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Dear students, 
 
This document aims to give you a rough summary of our thoughts on this topic before we teach the class. 
There are points where we are not as precise as we would like to be, and there are places where the two of 
us don’t agree. This is to be expected for a topic that’s at the cutting edge of research, and we will be learning 
through this class along with you. Still, we hope this document gives you a sense of the goals and motiva-
tions of the class. 
 
Arvind Narayanan and Matt Salganik 
September 1, 2020 
 

 
 
 
Is everything predictable given enough data and powerful algorithms? Researchers and companies have 
made many optimistic claims about the ability to predict phenomena ranging from crimes to earthquakes 
using data-driven, statistical methods. These claims are widely believed by the public and policy makers. 
However, even a cursory review of the literature reveals that state-of-the-art predictive accuracies fall well 
short of expectations. 
 
This course aims to understand today’s limited predictive abilities by synthesizing the existing literature 
and augmenting it with hands-on activities. This will help us understand the present and predict the future 
of prediction. More specifically, will limits to prediction melt away as datasets get bigger and computa-
tional abilities improve, or are we seeing fundamental practical limits that will remain for the foreseeable 
future? 
 
These questions are interesting and important to social scientists, machine learning researchers, and policy 
makers, for many overlapping reasons. They pique our scientific interest and intellectual curiosity. They 
help us identify the types of problems or situations where machine learning techniques might be improved 
to provide better predictions. They guide policy makers on investing in AI research as a solution to thorny 
social problems. If we are entering a world where the future is predictable, we need to start preparing for 
the consequences, both good and bad. If, on the other hand, commercial claims are overhyped, we need 
the knowledge to push back effectively. 
 
1. Preliminaries 
 
The word prediction is often used loosely to refer to all applications of supervised machine learning. In 
contrast, our primary interest is in applications that involve predicting future events. The distinction is 
crucial: although deep neural networks have achieved breakthroughs in the last decade at many tasks such 
as object recognition, none of these tasks are true prediction problems, because they do not involve future 
events. 



 

If we model a natural phenomenon as a process by which some input state is transformed into some output 
state, we can hope to learn the transformation function from past examples using machine learning. This 
simplified description immediately suggests at least three limits to prediction:  

1. the possible nondeterminism of the universe (and, hence, phenomena of interest); 
2. limits to measuring input/output states accurately and collecting sufficiently many training exam-

ples; these are highly dependent on the nature of the system  
3. computational limits, whether hardware or algorithms. 

 
The metaphysical question of the determinism of the universe is out of scope for this course. We will also 
assume that hardware and algorithms don’t pose a serious limitation. We don’t offer a fully principled 
justification of this assumption but rather adopt it axiomatically. That enables us to focus our attention on 
what we subjectively consider to be more interesting research questions. In any event, when seeking to 
identify relatively hard limits, betting against Moore’s law or against the ingenuity of the ML community 
seems unwise. 
 
2. Hypotheses 
 
We now outline several concrete hypotheses for why limits to prediction arise. These are purely illustrative 
and not exhaustive, nor mutually exclusive. Our course goals will include testing some of these hypotheses, 
generating new hypotheses, and understanding how the nature of the system gives rise to these limits. 
 
H1: Sensitive dependence on inputs 
 
A butterfly’s wings, according to an aphorism, can trigger a tornado. Weather is notoriously a system in 
which arbitrarily small divergences in initial conditions tend to amplify over time. Thus, any fixed limit to 
the resolution of measurements implies a limit to predictive accuracy that gets more severe the farther out 
one wants to forecast. 
 
H2: Shocks 
 
Life trajectories are also sometimes upended by the kinds of inputs that seem likely to remain unmeasura-
ble for the foreseeable future: a lottery jackpot; an accident; a crime of passion committed in the heat of the 
moment; a college admission for which one just made the cut. What is unclear is how common these are in 
the typical life course and to what extent they limit predictability. 
 
