
c
r

e
d

i
t

 t
k

V
viewpoints

march 2014 | vol. 57 | no. 3 | communications of the acm 1

S
of twa re developers cre-

ate the architectures that
govern our online and
increasingly our offline
lives—from software-con-

trolled cars and medical systems to
digital content consumption and be-
havioral advertising. In fact, software
helps shape, not just reflect, our soci-
etal values.a Are the creators of code
aware of this power and the respon-
sibilities that go with it? How, and to
what extent, are they trained in the eth-
ics of their discipline?

Like medical, legal, and business
ethics, engineering ethics is a well-
developed area of professional ethics.
In 2000, the organization that accred-
its university programs and degrees in
engineering (ABET) began to formally
require the study of engineering ethics
in all accredited programs.b

Yet most engineering ethics text-
books focus primarily on ethical is-
sues faced by civil, mechanical, or
electrical engineers. The case studies
they typically include—the Challenger
explosion, the Ford Pinto fires, the
Union Carbide/Bhopal disaster—de-
pict harms caused by ethical lapses in
those fields. Of course, the cars and
rockets and bridges built today depend

a	 See http://www.nyu.edu/projects/nissenbaum/
vid/about.html

b	 See http://www.abet.org/engineering-change/

upon critical software for their safe op-
eration, and failure of these software
systems can result in death or grievous
injury. However, the distinctive ethical
dilemmas that arise in the software en-
gineering context are not yet being suf-
ficiently addressed.

In the Internet era, the software
development and deployment pro-
cess has some peculiarities that exac-
erbate the ethical issues for software

engineers. First, the shortened life
cycle has weakened and in some cases
obliterated software review by man-
agement and legal teams. So software
engineers may deploy code directly
to end users—in stark contrast to,
say, a civil engineering project with a
years- or decades-long life cycle and
multiple layers of oversight. For Web
applications such as Facebook, indi-
vidual engineers or small groups of

Computing Ethics
Why Software Engineering
Courses Should Include
Ethics Coverage
Encouraging students to become comfortable exercising ethical discernment in a
professional context with their peers.

doi:10.1145/2566966	 Arvind Narayanan and Shannon Vallor

viewpoints

2 communications of the acm | march 2014 | vol. 57 | no. 3

colleagues who will face the same types
of moral dilemmas, struggle with the
same sorts of tough decisions, and ulti-
mately seek to earn, in similar ways, the
respect of their peers and the broader
public. Software engineering profes-
sors are in the best position to spark
that dialogue. So why is not applied
ethics currently taught much in com-
puter science and software engineer-
ing courses? We cannot know for sure,
but there are some plausible reasons.

First, the algorithmic and engineer-
ing techniques students learn are fan-
tastically general (all that computers
do, at an underlying level, is manipu-
late ones and zeroes). The flip side is
that computer science is generally
taught in a manner divorced from prac-
tical context. This abstraction makes
computer science education powerful;
it would be silly to train students to
work specifically in the music or enter-
prise software industry. However, the
exclusive focus on general techniques
leaves students with the impression the
implications and consequences of their
work product are not their proper con-
cern. When such students graduate to
solving problems in the real world, they
are likely to adopt the type of thinking
that prevails in many parts of the indus-
try—that anything technically feasible
is fair game, and that ethical issues are
best handled by compliance teams and
Terms of Service documents.

Second, these technologies are in-
herently morally ambiguous. For ex-
ample, the same digital signatures that
make the lock icon appear in a browser
(indicating you are not connected to
a spoofed site) are used by malware
authors to ensure zombie machines
obey only commands from their true
bot-masters. Or consider machine
learning and collaborative filtering sys-
tems used to recommend new bands
or books you might like, or to detect
credit card fraud: inevitably, these
systems introduce systematic biases
into our patterns of consumption and
behavior. The so-called “filter bubble”
arises when algorithmic systems, such
as Google search or the Facebook news
feed, decide what information to show
a user based on his or her past pattern
of searches and clicks.d The worry is

d	 See http://www.amazon.com/Filter-Bubble-
What-Internet-Hiding-ebook/dp/B004IYJE6A/

engineers code and deploy features
directly, and indeed the culture takes
pride in this. Even where more tradi-
tional development practices prevail,
some deployments like bug fixes are
shipped with only technical (and not
ethical) oversight. In such circum-
stances, the individuals deploying the
code may have to rely on their own fa-
miliarity with ethics when faced with
the old question: it may be legal to do
this, but should we?

