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Abstract. We investigate the ability of a passive network observer to
leverage third-party HTTP tracking cookies for mass surveillance. If two
web pages embed the same tracker which emits a unique pseudonymous
identifier, then the adversary can link visits to those pages from the
same user (browser instance) even if the user’s IP address varies. Using
simulated browsing profiles, we cluster network tra�c by transitively
linking shared unique cookies and estimate that for typical users over
90% of web sites with embedded trackers are located in a single connected
component. Furthermore, almost half of the most popular web pages
will leak a logged-in user’s real-world identity to an eavesdropper in
unencrypted tra�c. Together, these provide a novel method to link an
identified individual to a large fraction of her entire web history. We
discuss the privacy consequences of this attack and suggest mitigation
strategies.

1 Introduction

We investigate the power of a passive network adversary to track an individual
target user or surveil users en masse by observing HTTP cookies in transit. This
is a strong threat model, but we believe that it is well-motivated in light of recent
reports of NSA “piggybacking” on advertising cookies. As per those reports, the
NSA utilized its knowledge of users’ Google ‘PREF’ cookies to target known
individuals [23]. While the details revealed about the specific attacks are scant,
we seek to address a more general question along these lines. Our goal is to
quantify what an adversary with purely passive access to network tra�c (say,
on the Internet backbone) can learn about users based on their web browsing
activity.

Our work starts with two insights. First, the presence of third-party cookies
on most web pages, albeit pseudonymous, can tie together all or most of a
user’s web tra�c without having to rely on IP addresses. Thus the adversary
can separate network tra�c into clusters, with each cluster corresponding to

NOTE: This draft is outdated. The published version of this paper is available at: 
http://www.cs.princeton.edu/~ste/papers/www15_cookie_surveil.pdf
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www.exampleA.com 

From: IP 1.1.1.1 
Cookie: “ID-A=aaa” 

From: IP 1.1.1.1 
Cookie: “ID-X=xxx” 

www.exampleB.com 

From: IP 2.2.2.2 
Cookie: “ID-B=bbb” 

From: IP 2.2.2.2 
Cookie: “ID-Y=yyy” 

www.exampleC.com 

Y 

Y 

From: IP 3.3.3.3 
Cookie: “ID-C=ccc” 

From: IP 3.3.3.3 
Cookie: “ID-X=xxx” 

From: IP 3.3.3.3 
Cookie: “ID-Y=yyy” 

Fig. 1. Illustration of link between each of a single browser’s visits to three first-party
pages using two di↵erent third-party tracking cookies. The user accesses the web at
three di↵erent times, behind three di↵erent IP addresses.

only one user (or more precisely, one browser instance). A single user’s tra�c,
however, may span more than one cluster if the linking is imperfect.

Second, although most popular web pages now deploy HTTPS for authenti-
cation, many web pages reveal an already logged-in user’s identity in plaintext.
Thus, an adversary that can wiretap the network can not only cluster together
the web pages visited by a user, but can then attach real-world identities to
those clusters. This technique relies on nothing other than the network tra�c
itself for identifying targets. Even if a user’s identity isn’t leaked in plaintext, if
the adversary in question has subpoena power they could compel the disclosure
of an identity corresponding to a cookie, or vice versa.

Figure 1 illustrates the basis for our work. The adversary observes the user
visit three di↵erent web pages which embed trackers X, Y or both. The user’s
IP address may change between visits to each page, though we assume it is
consistent for the request to site A and the request to A’s embedded tracker X.
But there is no way to tie together her visits to pages A and B until she visits C
after which all three visits can be connected. The unique cookie from X connects
A and C while the one from Y connects B and C. We assume here that the user
has visited pages with both trackers before so that cookies have already been
set in her browser and will be sent with each request.
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While IP address is a convenient method to link a request to a first party
page to the corresponding request to an embedded third party tracker, it is not
necessary. In Section 5.1 we show how this linkage can be achieved even if the
IP address cannot be observed at all or if an IP address is shared by many users.

Contributions. Our contributions are both conceptual and empirical. First,
we identify and formalize a new privacy threat from packet sni�ng. While the
technique of utilizing cookies to target users is well known, we forumlate the
attack concretely in terms of the following steps: (1) automatically classifying
cookies as unique identifiers (2) using multiple ID cookies to make transitive
inferences and clustering HTTP tra�c, and (3) inferring real-world identity from
HTTP tra�c itself.

Second, we rigorously evaluate the above attack model by simulating realistic
browsing behavior and measuring the actual cookie ecosystem. This requires
nuanced techniques along at least three fronts: (1) a crawling infrastructure
based on browser automation to more closely simulate real users (2) a model of
browsing history derived from real user behavior, and (3) analytic techniques for
cookies to determine which cookies in the observed dataset are unique identifiers.

Results. We simulate users that make 0 to 300 web page visits spread out
over a 2–3 month period. For each such set of visits, we perform clustering using
the method described above and find the “giant connected component.”

At a high level, our results show that for web pages that have any third-party
tracking cookies at all, over 90% of visits fall into this connected component. The
clustering e↵ect is extremely strong and is robust to di↵erences in the models of
browsing behavior and cookie expiration. It applies even if the adversary is able
to observe only a small, random subset of the user’s requests. We find that on
average, over two-thirds of time, a web page visited by a user has third-party
trackers.

