heuristic 2” as a attempt to predict the ran-
dom change address, but the heuristic required sig-
nificant human adjustment to avoid excessive false
positives.

1.3 Motivation

Users of bitcoin can benefit from a tool that clus-
ters addresses in many ways. First, users are able
to monitor addresses that can be linked to them; this
makes it easier for users to maintain their privacy.
Second, users are able to view the clusters of peo-
ple they wish to transact with which can help verify
the authenticity of the addresses they are transact-
ing with. Another tool for privacy protection is to
check if one of their addresses are linked to another
through a transaction between the two addresses’
respective clusters. Finally, users can monitor ad-
dresses of special interest in order to estimate the
total wealth of certain individuals or organizations
(For example, users might wish to monitor addresses
that are linked to bitcoin’s founder Satoshi). While
this may seem to harm the privacy of these individ-
uals, we feel that showing the potential for this kind
of discovery will raise awareness for the need to be
privacy conscious even when using bitcoin. There
are few public implementations of these functionali-
ties, but most of them are inaccessible to the average
bitcoin user, are slow, and as we discovered, some-
times inaccurate.

2 Related Work

The initial idea of clustering and identifying bitcoin
addresses has been around since the inception of the
protocol in the original bitcoin paper. As previously
referenced, there are also several published papers
on this topic and software implementations of these
heuristics. “A Fistful of Bitcoins” by Meiklejohn et
al[2] is the most notable of these papers. This work
goes into great detail on the methodology of clus-
tering heuristics and demonstrates the likability of
addresses to real-life identities; however, this paper
suffers from several issues. First, the results are not
parsable without human intervention and, therefore,
not in real time. In our discussion with Meiklejohn,
she mentioned that their algorithm originally linked

2



the majority of addresses into a single cluster and
required numerous hours of link deletion by hand
before achieving accurate results. As such, Meikle-
john et. al.’s software is not available for widespread
use.

Znort967’s Github block chain parser is another
very well known implementation of Heuristic 1[5].
While freely available, this implementation requires
a higher level of technical proficiency to build and
run. This code is also very slow: while using the
cluster module it takes over a half hour to parse the
block chain and over 20gb of virtual memory. It
builds an in memory graph which for every query
runs a depth first search to find connected compo-
nents. This software actually takes less time to parse
the block chain than ours, but that is because the
author trades initial computation time for addition-
ally computation during the queries. We decided
that while we could have adopted this approach, we
wanted user queries to be as fast as possible.

BitIodine [4] is a project out of the Politecnico
di Milano[4]. Spagnuolo recently published (March
2014) an additional front end web service similar to
our deployment described in this paper. The Bi-
tIodine parser was built on znort967’s code, and it
does implement some additional change heuristics;
however, his system also has several issues include
downtime for block updates, slow database return
calls and, most notably, a sometimes inaccurate im-
plementation of Heuristic 1. We suspect this is really
a bug in znort987’s parser, and we plan on contact-
ing Spagnuolo to help pinpoint the issue. Basically,
some transactions seem to be overlooked by the Bi-
tIodine clusters, which would be explained by the
parser failing to extract the address from some in-
puts, or the transaction being parsed incorrectly.

Despite there being several previously published
papers and applications on this topic, the lack of a
readily available, accurate, real-time application of
the bitcoin clustering algorithm is our motivation for
this project. Our system is a real-time implementa-
tion of the Heuristics in “A Fistful of Bitcoins”[2],
focusing on a clean implementation of Heuristic 1.

3 btctrackr

Our system is divided into three parts: a parser,
database and web frontend. We first discuss our
parser, built upon the existing libbitcoin library and
our implementation of cluster mapping. We then
present the design of our database focusing on avail-
ability and incremental updates. Finally, we will
present our front-end web service that handles user
requests, queries our database and displays results
to the user in an easy to use interface.

3.1 Parser

When designing our parser, we had two major de-
sign goals: we wanted a parser that was incremental,
allowing real time updates based on the most recent
blocks, and we also wanted to allow users to make
nearly instantaneous queries for any address. This
ruled out many of the approaches taken by others,
such as that taken by Spagnuolo[4] or Znort987[5].
Both of these approaches used graphs, where con-
nected components are computed on a graph when-
ever a user makes a query. We decided that this
was too slow, so we opted for a database-based ap-
proach, where we maintain a database that contains
an address-cluster-id mapping. Since blocks are re-
leased approximately every 10 minutes, this allows
us to make use of a relatively slow incremental up-
dater using a naive linked-list disjoint set implemen-
tation. We initially tried this approach for building
the database from the block chain, but we quickly
realized that this would simply be too slow. After
trying a few different data structures, we settled on
using a disjoint set maintained in memory, which we
wrote to the database after reaching the end of the
current chain. At that point we picked up with our
incremental, slower database updater, which would
keep our database up to date.