Second is the issue of scale—per-
haps the defining feature of the soft-
ware revolution. For software, the
entire world is typically part of the ad-
dressable market. This scale creates
the potential for individual software
engineers to produce great good, but
with it naturally comes the ability to
cause great harm, especially when
combined with the ability to deploy
code directly to end users. Here is a be-
nign but illustrative example. On June
9, 2011, Google released a “doodle”
honoring Les Paul, which users found
addictive to play with. This is a type of
project that is typically done by an in-
dividual engineer on his or her “20%
time,” in a day or two. A third party,
RescueTime, later estimated that 5.3
million hours were ultimately spent by
people playing this game.c

Consider that 5.3 million hours
equates to about eight lifetimes. Did the
doodle make a positive contribution to
the world? Do engineers at Google have
an obligation to consider this question
before releasing the feature? What
principle(s) should they use to deter-
mine their answer about the benefits
and/or harms of their work? Often, in-
dividual software engineers must grap-
ple directly with such issues, instead of
relying on management or anyone else.

Finally, software engenders ethical
concerns other than concrete harms.
Software embeds moral and cultural
values and inevitably nudges society
toward these values. Today’s Web and
information services are designed
around the centralized collection and
control of personal data. One effect is
that social interactions happen more
often in public view; another is the
changing balance of power between
users, companies, and governments.

c	 See http://blog.rescuetime.com/2011/06/09/
google-doodle-strikes-again/

Further, the lack of geographic con-
straints means software engineers are
generally unfamiliar with the culture
and values of many of the end users
of their products. Cost cutting often
leaves little room for user studies or
consultations with experts that might
allow software development firms to
acquire this familiarity.

Nevertheless, software engineers
share with everyone a desire to flourish
and do well in life and work. Thus, ethi-
cal obligations have a professional and
a personal dimension. Without a sense
of personal ethics, a software engineer
would be indifferent to her actions’ ef-
fects on the lives of others in circum-
stances not explicitly addressed by a
professional code of ethics. But for pro-
fessionals whose work impacts public
welfare, personal ethics is not enough.
Without a sense of professional ethics,
individuals might justify to themselves
conduct that would be much more dif-
ficult to justify in front of others. Ad-
ditionally, professional ethics help
us understand how ethical standards
and values apply to a particular type of
work. For example, what does integrity
look like in a software engineering con-
text? What sort of specific coding prac-
tices demonstrate integrity, or a lack of
it? This is something that professional
codes of ethics—and discipline-specif-
ic ethics training—can help students
learn to see.

Being a professional means being
a part of a moral community of others
who share the same profound respon-
sibilities. Embedding coverage of eth-
ics in software engineering courses
would help students draw strength
and wisdom from dialogue with other
future members of their profession—

Software embeds
moral and cultural
values and inevitably
nudges society
toward these values.

viewpoints

march 2014 | vol. 57 | no. 3 | communications of the acm 3

Educators should also seek to instill
professionalism in students; currently
many software engineers seem indif-
ferent to or even actively reject this
aspect of their work. Collaborative ac-
tivities could help reinforce the sense
of belonging. For example, students
could be tasked with doing a collective
survey of ethical lapses in the software
industry, along with a survey of ethical
attitudes among employees of various
companies. Since these companies are
prospective employers, the results will
be of immediate value to students, in-
creasing their motivation.

Habits are powerful: Students
should be in the habit of consider-
ing how the code they write serves the
public good, how it might fail or be
misused, who will control it; and their
teachers should be in the habit of call-
ing these issues to their attention. Stu-
dents may resist a bit—after all, one
of the things that draws some people
to programming is the opportunity to
retreat into a happy zone of bit twid-
dling detached from the world, and we
are proposing to habituate them out of
this. Other students, however, may be
more drawn to such an approach.f Be-
tween confronting and evading ethics,
confronting ethics is the only defensi-
ble choice. 	

f	 See http://www.smartplanet.com/blog/bulletin/
computer-science-is-for-women-too/

References
1.	 Citron, D.K. Technological due process. Washington

University Law Review 85 (2007), 1249–1313;
http://papers.ssrn.com/sol3/papers.cfm?abstract_
id=1012360.

2.	 Larson, J. Message machine starts providing answers.
ProPublica (Oct. 18, 2012); http://www.propublica.org/
article/message-machine-starts-providing-answers.