Second, we measure the presence of identifying information in plaintext
among popular (Alexa Top 50 U.S.) websites. 60% of websites transmit some
form of identifying information in plaintext once a user logs in, whether first
name, a combination of first and last name, a username or an email address.
These identifiers can be trivially sni↵ed by an adversary. While a name can
help narrow the possibilities for the anonymous user’s identity, a username or
email address is often a unique identifier. 44% of websites present such unique
identifiers in the clear.

Implications An adversary interested in targeted surveillance can proceed
as follows: (1) Either scan for the target’s identity in plaintext HTTP tra�c,
or use auxiliary methods to obtain the target’s cookie ID on some first-party
page (2) From this starting point, transitively connect the target’s known first-
party cookie to other third-party and first-party cookies of the target. On the
other hand, an adversary interested in en masse surveillance can first cluster
all observed HTTP tra�c, albeit at a high computational cost, and then at-
tach identities to these clusters using the methods above. Our attacks show the
feasibility of either adversary’s goal.
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After attaching an identity to a cluster of web tra�c, the adversary can go in
one of three directions. First, the browsing history itself could be the sensitive in-
formation of interest—for example, one of the leaked Snowden documents refers
to a plan to discredit ‘radicals’ based on browsing behavior, such as pornogra-
phy [3]. Second, further sensitive information could be gleaned from preferences,
purchase history, address, etc. that are transmitted unencrypted by some web
pages. Finally, it could be used as a stepping point for active attacks such as
trying to get a target user to download malware [23].

Our measurement of the prevalence of popular web pages revealing identity
in plaintext to logged-in users has implications for other, related adversaries,
such someone running a packet sni↵er in a co↵ee shop. Our results suggest that
such an adversary can determine the identities of customers within a few minutes
of typical browsing activity, although follow-up experiments on live user sessions
are required for an accurate quantification. Such deanonymization violates users’
intuitive expectations of privacy and can be a stepping stone to a real-life social
engineering attack.

2 Background and threat model

Cookies. When a user visits example.com, her web browser will send HTTP re-
quests to example.com’s server as well as any third-party domains whose content
is embedded on the page. Third-party plugins and specialized trackers are ubiq-
uitous on the web. In addition to advertisements, content hosted on CDNs, and
third-party content such as social plug-ins, there are also invisible trackers such
as advertising networks and exchanges, analytics services and data brokers [17].
One study estimated that the average top-50 website contains 64 independent
tracking mechaisms [25].

Each of these domains may place cookies on her browser, respectively called
first-party cookies and third-party cookies. It is common for servers to set a
cookie containing a pseudonymous identifier so that the client can always be
uniquely identified. Cookies may exist only for a single browsing session (a “ses-
sion cookie”) or be stored for a server-specified amount of time (a “persistent
cookie”). If a third-party advertiser, for instance, has ads on multiple web pages,
then a persistent cookie containing the same unique identifier will be sent along-
side a visit to any of those pages. It is these unique and persistent cookies,
especially third-party cookies, that are of interest to us.

NSA leaks. Two of the leaked NSA documents motivate our work. A
stand-alone leaked slide says that the agency “provided TAO/GCHQ with WL-
Lids/DSL accounts, Cookies, GooglePREFIDs to enable remote exploitation”
[23]. A presentation titled “Tor stinks” notes that while the Tor browser pre-
vents linking based on cookies, if Tor is used improperly, cookies – including
doubleclick.com cookies – can be used to link a user’s Tor browsing to her
non-Tor browsing [4]. Another slide in the same presentation describes potential
active attacks on Tor users. Based on this scant information, there has been
much speculation about these attacks.
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Threat model. We are not specifically concerned with what the NSA or
any other specific entity may or may not be doing in practice. Rather, we aim to
quantify the power of the technical capabilities that we know to be possible. We
consider only passive attacks for several reasons. First, passive attacks appear
to be more powerful than generally realized, and we wish to highlight this fact.
Second, passive attacks are easier to study rigorously because the attack model
is simple and well-defined, whereas the spectrum of active attacks is open-ended
in terms of the attacker’s abilities. Third, even an active attack requires some
form of eavesdropping as a first step. Finally, almost all active attacks carry
some risk of detection, making passive attacks much easier to mount.

We consider a powerful adversary with the ability to observe a substantial
portion of web tra�c, either at an ISP or on the Internet backbone. We also
assume that the adversary can’t routinely compromise HTTPS, so cookies or
other identifying information sent over HTTPS are of no use.

The adversary may have one of two goals: first, the adversary might want
to target a specific individual for surveillance. In this case the adversary knows
either the target’s real-world identity or a single ID cookie known to belong to
the target (whether on a domain that’s typically a first party or on a tracker
domain). Second, the adversary might be engaged in mass surveillance. This
adversary would like to “scoop up” web tra�c and associate real-world identities
with as much of it as possible.

The adversary’s task is complicated by the fact that the IP addresses of the
target(s) may change frequently. A user’s IP address could change because she
is physically mobile, her ISP assigns IP addresses dynamically or she is using
Tor. Browsing from a smartphone is a case worth highlighting: Balakrishnan et
al. find that “individual cell phones can expose di↵erent IP addresses to servers
within time spans of a few minutes” and that “cell phone IP addresses do not
embed geographical information at reasonable fidelity” [9].

To link users across di↵erent networks and over time, the adversary aims to
utilize first-party and third-party unique cookies assigned to browser instances
by websites. He can easily sni↵ these on the network by observing the “Cookie”
field in HTTP request headers and the “Set-Cookie” field in HTTP response
headers. Cookies set by an “origin” (roughly, a domain) that have not expired
are automatically sent as part of requests to the same origin.