H3: Accumulation and amplification of advantage 
 
There is a particular kind of sensitive dependence that is ubiquitous in society and is worth discussing 
separately: when success breeds further success. For example, in the markets for some cultural products 
such as books, movies, or music, success can lead to increased attention, which can lead to more success. 
This process means that small differences in initial success, even ones that were essentially random can be 
magnified over time, which makes prediction difficult. A similar process can also happen in reverse, 
whereby failure can lead to more failure. For example, a person can be evicted from their home, which 
could cause them to lose their job, which could lead to substance abuse and other problems. This accumu-
lation of disadvantage can magnify small differences or random fluctuations.  
 



 

H4: Unobserved or unobservable inputs 
 
One reason it’s difficult to predict who will get evicted is that landlords vary considerably in how aggres-
sively they will attempt to evict tenants. Thus, a dataset that tracked tenants thoroughly but not landlords 
will be limited in effectiveness. Perhaps surveillance of people’s activities will one day become so compre-
hensive that companies or governments will not be limited by unobserved attributes. The present reality, 
however, is that relevant attributes are often unavailable for prediction. 
 
Going further, imagine a premeditated crime, but one where the plans existed entirely in the minds of the 
perpetrator(s). As long as people’s thoughts remain inaccessible to predictive algorithms, that will impose 
limits to the predictability of some types of events. 
 
H5: The 8 billion problem 
 
Unobserved inputs are missing columns in a dataset. There is also the possibility that our data has too few 
rows, i.e., training samples. The more complex the phenomenon we are trying to model and predict, the 
more samples we need. Even as computing power and storage plummet in cost, we are fundamentally 
limited by the number of training instances that the real world can furnish us. Also, we are limited by the 
fact that in social settings, the mapping between the inputs and the outcomes might vary across societies. 
 
H6: Drift 
 
No real-world system or phenomenon is perfectly static over time. Yet the use of machine learning for 
prediction involves learning a relationship from past observations and applying it to future observations. 
This is not a problem if the task is to predict, say, which stars will go supernova, because the phenomenon 
does not change at human timescales. But for most problems of interest, the joint distribution of the pre-
dictors and the target changes -- drifts -- fast enough that predictive algorithms must explicitly account for 
it. When we build algorithms or models that explicitly account for drift, we call it a forecasting. In other 
words, forecasting is one approach to prediction problems. Note that while we adopt this terminology for 
our course, it is not universal. 
 
Drift is a notorious problem in applications such as epidemic forecasting. For example, influenza models 
built using pre-2020 data may need to be adjusted because people’s response to epidemics has been pro-
foundly altered due to the experience of covid-19. 
 
H7: Ill-conceived target variable 
 
Some target variables will be hard to predict because they are poorly measured or unstable. For example, 
imagine trying to predict a student’s performance on a math test. As the number of questions on the test 
increases, the measurement of math performance should happen with less error (assuming that it is a well-
designed test). However, we also hypothesize that there will be diminishing returns to improved measure-
ment and that predictive performance will plateau well below perfection.  
   
H8: Self-equilibration and strategic behavior 
 
In some systems, limits to prediction arise because of strategic behavior of participants. In the stock market, 
intelligent agents aim to incorporate all available information to act to maximize their profits, which has 



 

the effect of making it difficult to predict the future movement of stock prices. Many other systems may 
have a similar quality. For example, it has been argued that if an armed conflict can be seen coming, one of 
the sides will have the incentive to take steps to avoid it. Strategic behavior by political candidates, such as 
changing one’s platform to appeal to a broader swath of voters, could make elections difficult to predict.  
 
H9: Forward and inverse “prediction” 
 
Finally, here’s a heuristic to recognize tasks for which there may not be a strong limit to predictive accuracy. 
As we noted above, many so-called prediction tasks aren’t actually about predicting the future. Instead of 
thinking in terms of time, let’s imagine data-generating processes in nature. For a physical system such as 
weather, the data generating process is simply the evolving state of the system: the vector of observed 
variables at time t+1 is a function of the vector at time t plus noise. Social systems can also be thought of 
roughly similarly. Since noise accumulates over time, it’s harder and harder to predict states further out 
from observed states. 
 
