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ABSTRACT
The results of web privacy measurement have been very in-
fluential in online privacy debates. As a research field, how-
ever, web privacy measurement is immature and fragmented,
and has not yet acquired an identity as a unified discipline.
There are significant scientific and engineering challenges
but the solutions tend to be ad-hoc.

We identify 32 web privacy measurement studies, cast
them as instances of a generic experimental framework, and
perform a thorough methodological analysis. We analyze
design and implementation alternatives and make recom-
mendations based on considerations of experimental rigor
and engineering feasibility.

Next, we present a flexible, modular web privacy mea-
surement platform that supports any experiment that fits
the framework. It is also highly scalable and avoids many
common pitfalls. Finally, as a case study of our methods
and infrastructure, we measure the “filter bubble”, i.e., the
extent of personalization based on a user’s history, by crawl-
ing approximately 300,000 pages across nine news sites and
present evidence that this personalization e↵ect has been
greatly overstated in the popular press.

1. INTRODUCTION
Web Privacy Measurement — observing websites and ser-

vices to detect, characterize and quantify privacy-impacting
behaviors — has proved tremendously influential. While
tools that block web tracking are used only by a small mi-
nority and address only a part of the problem, and solu-
tions based on voluntary co-operation like Do Not Track
have floundered, web privacy measurement has repeatedly
forced companies to improve their privacy practices due to
press coverage and regulatory action [6, 13].

On the other hand, web privacy measurement (hereafter,
WPM) is hugely technically challenging, for both scientific
and engineering reasons. First, WPM studies typically aim
to attribute causality (i.e., to establish claims such as “the
use of privacy feature X results in a 20% decrease in targeted
advertisements”). Yet, the web is a complex, dynamic, inter-
acting system with a multitude of actors. This introduces an
incredible array of confounds, making such inferences very
problematic to tease out.

Second, due to the scale of the web and the necessity of
repeating experiments to establish statistically valid conclu-
sions, WPMmust typically be automated. This has proved a
somewhat elusive goal. The web seems to resist automation
for a variety of reasons. Published studies do not always re-

port the engineering challenges involved and, as we will see,
these often pose serious barriers.
These di�culties call for a principled approach with stan-

dardized methodology and the co-operative development of
a measurement infrastructure. Instead, WPM has developed
in a hurry in response to the rapid growth of privacy incur-
sions online. As a consequence, there is a great degree of
methodological inconsistency and reinvention. Sometimes
authors appear to be unaware of solving almost identical
problems in slightly di↵erent contexts compared to previous
work, reflected by the lack of citation. From an engineer-
ing standpoint, there is a rampant replication of e↵ort in
building measurement tools and solving common problems.
All this leads to results that are di�cult to compare and
sometimes contradictory, and little in the way of standard
methods or infrastructure that a newcomer to the field can
utilize.
We seek to remedy this situation. We start by framing

the empirical component of WPM studies as instances of a
general experimental framework consisting of an input phase
and a measurement phase. We identify 32 WPM studies
that fit this framework, favoring those that use automated
methods. The aims of the studies fall into three categories:
measurements of online data collection, flow, and use.
Our first contribution is a thorough methodological anal-

ysis of these studies (Section 3). We identify dozens of
methodological and infrastructure considerations, highlight-
ing 14 in particular. In each case, we discuss the alterna-
tives and analyze the trade-o↵s, and make recommendations
when possible. We seek to make this text a methodological
guidebook for future studies.
Our second contribution is the development of a flexible

WPM platform (Section 4). Its key features are a modu-
lar, plug-in based architecture to support a variety of types
of WPM experiments, scalability, and an abstraction layer
that exposes high-level functionality to the experimenter.
We have incorporated solutions to many of the practical
challenges in scaling browser automation and measurement.
We are planning to open-source this platform with the aim
of minimizing duplication of e↵ort and allowing easy com-
parison of results.
As a case study of the power of our platform, we exam-

ine the “filter bubble,” the supposed e↵ect that occurs when
online information systems personalize what is shown to a
user based on what the user viewed in the past. While prior
WPM studies have looked for the e↵ect in web search results
[19, 25, 56], curiously we are not aware of attempts to mea-
sure personalization by news websites based on click history.
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Our third contribution is to fill this gap in the literature.
Based on experiments on nine major publisher sites, we