To learn a user’s real-world identity, the adversary could sni↵ an authentica-
tion cookie that is transmitted in the clear, and present the sni↵ed cookie to the
website, thus essentially logging in. We consider this and other active attacks out
of scope, both because there is a high risk of detection, especially if the attack
is carried out en masse, and because it is di�cult to rigorously evaluate (for
instance, websites may tie login cookies to IP addresses, defeating the attack).

3 Methodology

Our methodology consists of the following distinct parts: the creation of a realis-
tic model of browsing behavior, a browser automation and measurement platform
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and an analysis of the resulting data. On a high level, we wish to simulate real
users browsing over a period of time, detect the creation of unique identifiers,
and measure the flow of both unique pseudonymous identifiers and real-world
identifiers. This necessitates the creation of realistic user profiles, an infrastruc-
ture with which to deploy the profiles and a platform to perform an analysis in
an automated and scalable fashion. The infrastructure used in this project is an
instance of a general platform which we developed, building upon cutting-edge
browser automation and measurement tools.

3.1 Infrastructure

Requirements. This study has a wide range of often-conflicting requirements,
presenting a significant system design and engineering challenge. First, we wish
to replicate a user’s interaction with the web as faithfully as possible, both in the
technologies used and in the patterns of use, in order to be able to draw infer-
ences about real users based on our simulated experiments. Second, the platform
must be fully automated and scalable – our experiments required hundreds of
thousands of page visits overall. Third, the platform must provide profile man-
agement functionality, providing the ability to save and load a simulated user’s
history and cookie databases in a modular, scripted way. Fourth, the platform
requires a full picture of cookie interaction – we need to monitor all third party
requests, responses, and cookies. Fifth, the platform must be portable and head-
less, as crawls need to be able to run in parallel on local and remote machines
regardless of display capabilities. Lastly, the collected data must be stored in an
easily searchable, structured format – we need the capability to search cookie
strings using regular expression patterns and link cookie interactions to the in-
volved first and third parties.

A major hurdle for automated web measurement in general is that nearly
all of the tools available are meant for real user interaction or interaction on
a semi-automated level. Web browsers and web pages are meant for manual
interaction by users (e.g. dealing with a pop-up or alert window) or canceling
and refreshing a page when it doesn’t load fully. Browser automation tools are
often built for web development testing on a single site and may have limited
feature sets for general searching or handling sites with a wide array of load
times and objects. An additional requirement of our platform is to incorporate a
layer of abstraction that removes the need for manual interaction and monitoring
from these underlying tools and provides stability in an automated setting.

Design and implementation. We drive our data collection and measure-
ment infrastructure (see Figure 2) using a web crawler built around the Selenium
WebDriver.1 Selenium WebDriver is a browser automation tool which can con-
trol most modern web browsers by hooking into the browser’s WebDriver API to
enable automation of simulated user behavior from several languages, including
Python and Java.2 The WebDriver API provides an interface for scripted tools

1 http://docs.seleniumhq.org/projects/webdriver/
2 http://www.w3.org/TR/webdriver/
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Fig. 2. Data collection and measurement platform - our automation infrastructure
drives a Firefox browser in order to simulate a user profile from our user model and
automatically analyzes data collected throughout browsing sessions.

to execute common browsing tasks such as loading a page and clicking elements,
as well as an interface to search and parse the contents of a page.

In our study, we use Selenium to drive Firefox instances, since Firefox is a
modern browser used by many users on the web and also provides a strong plugin
infrastructure. This allows us to use FourthParty, a web measurement platform
built by the Stanford Security Lab, which serves as our primary method for
logging browser data.3 FourthParty is a Firefox extension which monitors all
dynamic web content on the browser, including HTTP requests and responses,
cookie interactions and JavaScript calls. In particular, we hooked into Fourth-
Party’s HTTP request and response tables to determine which cookies are trans-
mitted under each page load, and the cookie table to detect and monitor unique
identifiers. FourthParty’s SQLite database enables quick aggregation and search-
ing of cookie values through standard SQL. FourthParty o↵ers usability benefits
over a pure HTTP proxy approach and also tracks all cookie read, delete and
edit operations.

When compared to driving crawls exclusively through the Selenium Web-
Driver, our architecture presents a few distinct advantages. A profile manage-
ment system simplifies the task of loading and saving browser histories for crawls
and easily scales to support the simulation of any number of users from any
source of history. This level of scale is extended to the automated processing of
FourthParty databases, a tool which is designed for aggregation and analysis on
an individual user level. We make use of pyvirtualdisplay to interface with Xvfb,
a virtual X display server, and run Firefox instances entirely headless. This al-
lows ease of portability between machines enables simultaneous crawls to occur
on a remote machine with no X display server.

Our infrastructure continually monitors the state of deployed crawls to handle
exceptions, stalls, extraneous windows and other issues which often occur during

3 http://fourthparty.info/
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browsing and is able to smoothly recover to the same point with very little
downtime. If an issue is detected or a process timeout is triggered, it saves the
current crawl state before killing the Selenium and Firefox instances. A fresh
WebDriver instance is created with the same Firefox state re-loaded, ensuring
that the crawl continues with the same user profile and state it had prior to the
issue.