For a task such as distinguishing between images of cats and dogs, what’s the “data generating process”? 
There’s no correct answer, but here’s an arguably useful one. Each species corresponds to a probability 
distribution over genotypes that is relatively stable over time, and nature “samples” individuals from this 
distribution. Then, there is a well-studied stochastic process by which genotypes are transformed into phe-
notypes. Finally, photography transforms 3-dimensional beings into 2-dimensional images. The “data gen-
erating” process is thus the composition of these three functions. 
 
The point of this seemingly convoluted exercise is simply: recognizing species from images is an “inverse” 
prediction problem. Given the output of the data generating process, the task is to predict the input. Since 
noise tends to accumulate in the forward direction, inverse prediction problems tend to be easier than for-
ward problems. For this particular task, there are many other ways to arrive at the same conclusion, such 
as the fact that humans can easily tell cats from dogs. But this heuristic can be applied to many other tasks 
for it is not intuitively obvious whether there are strong limits to prediction. 
 
3. Quantifying predictability: pitfalls and opportunities 
 
There is a long list of pitfalls in machine learning that may lead us to biased estimates — usually overesti-
mates — of predictive accuracy. Some but not all of these pitfalls are well known. Published research often 
falls into these traps and industrial applications even more so. Here we will briefly review some of them. 
The pervasiveness of these errors may explain some of the unfounded optimism about the capabilities of 
machine learning.  
 
We briefly review a few major pitfalls. Many of these are elaborated in David J. Hand’s paper “Classifier 
Technology and the Illusion of Progress” that we will read in week 1. 

● Problem uncertainty: there may be inherent arbitrariness in the class definition (in the hiring con-
text, who is a good employee?), or the way we define the task may not faithfully capture what we 
have in mind (we may use performance reviews to measure employee productivity). 

● Errors in class labels: even if classes can be clearly defined and labeled in theory, real-world data 
usually has errors. 



 

● Researcher degrees of freedom in task formulation: in a typical machine learning problem, there is 
a wide array of choices necessary to concretely formulate the task. (Example: image dimensions for 
an object recognition problem.) These choices greatly affect the accuracy that can be achieved. 

● Overfitting: textbook machine learning includes techniques to avoid overfitting to small training 
sets, but there are more subtle types of overfitting that are harder to avoid, including “human-in-
the-loop overfitting” and nonindependence of training samples. 

● Drift: the statistical relationship between the input variables and the target may change over time; 
this is particularly salient to us given our focus on predicting the future. 

● Demographic biases: human societies consist of subpopulations (e.g. ethnic groups) that differ in 
the distributions of predictor and target variables, often a continuing effect of historical prejudice. 
Machine learning tends to perform better for the majority group than minority groups for many 
reasons including the availability of a greater number of training instances. Aggregated perfor-
mance metrics often hide disparities in performance that lead to unfair decision-making systems. 

● Selective labels: this is an insidious type of sample bias in which the ability to observe an instance 
is correlated with the outcome we’re trying to predict. For example, in a college admissions context, 
if we want to use the performance of past students to learn to predict whether an applicant will 
succeed (e.g. earn a high GPA) if admitted, we may be limited to a training set that is already 
filtered based on attributes thought to correlate with college success. 

● Other problem-specific sample biases: in addition to the biases above that tend to recur across do-
mains, in most problems there are other idiosyncratic sample biases. 

● Acting on predictions changes the outcome: the goal of prediction is often to make a decision. But 
that decision may in turn impact the outcome. For example, a bank may set a loan interest rate 
based on the predicted risk that the borrower will default, but a higher interest rate makes a default 
more likely. This creates a self-fulfilling prophecy. 

 
Awareness of these pitfalls and difficulties will inform our approach to the readings and provide a natural 
opportunity for original student research. 
 