find that (i) only some sites perform any history-based per-
sonalization at all, and only in a select few content boxes on
news pages (ii) where personalization exists, the e↵ect sizes
are quite small — at most an 20% di↵erence in categorical
recommendations observed within a given publisher, much
smaller than extent of contextual (i.e., non-personalized)
recommendations, and (iii) while some areas of sites and
some topics are personalized to be more similar to the user’s
click history, others are personalized to be less similar and
more diverse. Thus, our results contradict the narrative of
pervasive personalization leading users into feedback loops
of reinforcing viewpoints and ideological “bubbles.”

2. BACKGROUND
Online tracking. As users browse and interact with

websites, they are observed by both “first parties,” which
are the sites the user interacts with directly, and “third par-
ties”which are typically hidden trackers such as ad networks
embedded on most web pages. Third parties can obtain
users’ browsing histories through a combination of cookies
and other tracking technologies that allow them to uniquely
identify users, and the “referer” header that tells the third
party which first-party site the user is currently visiting.
Other sensitive information such as email addresses may also
be leaked to third parties via the referer header.

Data use and ethical concerns. The primary driver
of online tracking is behavioral advertising. The ethics of
the practice have come under fire [27]; in surveys users tend
to express a dislike of targeted ads, frequently seeing them
as “creepy” [32, 51, 52]. Legal scholar Calo worries that it
allows firms to exploit consumers’ cognitive limitations and
manipulate perception and demand in unprecedented ways
[11].

From a technical perspective, behavioral advertising is an
instance of personalization. Many other online practices
that involve some sort of personalization based on users’ ac-
tivities also raise ethical questions. Price discrimination is
an obvious one, and in fact Andrew Odlyzko has argued that
it is the main driver of online data collection, whether or not
firms are aware of it [39]. He claims that perfect tracking will
allow firms to almost perfectly infer consumers’ willingness
to pay for an item, and individualize prices accordingly.

A gentler form of price discrimination is “steering,” where
users are presented di↵erent search results for products
based on an inferred willingness to pay. A prominent ex-
ample is Orbitz who were found to show di↵erent hotels to
users based on User-Agent (Mac vs. PC) [28].

In addition to search results for products, web search re-
sults, social media news feeds, and news websites have all
been criticized for personalization, a.k.a. the “filter bubble”.
These criticisms have led to a TED talk [41], a book [42],
and a great deal of press attention.

Finally, commercial actors are not the only ones person-
alizing content in worrisome ways — political campaigns
are known to send customized emails to voters based on
databases purchased from data brokers like Acxiom [4].

Web privacy measurement: a unified framework.
At first glance measurement studies of targeted ads, price
discrimination, or the filter bubble may appear to be dif-
ferent from measurements of cookies or PII leakage. The
central thesis that drives our work is the surpris-

ing fact that there are deep similarities between all
these studies, both conceptually and in terms of en-
gineering, and yet this has not been exploited by the
WPM research community.
To present our generic framework, let us first discuss web

personalization measurement, and then see how the other
types of studies di↵er from it. We treat the target system
as a black box to which we have partial control over the
inputs and the ability to observe outputs; the task of the
experimenter is to learn the relationship between the two.
In general these systems use machine learning for personal-
ization and learn user attributes passively instead of (or in
addition to) users inputting attributes actively.
The experimenter’s task, then, has two stages: an in-

put phase to “train” the system by interacting with it in
a certain way and to allow the learning algorithm to oper-
ate. In addition, the input phase may also involve directly
revealing information about simulated users such as enter-
ing demographic attributes into a form. The second phase
is the measurement or “testing” phase to personalization.
Typically, there are several experimental units (browser in-
stances), some of which are randomly assigned to be controls
which either don’t participate in training or perform some
default actions during training.
Data flow experiments also fit this framework, with two

di↵erences: the input phase usually consists of explicitly
entering information into the target system, and the mea-
surement phase may be more tightly coupled with the input
phase; the measurements consist of checking if the inputs
propagate to various target areas of the system.
In experiments on data collection, i.e., measurements of