We had many browser automation options to choose from when building our
infrastructure. Other browser automation tools such as PhantomJS and SlimerJS
also provide full history, cookie and JavaScript support. However, unlike those
frameworks, Selenium provides a more extensive range of web technologies, in-
cluding user plugins, addons and HTML5 features. Potential di↵erences in the
underlying parsing engine, user agent string, and interaction with web technolo-
gies also motivated our choice to use Selenium to drive a consumer web browser
over the stripped down alternatives. More lightweight tools, such as wget, were
not considered as they do not provide the necessary range of supported features.

3.2 Browsing profiles

Our browser automation and measurement infrastructure requires as input a
model of browsing behavior. One of our models was a naive one – the user visits
random subsets of the Alexa top 500 sites. We created more realistic browsing
profiles using the AOL search query log dataset which we describe below. This
is almost identical to the method that was used in [16].

The AOL search query log dataset contains the queries made by 650,000
anonymous users over a three month period (March–May 2006). Our procedure
for creating a browsing profile from a user’s search query profile is as follows.
First, we remove repeated queries. Next, for every search query performed by
the user, we submit the query to Google search and retrieve the links for the
first five results. Users were selected on the basis that they performed between
50 to 100 unique queries which resulted in browsing profiles of 250 to 500 URLs.

Of course, only a subset of real users’ web browsing results from web searches.
Nevertheless, we hypothesize that our profiles model two important aspects of
real browsing histories: the distribution of popularity of web pages visited, and
the topical interest distribution of real users. Popular websites may embed more
trackers on average than less popular sites, and websites on the same topic may
be more interconnected in terms of common embedded trackers. Therefore failure
to model these aspects correctly could skew our results.

The reason we recreate the users’ searches on a current search engine rather
than simply using the sites visited by the AOL users (which are recorded in the
AOL dataset) is that the distribution of websites visited by real users changes
over time as websites rise and fade in popularity, whereas the distribution of
users’ interests can be expected to be more stable over time.

The ideal way to create browsing profiles would be to directly acquire real user
browsing histories. We know of two such datasets [14, 5]. We attempted to acquire
these, but found them either no longer available or prohibitively expensive.
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3.3 Detecting unique identifier cookies

Cookie text files contain several pieces of information, including the host (the
domain who owns it) and a name-value string. For our analysis, we consider a
cookie to be the unique (owner’s domain, name) pair and the cookie’s value to
be the value component of the name-value string (see the Cookie text in the
PREF cookie below). Our most fundamental analytical task was to e↵ectively
identify cookies with value strings that correspond to unique identifiers.

Host : www.google.com

User-Agent : Mozilla/5.0 (X11; Ubuntu;

Linux x86 64; rv:26.0) Gecko/20100101

Firefox/26.0

...

Referer : http://www.unity3d.com/gallery

Cookie : PREFID=5834573d6649ab5

To be useful to the adversary as identifiers, cookie values must have two im-
portant properties: persistence over time and uniqueness across di↵erent browser
insetances. Based on these criteria we develop heuristics that classify cookies as
identifiers and attempt to avoid false positives. Our heuristics are intentionally
conservative, since false positives risk exaggerating the severity of the attack.
Our method does have some false negatives, but this is acceptable since it is in
line with our goal of establishing lower bounds for the feasibility of the attack.

We define a cookie to be an identifier cookie if its value string:

– Is long-lived – the cookie’s observed expiry date at time of creation is
su�ciently far in the future

– Remains stable over time within a browser instance – once set, the
cookie value does not change over time and over multiple visits to the cookie
domain and even if the browser is restarted

– Varies across browser instances – has a di↵erent value in all the crawls
we have observed

– Passes the entropy test – value strings are su�ciently di↵erent across
di↵erent browser instances so as to serve a globally unique identifier

– Is of constant length – the length of the value string is invariant across
browser instances

Long-lived cookies are non-session cookies with expiry times longer than three
months. The three month cut-o↵ was chosen to reflect the fact that the AOL
dataset on which a majority of our crawl data is based was collected over a period
of three months. A simple accounting for expiry time would require a cookie set
at the beginning of the period of observation to survive until the end. Our
baseline ignores cookies that fail this criterion as they are too transient to track
long-term user behavior. During our analysis however we tune this parameter
to better explore other methods of modeling expiry time by analyzing all non-
session cookies.
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Stable cookies have value strings that, for a given browser, remain stable
across multiple browsing sessions. Cookies with dynamic value strings may sim-
ply be logging timestamps and other non-identifying information. We believe
that other non-static cookies contain identifying information but do not fit
within our study. For example, (google.com, utma) changes when data are
sent to Google Analytics.4 Although we believe that cookies encoding some part
of an individual’s browsing patterns may indeed leak personal information, their
dynamic nature excludes them for our definition of persistent identifier.

User-specific cookies have value strings that are unique across di↵erent browser
instances in our dataset. Cookies that fail this criterion only mark a given
browser as belonging to larger set of browsers that have been marked with a
given string. An extreme case is (doubleclick.com, test cookie), which has the
same value (CheckForPermission) across all users in our sample.

Low-entropy cookies have values that di↵er across di↵erent users’ browsers in
our measurements but are not su�ciently di↵erent enough as to be truly unique
identifiers. For instance, value strings that incorporate fixed timestamps (e.g.
the time that the cookie was created) may di↵er across di↵erent users by a few
digits but are likely to not be globally unique. To mitigate this issue, we used
the Ratcli↵-Obershelp [11] algorithm to compute similarity scores between value
strings. We filtered out all cookies with value strings that were more than 90%
similar to value strings from the corresponding cookies from di↵erent crawls.