3.	 Sweeney, L. Discrimination in online ad delivery.
Commun. ACM 56, 5 (May 2013), 44–54;
doi>10.1145/2447976.2447990.

4.	 Valentinio-Devries, J., Singer-Vine, J., and Soltani,
A. Websites vary prices, deals based on users’
information. The Wall Street Journal (Dec. 24, 2013);
http://on.wsj.com/19pz4S5.

Arvind Narayanan (arvindn@cs.princeton.edu) is an
assistant professor of computer science at Princeton
University, NJ.

Shannon Vallor (svallor@scu.edu) is an associate
professor of philosophy at Santa Clara University, CA.

The authors thank Irina Raicu for her feedback and edits.
The authors are also grateful for the comments received
from numerous people including the anonymous reviewer
and David Robinson.

A portion of this article appears in the introductory section
of “An Introduction to Software Engineering Ethics”—a
concise curriculum module available at no cost, to all
professors, from the Markkula Center for Applied Ethics at
Santa Clara University.

Copyright held by Author/Owner(s).

that users will be fed reinforcing view-
points and find themselves isolated in
a personalized “echo chamber.”

At the level of demographics, the
seemingly fair principle of treating
“similar” users similarly can lead to
deepening disparities. Online ads have
been shown to display racial bias,3 and
prices online have been shown to vary
based on users’ personal attributes.4
In the political sphere, public-interest
groups have been investigating the im-
plications of campaign messages tai-
lored to the individual.2 Perhaps most
worryingly, when systems with direct
power over our lives, such as the no-
fly list, use opaque machine-learning
based techniques to make decisions,
we lose the safeguards of due process.1

Thus, when confronted with the be-
wildering variety of ethical questions
that may arise from a single technol-
ogy, engineering professors might well
prefer to leave the whole topic to some
“ethics professionals.”

A third factor is it is often unclear
how coding practices might mitigate
these harms and risks. In all likelihood,
for example, the racial bias of online
ads was not the result of explicit intent
by engineers but rather an emergent
property of a system aiming to maxi-
mize the click-through rate. Even defin-
ing the notion of fairness of an algorith-
mic system in a mathematical way that
computers can interpret remains elu-
sive—let alone a general procedure for
designing systems that satisfy this goal.e

But these are all reasons for teaching
ethics in software engineering courses,
not ignoring it. Ethical judgment, what
philosophers often call practical wis-
dom, is needed most when moral dilem-
mas arise for which there are no easy
solutions. And the software engineers
are often the only ones who fully under-
stand both the benefits and the dangers
engendered by new technologies.

How to teach software engineering
ethics? One choice is between a sepa-
rate ethics course versus integrating
ethics discussion into every course.
Both approaches are valuable, but the
latter is perhaps more immediately use-
ful. We propose that computer science
educators include a discussion of ethics
with every significant technology they

e	 See C. Dwork et al., Fairness Through Aware-
ness; http://arxiv.org/abs/1104.3913

teach. Hypotheticals and case studies
are two powerful and complementary
tools for this purpose. Hypotheticals
allow students to quickly isolate impor-
tant ethical principles in an artificially
simplified context; for example, one
might ask students what ethical prin-
ciples or values come into play if a man-
ager suggests promising a customer
‘fictionware’—a desirable feature that
is actually impossible to develop or de-
liver. Discussions of case studies, on
the other hand, allow students to con-
front the tricky interplay between the
sometimes competing ethical values
and principles relevant in real-world
settings. For example, the Google Street
View case might be used to tease out the
ethical conflicts between individual and
cultural privacy expectations, the prin-
ciple of informed consent, Street View’s
public value as a service, its potential
impact on human perceptions and be-
haviors, and its commercial value to
Google and its shareholders. Then, to
bring students back to the practical
space of ethical action, the professor
might pose a realistic hypothetical, ask-
ing students to explain and defend how,
as a Google project manager, they would
evaluate a proposal to bring Street View
technology to a remote African village.
What questions should be asked? Who
should be consulted? What benefits,
risks and safeguards considered? What
trade-offs weighed?

What matters in these exercises is
not that students can arrive at the ‘right’
answers; nor even that the instructor
have them in hand. In many real-life
cases there is no single right answer,
only a range of more or less ethically in-
formed and wise responses. What mat-
ters is that students get comfortable
exercising ethical discernment in a pro-
fessional context alongside their peers.

Students should
be in the habit of
considering how the
code they write serves
the public good.