We have a particular interest in scoring functions — that is, how we can measure predictability. A predic-
tive model maps each point in the input space to a probability distribution over outputs. It is a multi-
dimensional beast. Yet we measure predictive performance by collapsing the comparison between the 
model and the test data (or distribution) into a single number. Unsurprisingly, this number rarely tells us 
everything we want to know about performance, and the best-performing model may depend on the choice 
of scoring function (such as R2, AUC, RMSE, cross entropy, etc.) 
  
We hope that the breadth of readings will help us understand the pros and cons of different scoring func-
tions. We will start by identifying important properties of scoring functions such as absolute vs. relative 
scoring and whether it is a proper scoring rule. Then we will determine which functions satisfy which 
properties, and discuss which properties are important in which domains. 
 
4. Understanding the domains 
 
An unusual feature of our course is the diversity of domains and disciplines that we draw our readings 
from. Most of these papers are not presented in terms of limits to prediction and their authors may be 
surprised to be included in this list. This admixture is both an opportunity and a challenge.  
 



 

To be sure, domain understanding is important for understanding the papers and their findings. Let us 
share an anecdote based on personal experience. When initially discussing the possibility of this course, 
Matt expressed his surprise to Arvind about the low R2 values of the best-performing models in the Fragile 
Families Challenge. But Arvind was confused by this since he lacked any a-priori expectation of what the 
R2 values “should” be. If we have better predictive models than we did before, shouldn’t the results be 
considered a success? Is improved predictive performance even part of scientific success? A normative, 
domain-specific understanding of the purpose and context of prediction is important for expressing judg-
ment about whether a given level of accuracy is good or bad; interesting or dull; important or meaningless. 
Many, many nuances about prediction are domain specific. 
 
Neither of us is an expert in all the domains covered in the course. However, we opted for this cross-domain 
approach because we think it is the way forward to new insight about the limits of prediction; no field has 
yet developed a complete approach to thinking about these problems. One way that we have tried to make 
the cross-domain approach more likely to be successful is diversity of thought and experience. The course 
is taught by faculty members from two different fields (computer science and sociology), and we hope that 
we will have students from different fields. Learning together in an interdisciplinary class can itself be 
difficult, but we think this approach increases our chances from successful cross-domain comparisons. Stu-
dents who have more domain expertise are expected to share it, and students that have less domain exper-
tise are expected to listen generously.  
 
Cross-domain comparisons can be difficult for other reasons as well. For example, straightforward numer-
ical comparisons between domains are meaningless due intrinsic differences between domains and degrees 
of freedom in problem and task formulation. To make this more concrete, suppose we find that the success 
of books is more predictable than that of movies. Can we conclude that book publishing is more merito-
cratic than the movie industry? Not directly, because there are many other possible explanations, such as: 

● current methods fall well short of the actual limits to predictability.  
● our finding is reversed if we change some seemingly trivial details of the formulations of the two 

prediction tasks 
● there is different information routinely collected about books and movies before launch and so 

what appears to be a difference between these two products is actually a difference in the data 
routinely available about these products 

● there are many inherent differences between books and movies, such as the fact that movies earn 
much of their revenue in a single season and thus face a greater variance in the competitive land-
scape. 
 

Although it seems hopeless in light of these limitations, we will cautiously undertake to develop heuristics 
that may enable us to make statements about relative predictability between domains. We also seek to 
compare and contrast theories of unpredictability across domains. 
 
When selecting domains for this course we had a preference for domains where there was research both 
measuring the limits to prediction empirically and developing theories that help explain those limits. We 
also had a preference for domains about which we ourselves had some expertise, and where we thought 
there was fertile ground for new research. 
 
  



 

5. Implications 
 
Now we turn to several high-level questions which we hope to better understand through the empirical 
knowledge gained in this course. 
 