Constant-length cookies have value strings with the same, fixed length across
all our datasets. We believe that unique cookie identifier strings are typically
generated in a standard, fixed-length format. This belief is motivated by pat-
terns seen during manual inspection and the likelihood of third party libraries
generating identifiers. As such, we only consider constant length cookies, keeping
in mind that this heuristic may cause false negatives that render our analysis in
fact overly conservative.

To collect data to identify unique cookies, we ran two simultaneous crawls
using identical sets of websites visited in the same order. By conducting si-
multaneous measurements, we avoid the problem of sites changing their cookie
interaction behavior depending on a user’s browsing time. For instance, in rela-
tion to the entropy heuristic, cookies with values that depend on time stamps
will be easier to detect and ignore if the crawls have nearly the same timestamps
for all actions.

Once the data were collected, we applied our heuristics when comparing
cookies with the same keys across the di↵erent datasets in order to identify the
cookies most likely to be unique identifiers. Since our passive adversary in our
model cannot observe tra�c sent over HTTPS, we also disregarded cookies with
the is secure flag set to 1.

4 https://developers.google.com/analytics/devguides/collection/analyticsjs
/cookie-usage
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3.4 Crawls

Our crawling infrastructure ran headless crawls on a remote Linode instance
running Linux over a four-day period in early 2014. We ran 45 crawls based on
AOL user profiles and another 20 crawls based on random 200-site subsets of
the Alexa Top 500 US sites. Each crawl was performed twice in parallel for the
purpose of finding unique identifiers.

Web pages were visited approximately once every ten seconds. We set the
timeout in our crawler to restart the browser under the same Firefox user profile
should the browser crash and save the crashed browser’s Fourthparty database.

When the crawls are complete the “cookie” tables from each crawl’s collection
of Fourthparty databases is analyzed for unique identifiers using our heuristics
described above.

Linking first-party pages via third-party trackers Once we deter-
mine which cookies contain unique identifiers, we use the Fourthparty databases
(specifically the HTTP request and response headers tables) from the user’s
crawl to take count of which first-party pages transmit persistent, identity-
bearing cookies. We construct a bipartite graph made up of first-party nodes of
type (first party page) and of third-party nodes of type (cookie host, cookie name).
Two nodes share an edge when a tracker’s cookie is transmitted while the browser
fetches a certain first-party page, giving us the foundation for the clustering ef-
fect. We consider the giant connected component to be the largest collection of
first-party pages connected via common third-party trackers.

3.5 Survey of popular websites for identity-leakers

The privacy problem of connectivity in the graph of would be further deepened
if the adversary could link the connected graph of a user’s web pages to a real-
world identity. We set out to determine the likelihood that our HTTP-observing
adversary would see some aspect of real-world identity leaked in plaintext across
the network in the course of wiretapping. To do so we conducted a survey of
popular web pages that are the most likely to have user accounts. This survey
led us to identify 50 of the Alexa top 68 US sites that allow for account creation
and signed up test accounts when possible. The top web pages are a useful
representation for how heavily-used sites with user accounts manage data as
seemingly benign as a user’s first name, and are also more likely to occur in a
typical user’s browsing history.

4 Results

In the course of analyzing our crawl data we found that out of 15,225 page visits,
10,138 of the page visits had cookies that we classified as a unique identifier.
Throughout this section, we only take into account those page visits that embed
a unique tracking cookie and consider what proportion of those are located in
the giant connected component. Visits to pages without tracking cookies cannot
possibly be connected to other page visits using our technique.
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4.1 Clustering

Measuring clustering for a single user We are primarily interested in the
number of web pages visited by a user located in the giant connected component
(GCC) relative to the number of pages with tracking cookies visited by the
user. We focus on large connected components/clusters because the probability
that a cluster will have at least one page visit that transmits the user’s real-
world identity in plaintext increases linearly with the size of the cluster. Manual
inspection shows that page visits not in the large connected components belong
to very small clusters, typically singletons, and are thus unlikely to be useful to
the adversary.

We must also consider that the adversary’s position on the Internet backbone
might not give them a full view of any user’s tra�c. A user’s changing location
on the network or alternative routes taken by packets through the network might
result in gaps in the adversary’s data collection. To model the adversary’s partial
view of the user’s browsing activity, we repeat our analysis with random subsets
of web pages of various sizes.

Fig. 3. AOL User 9472615, random
subsets of page visits

Fig. 4. AOL and Alexa, random subsets, 3
month cut-o↵s

For illustration, Figure 3 shows how the GCC of a single AOL user’s page
visits (y-axis) grows as we vary the completeness of the adversary’s view of
the user’s HTTP tra�c (x-axis). Each data point was computed by taking 50
independently random samples of page visits. For each sample we apply the
clustering algorithm and compute the fraction contained in the GCC. We then
average the fractions across the 50 samples. Since we wish to simulate these
page visits being spread out over time, only cookies with expiration times at
least three months into the future were included when computing the clusters.
Thus for each (x, y) pair we can say that if the adversary captures x web page
visits by a user in the course of a wiretap, they could link approximately y% of
those visits into a single cluster. The numbers we see for this user are typical —
the fraction is around 80% for even very small clusters and exceeds 90% as the
cluster size increases.