the mere existence of tracking elements on websites, the in-
put phase is even more truncated. In some cases there is no
input necessary; in other cases it may consist of di↵erent set-
tings applied locally to browser instances (e.g., User-Agent
string, Do Not Track preference) to test for systematic dif-
ferences in tracking as a function of these inputs.
The similarities in infrastructure are even greater than

these conceptual similarities would suggest. Broadly, all
these experiments require the ability to navigate between
pages and perform actions on them, and the ability to ex-
tract certain elements of interest from web pages (typically
using a browser plugin or web driver). Either phase may be
manual, but is typically automated.
The above model captures all controlled experiments with

websites as targets. An interesting exception is the ProP-
ublica Message Machine project [1] which analyzes person-
alized emails and is not controlled, which we include in our
analysis anyway because it serves as an illustrative method-
ological counterpoint. We note that our model is inspired
by prior work including Balebako et al and Tschantz et al
[9, 49].

3. METHODOLOGY
We now present our analysis of the 32 web privacy mea-

surement studies that met our criteria. We emphasize that
this is not a survey of results (in fact, we don’t mention re-
sults at all) but rather an analysis of methodological issues.
Our goals are to lay out the menu of choices for study design
and infrastructure, analyze their pluses and minuses from a
scientific and engineering perspective, provide recommenda-
tions of alternatives when possible, highlight challenges and
avenues for future research, standardize practices, and sur-



face information on engineering pitfalls that are typically
not presented as part of published work.

3.1 Targets
The most fundamental aspect of a web privacy measure-

ment study is what to measure. The studies in our survey
fall into three categories: (1) measurement of data collection,
i.e., the mere presence of trackers and tracking activity; (2)
measurement of data flow, i.e., leakage of specific identify-
ing information and sensitive attributes, typically to third
parties, and (3) measurement of data use. The latter encom-
passes various types of personalization on web pages, such
as ads, search results and prices.

Over time we see an interesting migration in the focus of
studies from data collection and data flow to data use. There
are several possible reasons for this. First, the privacy com-
munity has accepted that online tracking is rampant and is
here to stay; measurements of cookie prevalence are simply
not interesting anymore. Newer studies on data collection
focus on more intrusive types of tracking such as browser fin-
gerprinting [5]. Second, measuring data use and personaliza-
tion requires more complex infrastructure and sophisticated
analytical techniques, and the community has gradually ac-
quired these capabilities over the years. Third, potentially
discriminatory uses of online tracking have been coming to
the public attention (e.g. Pariser’s theory of the filter bubble
[42]), incentivizing the latter kind of study.

Methodological question 1. Which specific sites, busi-
ness, and web pages to study?

We found a variety of choices in terms of which specific
sites or businesses to study. The most common choice was
to study the most popular N websites by Alexa ranking,
for some N; many studies broke down the measurements
by Alexa category. One study was able to crawl the top
1,000,000 sites, essentially constituting a census [5], but this
was prohibitive for most studies because of scaling issues.
Since the most popular sites may behave di↵erently from
less popular sites, McDonald and Cranor pick a random 500
sites (from the top 1,000,000) in addition to the top 100
[33]. By performing crawls on these di↵erent sets of sites
they found that the popular sites were more likely to set
HTTP cookies and flash local shared objects than random
sites. Roesner et al. use a similar technique [45]. Given such
di↵erences we recommend this two-set approach.

Many studies limit the crawl to the top-level page of a do-
main; counterexamples include Malandrino et al, Soltani et
al, Ayenson et al and others [26, 46, 8, 38, 20, 55, 26, 45]. At
least in some cases this was because the crawling infrastruc-
ture was not powerful enough to support clicking on links.
Many sites behave di↵erently on the front page compared to
other pages, so we recommend that newer studies perform
deeper crawls when this makes sense. The infrastructure
issue is easily solved. Some studies limit the target to a sin-
gle domain or entity — often a Google-owned service: text
ads [9, 47], Doubleclick [24, 40], or search [56, 19, 25]. We
discuss this further in Appendix C.