Initially, we were going to use a parser written by
znort987[5], but after reviewing the code we thought
it looked a little unreliable, and needed some signif-
icant changes to accomplish our goals. We started
exploring the different bitcoin libraries, and settled
on a C++ library called libbitcoin[1]. We primar-
ily chose this library because it looked like it had
some solid community support, while also provid-
ing some very useful examples and documentation
to help us get started. We were also attracted by
its asynchronous event based design. We have had
some difficulties due to our use of this library, but it
was adequate for implementing our core functional-
ity, with a few stumbling blocks along the way.

In order to find all addresses in a block, we iter-
ate through all transactions in the block. For any
transactions with more than one input, we attempt
to obtain all the input addresses used. This was
much harder than we expected, due to what we have
assumed to be some irregularities with earlier ver-
sions of the bitcoin protocol. In our description of a
bitcoin transaction, you may have noticed we made
no mention of the addresses of either inputs or out-
puts. That is because the address is actually con-
tained within the bitcoin script of each input or out-
put. While this seems to be always true for output
scripts, we discovered that relying on input scripts
containing the address resulted in numerous miss-

3



ing addresses, especially early in the block chain.
We aren’t sure whether this was a problem with
libbitcoin’s function for extracting addresses from
script or simply the fact it is in an ill-defined for-
mat, although we conjecture that this is due to a
lack of standardized scripts in the protocol at that
time. Fortunately there is another way to get the
address, since each input tuple (transaction hash,
index) uniquely defines an output point of a previ-
ous transaction, we can fetch that transaction and
extract the address from that output’s script.

This error was in fact related to our biggest prob-
lem with libbitcoin: when trying to expand our
core functionality, we ran into occasional correct-
ness problems. While adding balances for each ad-
dress, we discovered that some of libbitcoin’s func-
tions were simply wrong. We narrowed the problem
down to the fact that some addresses were missing
transactions, specifically spends, which led to mas-
sively inflated address balances. After further in-
vestigation, we discovered that the problem was the
same problem we had in the parser, extracting the
input addresses from the script was failing in one of
their core files for parsing the block chain, causing
these spends to be left out of queries for the history
of specific addresses. We fixed the problem in much
the same way as we did in our parser, but unfortu-
nately we found there are still transactions missing
for select addresses (although much fewer than be-
fore). While this doesn’t affect our core clustering
functionality, it does lead to problems when checking
for 1-hop paths between addresses, causing potential
false negatives. By the time we discovered this bug,
we had already downloaded the block chain again
in order to implement our simple fix (the problem
code runs as each block is added to the blockchain
database), so we didn’t have time to investigate fur-
ther causes of this bug.

Another disadvantage to libbitcoin we discovered
is that it is memory-hungry. If we tried to process
the whole blockchain at once (as encouraged by their
stateless, event-based asynchronous library), it con-
sumed an excessive amount of RAM. Instead, we
had to introduce state so that only 10,000 were pro-
cessed at once, which seems to run counter to the
ideas behind libbitcoin. We felt their library should
have some kind of limit on the number of blocks
open at once, and then it would simply queue your
requests, rather than silently choking yor system.

3.2 Database

After we decided to choose the database approach,
we were faced with the decision of choosing an effi-
cient and fast database. We settled on using MySQL

for two reasons: First, SQL databases are optimized
for queries which tied in well with our goal of pro-
viding a fast website. Second, MySQL was easy to
connect with both the backend and front-end of our
project. We used a simple schema that involved one
table with an address as the primary key and an
integer that represented the cluster. This set up
allowed us to easily insert address-cluster mappings
when they were computed by our parser and retrieve
the cluster for an address when it was requested by
our website. Using MySQL was not without its lim-
itations; it proved to be much slower than we ex-
pected while inserting into the database leading to
large build cycles. The database insert phase was
always the bottleneck in our development cycle, es-
pecially given the size of the block chain.