All AOL Users Now we present our primary result. We repeated the process
described above for 45 user profiles from the AOL dataset, with the results
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averaged across all user profiles. Figure 4 shows that a random sample of only
ten web pages visited by the user led to 77.3% of the web pages being located in
the GCC on average. After 100 web page visits observed by the adversary, the
GCC reaches 90% coverage of those pages.

E↵ect of the model: Alexa profiles, explicit cookie expiry, and
chronological visits Next, to see if our results are significantly a↵ected by the
specifics of the model we used, we varied several parameters and recomputed our
results. First, Figure 4 compares the use of Alexa profiles (i.e., random subsets
of Alexa US top 500 websites) against the AOL profiles; the results were very
similar. Second, we modeled the adversary seeing subsets of web pages that the
user visited in chronological order, rather than a random subset (perhaps the
adversary was only able to observe the user for a short period of time). The re-
sults, shown in Figure 4.1, are again similar except that there is an even higher
degree of clustering than observing random subsets. We hypothesize that this
is because users visit multiple pages on the same domain in contiguous periods,
resulting in common sets of trackers and consequently greater clustering.

Fig. 5. AOL user page visits analyzed
in chronological order

Fig. 6. Reduced size random samples of
third-party trackers

Third, rather than the somewhat crude (but conservative) heuristic of assum-
ing that unique cookies with expiry times of over three months can be used by
the adversary to link visits, we implemented an explicit model of cookie expiry,
which we describe in detail in Appendix A.1. The results were visually indistin-
guishable from the 3-month cookie expiry model, so we omit them (in fact, the
distance between the two distributions was less than 10�3).

E↵ect of mitigation attempts by trackers We now investigate what
happens if some, but not all, trackers switch to HTTPS or employ one of the
other mitigation methods described in Section 5.2. Figure 6 shows that a random
50% of trackers cleaning up their unique IDs makes very little di↵erence to the
attack, and it takes 90% of attackers to change in order to bring the fraction of
clustered page visits to under 50% of all page visits.

In summary, we find that most of a user’s observed page visits can be linked
together by the adversary even if only a small number of page visits are observed.
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The results are largely una↵ected by the model of user browsing behavior; the
only factor that makes a di↵erence is if a very large fraction of web trackers
employ mitigation mechanisms.

4.2 Identity Leakage

Table 1 summarizes our results from a manual survey of the Alexa US sites.
We picked the top 50 sites that support account creation. 34 of the 50 websites
used HTTPS to secure login pages,5 and only 15 of those sites continued to use
HTTPS to secure future interactions with the user.

Plaintext Leak Type Percentage of Sites

First Name 28%
Full Name 12%
Username 30%

Email Address 18%
At least one of the above 60%

Table 1. Leakage of Identifiers on Alexa Top 50 supporting user accounts

Although a majority of sites secure user credentials on login pages, personally
identifying information (name, username, email address) is transmitted much
more frequently via HTTP. Over half of the surveyed sites leak at least one type
of identifier, and 44% (not shown in table) leak either username or email address,
which can be used to uniquely infer the user’s real-world identity.

A representative example of the web’s identity-leak problem is www.youtube.com.
As a Google property, users sign in via a secure login screen with their Google
account. Other Google domains like www.gmail.com will continue to interact
with the browser using HTTPS by default, but depending on a user’s settings
www.youtube.com will default to a non-HTTPS page after login and transmit
the user’s full name and email address (Appendix A.2).

Furthermore, we verified that pages from these popular sites that leak identity
occur in the clusters of web pages found in our attack. Specifically, at least 6
of the 30 sites we found to leak some type of identity were found in the giant
connected component of every one of the 45 AOL user browsing profiles. Of
course, there are likely also many sites outside the top 50 that leak identity and
are found in these clusters, but we did not measure these.

Taken together with our results on clustering, our measurements show that
a passive attack is highly feasible: after observing only a fraction of a user’s web
tra�c spread out over time and source network location and interspersed with
tra�c from millions of others, the adversary will be able to link the majority
of the user’s web requests together and furthermore, use the contents of the
responses to infer the user’s real-world identity.

5 We did not separately measure if login form submission was via HTTPS. If the form
is loaded insecurely but submitted securely, the site is vulnerable to an active attack
that steals login credentials, but not a passive one.
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5 Discussion

5.1 Linking without IP address

So far we have assumed that the adversary sees the same source IP address on a
request to a first-party site and its corresponding third-party tracker, and that
this can be used to link the two requests. There are at least two scenarios in
which this assumption is problematic. The first is a NAT. If two users, Alice and
Bob, behind the same NAT visit the same web page at roughly the same time,
the adversary sees the same IP address on all ensuing HTTP requests. Therefore
it is not clear how to disambiguate Alice’s tra�c from Bob’s, and, in particular,
disambiguate Alice’s cookies from Bob’s. The user-agent headers on the requests
might be di↵erent but this approach may not be reliable enough on its own.

The other scenario is when the user employs Tor without application layer
anonymization. (If the user is using a properly configured Tor setup, such as the
Tor browser bundle, this attack does not work at all). Here, the attack works
only if the adversary is located on the Internet backbone, rather than, say, at
the user’s ISP, because Tor encrypts circuits all the way to the exit node and the
adversary can sni↵ cookies only on the path from the exit node to the receiver.
Since Tor will, in general, use di↵erent circuits for communicating with di↵erent
servers, the adversary will see di↵erent source IPs for the two requests (or may
be able to observe only one of the requests).