Implications of high and low accuracy 
 
There are many tasks where there has been great progress in predictive accuracy, either gradually over 
decades, as in the case of weather prediction, or relatively rapidly, as in the case of object recognition in the 
early 2010s (the latter is, of course, not a true prediction task). When accuracy increases sufficiently, then 
for some (but not all) problems the predictions become practically useful and the implications tend to be 
profound. This is the case even when predictive accuracy remains low in an absolute sense, with a good 
example being the pervasiveness of targeted advertising online. Thus, “predicting the future of prediction” 
is an important skill for anticipating and preparing for upcoming disruptions to specific industries, scien-
tific fields, or society as a whole. A pitfall that’s just as common as failing to anticipate advances is to over-
react by assuming that a breakthrough is just around the corner. 
 
The implications of improvements in accuracy may not always be positive. In particular, machine learning 
is often used to predict or infer things about people that they may not want others to know. This is bad 
news for privacy. Computer vision furnishes many examples, such as Clearview AI, a commercial product 
that dredges up people’s long-forgotten photos online based on facial recognition. Even when predictive 
accuracy is low, such technology may be deeply problematic, such as “predicting” sexual orientation from 
facial images. 
 
When is prediction the right question? 
 
Predictive models are overused in computer science and industry because they are convenient to apply. 
Often, what is framed as a prediction problem can be better understood as a problem of explanation, inter-
vention, or decision making.  
 
Explanation is about generating scientific insight into how a process works rather than simply predicting 
its input-output behavior. For example, Ptolemy’s model of the universe with the Earth at its center — once 
its parameters had been adequately tweaked based on observation — generated remarkably accurate pre-
dictions of the apparent movements of celestial objects, much like how machine learning makes predic-
tions. It was used successfully for millennia for many purposes including navigation. Of course, it inhibited 
scientific progress. Many modern applications of prediction are arguably similarly shortsighted. 
 
Intervention is about figuring out how to change a process for the better rather than treating it as a given 
and confining oneself to making predictions. A poignant example: in response to the problem that some 
defendants released on bail won’t show up to court on their trial date, risk prediction systems are in wide-
spread use today to determine who should be released and who should be held until their trial. These are 
statistical algorithms that use factors such as age and income to predict the probability of failing to appear 
at trial. The effect is to punish people for crimes they have not committed. Further, these systems have a 
disproportionate impact on racial minorities.  
 
It turns out that many cases of failure to appear have benign explanations such as needing to care for a 
child. The prediction approach is thus often criticized as needlessly cruel; an intervention approach would 



 

seek to find opportunities to reduce failures to appear, e.g. by having the state provide childcare services 
to defendants, and thus avoid the need for prediction altogether. 
 
Finally, the science of decision making recognizes that many considerations go into making good decisions 
beyond maximizing predictive accuracy, especially because the decisions themselves have causal effects. 
For example, recommender systems are often built as predictive systems that maximize the probability of 
a click (or some other metric). Unfortunately, this formulation ignores the fact that recommending some 
types of items to users changes their interests and preferences over time. Failing to model these conse-
quences can exacerbate filter bubbles, political polarization, and other harmful effects on social media. 
 
How to design predictive systems 
 
Understanding limits to prediction allows us to gain a more nuanced understanding of different ways to 
design predictive systems — if a predictive system is indeed what we want — and the tradeoffs involved. 
One long-running debate concerns the pros and cons of human judgment versus machine predictions, in 
domains including criminal justice, social services, and employment. But we will see that there is a third 
option: simple hand-computable statistical formulas with just a few predictor variables. Empirically, these 
approaches are almost as accurate as black-box machine learning systems in many domains and avoid 
many (but not all) of their drawbacks. 
 
A second debate concerns the importance of domain expertise in designing predictive systems. Through 
the course, we hope to develop a better understanding of how domain experts should contribute to build-
ing prediction systems, interpreting their outputs, and evaluating their performance. 
 
Many of the debates referenced in this section speak to the Fairness, Accountability, Transparency, and 
Ethics (FATE) of predictive systems. While there is a robust and ongoing FATE critique of machine learn-
ing, that critique has rarely contested the predictive analytics industry’s claim that machine learning meth-
ods are delivering great improvements in accuracy compared to human experts and traditional statistics. 
Questioning that assumption changes the debate completely. 
 

 