BitIodine, another implementation of this facil-
ity, described his setup with 4 separate databases.
One holds the block chain, another has the transac-
tion graph, another database contains the balances
and other features, and the final one for trades.
While this setup might provide more insight into
the block chain, we felt that adding more complex-
ity to our setup would result in a increased latency
to the website which conflicted with our initial de-
sign goals. To minimalize latency, we chose to use
just two databases, one fast and lightweight Lev-
elDB database (used by libbitcoin) to hold the block
chain and the MySQL database described above to
hold the clusters. We feel that this approach worked
well for our purposes while also providing flexibility
to add additional features if desired in the future.

3.3 Website

We designed our web interface with two main goals
in mind: we wanted to allow users to “track” an
address and view detailed information about it, such
as which other addresses likely belong to the same
entity. Also, we wanted to allow users to enter in
two addresses, and see if the clusters containing the
two addresses are linked by a transaction. We built
our website, www.btctrackr.com, with these goals in
mind, and emphasized a simple, clean, easy-to-use
design.

Upon visiting our website, the track feature is au-
tomatically loaded, in which a user can enter an ad-
dress and press “Track”. We send an AJAX request
to our server, which looks up the cluster id of the
address in our database, and then retrieves all of the
addresses corresponding to that cluster id. There
are a number of front-end and back-end checks in
place to ensure the user has a valid bitcoin address.
On the client side, we make sure the address is a
valid number of characters. On the server side, if

4



the address is not present in our database, we query
the blockr.io API to check if the address has ever ap-
peared in a transaction, whether or not it is valid.
If it is not valid, we alert our users accordingly.

We also wanted to display the current balance of
each of the addresses as well as the total balance of
the entire cluster. Due to problems with the libbit-
coin library, we chose to leverage the blockr.io API,
which has up-to-date balance information. Once
challenge we faced, however, is that querying a web
API is for several balances is way slower than query-
ing a local database. Some of our clusters have hun-
dreds or even thousands of addresses, and making
this many API calls would lead to a tremendous de-
lay in response time for the users. Our goal was to
make our interface as seamless and snappy as pos-
sible, so we spent time devising a solution to the
problem. The blockr.io API allows clients to get bal-
ance information for up to 20 addresses in one call,
so after retrieving all of the cluster addresses from
the database, we grouped them into sets of 20 or
less. Then, we utilized curl multi init() (through
the parallelcurl Github library) to send off all of
these API calls simultaneously, and process the re-
sults asynchronously. We found that we were able
to return results to the user way faster than if we
used any other method. For example, we are able
to return over 100 balances in less than 1 second.
However, we noticed that if we attempt to load the
balances of exceedingly large clusters (thousands of
addresses), the response from the server is slow, or
times out. The bottleneck here is that we need to
call the blockr.io API in order to retrieve balances,
and we can only do so in chunks of 20 addresses. We
are currently looking into devising a better solution
for displaying the balances of massive clusters. In
general, the user interface is very responsive, which
makes our tool easy to use.

The other main feature we implemented was to
allow users to enter in two addresses, and see if the
clusters containing those addresses are linked by a
1-hop path. Users can enter in a source address and
a destination address, and we fire off another AJAX
request to our server. On the back-end, we execute
a binary file that determines whether or not the two
addresses are linked by a 1-hop path. On the front-
end, we display the transaction hash in which an
address in the same cluster as the source address
transacts with an address in the same cluster as the
destination address. Additionally, we display the
two addresses that are part of the physical transac-
tion. All in all, this is a quick and easy tool that
allows users to find out if and how certain addresses
are connected.

4 Evaluation

Since there is no publicly available data on clusters
and it would not be feasible to manually find clus-
ters in the block chain, we decided to evaluate our
code by comparing it to BitIodine. To perform this
comparison, we chose 20 random addresses and ran
them through both our clustering tools. In this con-
text, the results are summarized in the table below.
We define a false positive as an address that should
not be in a cluster but is (ie all addresses are not
controlled by the same person), and a false negative
as an address that should be in a cluster but isn’t.
If an address was in BitIodine’s cluster but not ours,
or vice versa, we considered that a false negative.

Table 1: Evaluation of btctrackr and BitIodine
Tool False Negative

btctrackr 35.8%
BitIodine 54.2%

Because we do not have an established ground
truth, we cannot evaluate the false positive results
of these projects. However, we make the argument
that our implementation should not have false pos-
itives since the heuristic it uses is guaranteed to be
correct. By the definition of control over a cluster,
any entity that can sign a transaction with multiple
inputs necessarily controls the private keys of all the
inputs in that transaction. BitIodine on the other
hand implements a change heuristic that takes into
account a bug in the implementation of a popular
bitcoin client. While many users of bitcoin used this
client it was not 100% of the users. This means Bi-
tIodine might have classified a few of the addresses
incorrectly. If our heuristic doesn’t lead to false pos-
itives, then all that needs to be verified is that our
implementation of that heuristic is correct. In the
process of determining the ideal data structure for
parsing the block chain, we compared each of 3 inde-
pendent implementations and got the same results,
so we are fairly confident our implementation is cor-
rect.