We propose a simple technique to link requests without using the IP address.
It relies on the following observation: if a cookie value a associated with page
A’s domain and a cookie value x associated with an embedded tracker domain
X are observed multiple times near-simultaneously (e.g. within 1 second of each
other), then a and x are probably associated with the same user. This is because
it is unlikely that di↵erent users will visit the same page near-simultaneously at
various di↵erent times.

Unlike the use of IP address for linkage, this method incurs a few false pos-
itives. Intuition suggests that for all but the busiest of web pages, two or three
visits may be su�cient to link the first-party and tracker cookies with each other.
However, this claim cannot be rigorously evaluated without access to large-scale
HTTP tra�c and so we leave this as a hypothesis.

5.2 Mitigation by trackers

Trackers may be able preventing a passive eavesdropper from piggybacking on
their unique identifiers if they are only transmitted over HTTPS. Deploying
HTTPS for all connections can be expensive, though some trackers already
support HTTPS for embedding in HTTPS pages as this is necessary to avoid
mixed content warnings. There are also subtle issues, such session tickets used for
TLS session resumption, which can be used by an eavesdropper to link multiple
HTTPS connections to the same browser instance just like a tracking cookie.

Without deploying HTTPS, trackers could use ephemeral cookies which vary
every time they are submitted. The simplest way to achieve this is to set a
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new cookie with every request so that each cookies is only sent once. However,
this is highly vulnerable as an eavesdropper with all tra�c can trace the chain
of cookies sent and received from each user and potentially bridge gaps from
missing tra�c by linking tra�c from pages with distinct sets of trackers.

A better approach is for the browser to dynamically generate ephemeral cook-
ies. This could be achieved by the tracker transmitting a public key, and using
Javascript to randomly encrypt a long-term identifier to generate an ephemeral
identifier for each connection. The downside of this approach is that public key
operations can relatively expensive to compute in Javascript. An alternate ap-
proach if trackers can deploy HTTPS on a limited scale is to transmit a large
number of one-time use tokens over HTTPS and have the browser transmit one
with each subsequent HTTP connection, re-connecting over HTTPS to request
more tokens when needed. This requires far less computation, but more data
transmission and some HTTPS deployment.

Unfortunately, a large fraction of trackers would need to deploy such mitiga-
tion strategies for thems to make a dent in the adversary’s overall chances. As
we showed in Section 4.1, the feasibility of tra�c clustering is barely a↵ected if
cookies from the top 10 most prevalent trackers are unavailable.

5.3 Implications

Our attack shows the feasibility of both targeted and en-masse surveillance of
web tra�c. The computational requirements are not onerous in the context of
surveillance – while it requires inspection of packet contents, the information
needed for further analysis, namely, URLs, IP addresses and cookie headers,
are compact and can easily be extracted from streaming data using regular-
expression filters. Since there is an ongoing policy debate about the acceptabil-
ity of storing “metadata,” we remark that HTTP headers indeed fall into this
category.

Our results cast even more doubt on the argument that third-party web
tracking does not raise privacy issues because it is “anonymous.” As we show,
even if no single tracker connects a user’s browsing history to her identity, this
veil of pseudonymity is easily pierced by a tra�c-sni�ng adversary. In the ab-
sence of third-party tracking cookies, the attacker’s ability would be significantly
circumscribed by changes in the user’s IP address which can happen for a variety
of reasons.

Our work adds to the evidence that in many cases, utilizing the infrastructure
created by private companies might be the technologically cheapest, but such a
strategy presents a much more e�cient way for governments to carry out surveil-
lance. It underscores the importance of deploying HTTPS for web privacy; the
ramifications go beyond any single domain. Similarly, our study highlights the
di�culty of proper application-layer anonymization and problems with the use
of Tor without proper attention to the application layer. In particular, it sug-
gests that technologies like Safeplug that act as a “Tor appliance” are ine↵ective
against an eavesdropper.
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5.4 Limitations

A couple of important limitations of the attack must be pointed out. First, using
the Tor browser bundle likely defeats it. “Cross-origin identifier unlinkability” is
a first-order design goal of the Tor browser, which is achieved through a variety
of mechanisms such as double-keying cookies by first-party and third-party [21].
In other words, the same tracker on di↵erent websites will see di↵erent cookies.
However, our measurements on identifier leakage on popular websites apply to
Tor browser usage as well. Preventing such leakage is not a Tor browser design
goal.

Simply disabling third-party cookies will also deter the attack, but it is not
clear if it will completely stop it. There are a variety of stateful tracking mech-
anisms in addition to cookies [12, 15, 27, 17], although most are not as prevalent
on the web as cookies are.

We also mention two limitations of our study. First, while a significant frac-
tion of popular sites transmit identities of logged-in users in the clear, we have
not actually measured how frequently typical users are logged in to the sites
that do so. Anecdotal evidence suggests that this number must be high, but
experiments on actual user sessions are required for an accurate estimation of
vulnerability.

Second, while we take pains to model the adversary’s view of our simulated
users’ tra�c as if it were spread out over a 2-3 month period (as the searches in
the AOL logs were), our actual crawls were conducted over a short time span (10
seconds between visits). There is one way in which our results might di↵er if our
crawls were spread out: cookies might list expiry times well into the future, but
servers might expire them ahead of schedule. To check that this would not be
the case, we utilized the independent cookie measurement database Cookiepedia.
6 For a sample of cookies in our dataset with long expiry times, we manually
verified that they are actually long-lived as measured in the wild by Cookiepedia.