3.1.1 Measuring data collection
The most basic type of measurement in our survey is the

prevalence of stateful tracking technologies, especially cook-
ies, on web pages. While in some studies this measurement
is the primary objective [14, 40, 33, 21, 46, 45, 16], many

other studies measure tracker prevalence as a side-goal [24,
40].

Methodological question 2. How to detect which trackers
belong to the same entity?

We see at least three approaches. Mayer considers third-
parties as having a shared “PS+1” [30]. Krishnamurthy et
al. use a more complex heuristic involving querying ADNS
records; they do this to account for CNAME aliases and the
fact that di↵erent entities may use the same content-delivery
network [21]. Finally, the authors of AdReveal simply use
the Ghostery tracker database [24]; the limitation is that
the database may not have full coverage of trackers. There
doesn’t seem to be an ideal solution here as of yet.

Methodological question 3. How to detect if a cookie is
an identifying cookie?

Again we see a variety of solutions. The simplest ap-
proach is to simply treat cookie values that are di↵erent in
two di↵erent crawls as unique [33]. Olejnik et al. filter out
cookies with values shorter than 10 characters [40]. Reisman
et al. seem to have the most sophisticated heuristic: they
look for cookies that have long expiry times, vary across dif-
ferent crawls, are su�ciently dissimilar between crawls as
measured by the Ratcli↵-Obershelp algorithm, have stable
values within a crawl despite browser restarts, and are of
constant length [44].
Several studies have measured Flash cookies (LSO’s) [33,

46, 8] and other studies have looked at remarketing scripts
[24] and scripts in general [21]. Measuring stateless tracking
such as browser fingerprinting is harder [5]: this involves
analyzing the behavior of scripts, and we discuss it in Section
3.2.

3.1.2 Observing data flow
Studies have examined the leakage of various types of iden-

tifying information and sensitive attributes from first par-
ties to third parties. Identifying information includes name,
username, and email address, and sensitive attributes in-
clude gender, age, location data, relationship status, Date Of
Birth (DOB), Social Security Number (SSN), personal cell-
phone, education information, and other lifestyle informa-
tion (sexual orientation, political beliefs, etc.) [30, 20, 26].
Naturally, inputting all these attributes into websites is a
manual process. Once input, however, some of the measure-
ment can potentially be done in an automated way. Some
studies measure the leakage of information that is not explic-
itly input but rather implicitly collected, such as geographic
co-ordinates, smartphone UDID [23], and browsing history
[40].

Methodological question 4. How do we tell if an at-
tribute is being leaked?

A simple approach is to store the set of strings correspond-
ing to the sensitive attribute, perform a pattern search on
the stored HTTP headers and other network communica-
tions, and manually identify false positives [20, 26]. An in-
teresting technique is “di�ng”: to modify the values of the
sensitive attributes stored with the first party and see which
fields of communication change [30]. Since values may be en-
coded or even encrypted, such a technique seems very useful.
We are not aware of serious e↵orts to automatically decode
encoded values that potentially contain sensitive attributes.



Methodological Focus Aspects Examples / Tools / Techniques

Targets (§3.1)
Data Collection stateful tracking (e.g., cookies), fingerprinting
Data Flow leakage of PII, personalization
Data Use price discrimination, targeted advertising

Infrastructure (§3.2)
Browser and driver user-agents, web drivers (e.g., Selenium)
Browser instrumentation proxies, add-ons, plug-ins

Variables & Analysis (§3.3)
Attributing causality randomized, controlled tests; avoiding confounds/cross-unit e↵ects
Demographic variables browsing histories based on gender, race, ethnicity, topical interest

Table 1: Methodological components of web privacy measurement studies

Eubank et al. showed that “growing cookies” contain either
lists of visited sites or behavioral segments, but were not
able to decode them [14].

Often leakages of sensitive attributes are accidental,
caused by poor engineering decisions. Other times they are
deliberate e↵orts to share information with third parties. It
is likely impossible to infer intent by analyzing the site; the
best that one can do is to check for leakage via URL or
POST parameters, as opposed to the referer (the former is
more likely to be deliberate than the latter) [22, 20].

Methodological question 5. How to detect cookie sync-
ing?