With regards to the false negatives, there are
a few reasons why we could have them. First, at
the time of testing, we had only 200,000 blocks
downloaded and parsed while BitIodine had the
entire block chain. Also, due to the limitations of
libbitcoin, we were not able to parse multi-signature
transactions and other non-standard types of trans-
actions. Lastly, since we do not implement a change
heuristic, we miss some cluster mappings that Bi-
tIodine has. On the other hand, we conjecture that
BitIodine’s high false negative percentage is mainly

5



due to problems with their parser. This causes
transactions to be missed that could potentially
merge clusters that are others left disjoint. An
example of such a transaction is the following one:
a8ca4c0ba498fb5de54451b5c5b5c831535e510298c5a5
9b5fdb5b0cf86376fb. It appears as though BitIodine
ignores this transaction completely as it does not
merge the clusters of the addresses that are inputs
to this transaction. According to BitIodine the ad-
dress 15iGN5CAkTarcoY85XxwTYWajJyz5hxbYv
has 13 addresses in its cluster and the address
1EKpJjAcAEe4RL5Qey4wHgsXGFZUxnD72A has
926 addresses in its cluster. If Bitiodine was able
to merge this cluster and recursively merge clusters
for all transactions that it missed, it would be able
to grow its cluster significantly. At 200,000 parsed
blocks, these addresses were in a cluster of 13,289
addresses.

5 Conclusion and Future Work

Overall, we were pleased with the results of our ef-
forts, and created a relatively fast, incremental, and
easy to use web interface for the clustering heuristic.
That being said, there are a few problems with our
current project. First of all, balances and database
loads for large clusters are still slower than we’d like.
In order to help speed things up, we currently don’t
show the balances for clusters with more than 500
addresses in it.

Some of the limitations of our project are due to
our use of libbitcoin[1]. Libbitcoin does not support
multi-signature transactions as of yet, limiting the
transactions we include in our cluster calculations.
As we mentioned earlier, we have noticed some miss-
ing transactions, leading to potential false negatives
when we check for one hop links between clusters.
This may be a bigger problem than we originally
thought, but is something that will be fixed with a
patch to libbitcoin. We hope that this is related to
the earlier problem and primarily happens for early
addresses, but since we wouldn’t be able to update
our data at this point even if we do find the bug, we
have left this for a future date.

There are also a number of features that we sim-
ply couldn’t include due to time constraints. In “A
Fistful of Bitcoins”[2], the authors associate clus-
ters with entities and graph the largest entities. We
wanted to include the ability for users to submit
labels to addresses, hopefully mapping the bitcoin
network in detail, as well as including addresses that
we labeled ourselves. In our first conception of this
project, we also hoped to implement the change
address heuristic, but after speaking with Meikle-
john, we decided that was not a realistic goal for

a semester long project. Implementing a limited
change heuristic based on the bug in early bitcoin is
definitely possible, and something worth considering
for the future.

References

[1] Maersk, N., Strateman, P., Taaki, A., and
Williamson, R., “libbitcoin - Asynchronous C++
Bitcoin library”, GitHub Repository, 2013, http:

//libbitcoin.dyne.org/.

[2] Meiklejohn, S., Pomarole, M., Jordan, G.,
Levchenko, K., McCoy, D., Voelker, G. M., and
Savage, S., “A Fistful of Bitcoins: Character-
izing Payments Among Men with No Names,”
in Proceedings of the 2013 Internet Measure-
ment Conference, 2013, http://cseweb.ucsd.edu/

~smeiklejohn/files/imc13.pdf.

[3] Nakamoto, Satoshi, “Bitcoin: A Peer-to-Peer Elec-
tronic Cash System,” (2008) https://bitcoin.

org/bitcoin.pdf.

[4] Spagnuolo, Michele, “BitIodine: Extracting Intelli-
gence from the Bitcoin Network (Master’s Thesis),’
2013, https://bitiodine.net/.

[5] Znort987, “Block Parser”, GitHub Reposi-
tory, 2012, https://github.com/znort987/

blockparser.

6