5.5 Ongoing and future work

We now describe several threads of ongoing and planned work to explore related
aspects of the problem.

Linking di↵erent devices of the same user. Our attack as described
does not allow the adversary to link two di↵erent browsers or devices of the same
user, except by attaching real-world identities to both clusters. However, there
could be other mechanisms: if two sets of cookies are repeatedly seen together
on a variety of di↵erent networks, this probably represents the same user who is
switching IPs (for example, traveling with a smartphone and a laptop). Another
possibility is that the set of websites that the user tends to visit frequently could
serve as a fingerprint.

E↵ectiveness of user mitigation mechanisms. While using the Tor
browser and blocking all third-party cookies are good mitigation mechanisms,

6 http://cookiepedia.co.uk/
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they come at a cost in terms of usability and functionality. But there are other
browser privacy measures that are more palatable for users to deploy: (1) an ex-
tension such as “HTTPS everywhere” which makes requests over HTTPS when-
ever the server supports it and (2) Safari-style cookie blocking which is a limited
form of third-party cookie blocking that breaks less functionality. Since these
are essentially modifications to browser behavior, they can be studied using our
approach.

Large-scale analysis of identifier leakage. Our measurements of the abil-
ity of eavesdroppers to observe identities were done manually. Creating a “cen-
sus” of identifier leakage across thousands of websites would require automated
account creation which is both technically infeasible and ethically and legally
problematic. However, there is a shortcut: we could use federated authentica-
tion (such as Google/Facebook OAuth) to log in to any website supporting such
authentication without having to create accounts on per-site basis. Automati-
cally logging in requires sophisticated browser automation and is an engineering
challenge, but we have made significant headway in solving it.

Leakage of sensitive attributes in HTTP tra�c. As mentioned in
Section 1, one of the adversary’s goals might be to infer sensitive attributes
about the user that are transmitted by between the browser and websites in
plaintext, such as preferences, purchase history, address, etc. We plan to develop
heuristics to identify such data in HTTP tra�c and measure the prevalence of
such leakage. A further step would be to extend the measurement of unencrypted
transmission of sensitive information to the domain of mobile apps.

6 Related Work

The most closely related body of work to our study is the emergent field of web
privacy measurement, which aims to detect and measure privacy-infringing data
collection and use online. While most research on web privacy measurement is
concerned with what websites learn about users, our concern is an eavesdropper.
Nonetheless, the methods we use are heavily drawn from this field of study.

There have been several notable results on detection and measurement of var-
ious types of online tracking, including the detection of Google bypassing Safari
cookie blocking [7], various studies of flash cookies (LSOs) including respawn-
ing behavior [22, 8, 18]. Some studies that have utilized large-scale automated
web measurement platforms include a measurement of browser and device fin-
gerprinting [20, 6] and a survey of mobile web tracking [13].

Some privacy studies have focused on how personal data is used online rather
than how it is collected, including detecting search and price discrimination based
on browsing history [19] and other factors [24], measurement of targeted adver-
tising [16, 26], a study of the e↵ectiveness of privacy tools for limiting behavioral
advertising [10].

There are various client-side tools to block, limit or visualize third-party
tracking, built by researchers, hobbyists, or companies. These are too numerous
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to list exhaustively, but a sampling include Adblock Plus, Ghostery, ShareMeNot
[1], Lightbeam and TrackingObserver [2].

7 Conclusion

While much has been said from a legal, ethical and policy standpoint about
the recent revelations of NSA tracking, many interesting technical questions de-
serve to be considered. In this paper we studied what can be inferred from the
surveillance of web tra�c logs and established that utilizing third-party tracking
cookies enables an adversary to attribute tra�c to users much more e↵ectively
than methods such as considering IP address alone.

We hope that these findings will inform the policy debate on both surveil-
lance and the web tracking ecosystem. We also hope that it will raise awareness
of privacy breaches via subtle inference techniques. Finally, while it is unrealistic
to expect a large percentage of web trackers to switch away from unique cookies
transmitted in plaintext, the problems we identified with non-use of HTTPS on
first party sites are more readily fixable and we hope that our results will provide
an impetus for doing so.
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A Appendices

A.1 Modeling cookie expiration time

We limited our analysis to cookies with a three-month-plus lifespan as an e�-
cient way to ensure that tracking cookies survived for the duration of the user’s
browsing. But to more accurately model cookie expiration and its e↵ect on the
growth of the GCC, we use the AOL dataset to map the dates in which we col-
lected data to the original timestamps spanning the actual three month’s worth
of search queries from 2006. We consider the timestamps of the original visits as
if we were visiting those pages in ”real-time,” and from there attempt to model
the e↵ect of the cycle of a cookie being set and reset on the growth of the giant
connected component.
When we first encounter a cookie under this model, we use the lifespan of the
cookie to determine how far in the future the cookie will persist. Any web page
having this cookie that is encountered before the end of the cookie’s lifespan
will be connected to other sites having that same cookie in the same lifespan. If
eventually the simulated time of the crawl progresses past the end of the cookie’s
life and the same cookie is encountered again, we must presume that the unique
identifier in the cookie would be reset, preventing us from connecting this new
cookie from past instances of the same cookie.

A.2 Example of identity leak

Fig. 7. Identity leak of a pseudonymous account on an unencrypted YouTube page

A.3 Full Summary of Personal Identifier Leaks
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