Olejnik et al. developed a method to detect a particularly
problematic type of data flow known as cookie syncing (also
known as “cookie matching”) [40]. Cookie syncing allows
two di↵erent third parties to link their pseudonymous cookie
IDs of the same user; the technique is for one third party
to include the cookie ID as a parameter of a URL which
is a redirection to the other third party. The authors first
detect this causal relationship between two successive HTTP
requests and then scan the requests for shared parameters
that could represent the cookie to be synced. We suggest
that a more rigorous approach would be to use Reisman
et al’s method for ID detection (described above) and only
check for parameter values that represent unique IDs.

3.1.3 Inferring data use based on personalization
The primary way to detect uses of sensitive information is

to detect personalization of web pages. A variety of targets
have been considered: behavioral ads, bid prices in online
auctions, web search results, product prices, and product
search results. These studies typically have the dual pur-
pose of confirming that data collection/flow is happening
and measuring the specific uses to which it is being applied.

Ads have attracted a lot of attention since there is a multi-
billion dollar industry dedicated to tailoring ads to individ-
uals. Balebako et al. examined Google text ads [9] on a
few specific publisher pages, AdReveal examined Flash and
image ads from Doubleclick [24], Guha et al. looked at text
ads in various contexts [18], and Wills and Tatar examined
all types of ads from Google [55]. While these studies largely
focused on ads from Google properties, Barford et al. ex-
panded their analysis to harvest over 175K distinct display
ads and analyze them to uncover the amount of ad target-
ting present in the Adscape [10].

Measuring ad personalization raises several major chal-
lenges. The first is to detect ads and reliably identify the
same ad in di↵erent contexts. In the studies above, this
was either done manually by visual inspection [18], by an-
alyzing ad text content [9, 47], or by manually identifying

URL patterns corresponding to ads [24]. Adscape utilized
Easylist filters and also used heuristics such as standardized
dimensions for image ads [10].
Detecting and uniquely identifying the same ad across

contexts (especially image and Flash ads) automatically in a
ad-network-independent manner appears to be well beyond
the capabilities developed so far. This task is not specific to
privacy measurement; for example, the ad search company
moat.com is attempting to tackle this challenge [private com-
munication].
Second, ads vary based on a large variety of factors in-

cluding inventory churn and A/B testing. Confounds and
noise apply to most types of personalization measurement,
and we discuss this issue further in Section 3.3. That said,
the level of noise in ads seems particularly high [18]. Third,
ad-based studies often need to identify the landing pages of
ads without being able to click on them (since that might
constitute click fraud).
A fascinating recent study by Olejnik et al. analyzed the

bid prices of real-time online auctions using a combination
of crowdsourcing and crawling [40]. Key to this study is the
fact that winning price notifications for auctions are sent
from one server to another (ad exchange to bidder) via the
browser. The authors were able to reverse engineer a number
of URL patterns and price formats corresponding to these
notifications (since there are a relatively small number of
firms involved, and there is some standardization of patterns
and formats, the authors were able to get a good coverage).
The reason for this architectural decision (server-browser-
server communication rather than server-server communi-
cation) by ad exchanges is unclear. Furthermore, the au-
thors were greatly aided by the fact that several of the com-
panies failed to encrypt these notifications (which they are
supposed to do for competitive reasons). If either of these
changes, it is entirely possible that the ability of independent
researchers to study auction prices will disappear.
Price discrimination was studied by Mikians et al [34];

they looked at listed prices on 200 online vendors. They
found that extracting prices in an automatic way is di�cult
and required vendor-specific scripts. In follow-up work they
increased the scale to 600 vendors via crowdsourcing [35].
By building a plugin that allows users to highlight prices
on a page, they built templates for extracting prices from
a page. In the former work they also considered search re-
sults and prices associated with them, both product search
results from web search engines such as Google and Bing,
and searches on e-commerce sites.
Three studies measure web search personalization[19, 56,

25]. Here the research challenges are not in content extrac-
tion, which is relatively straightforward, but in applying the
right controls, which we discuss in Section 3.3.



3.2 Infrastructure
Any infrastructure for web privacy measurement has two

components: input (visiting sites/pages) and output (mea-
surement of relevant targets). The former can be done man-
ually by the researcher, by crowdsourcing, or can be auto-
mated. The latter typically involves at least some automa-
tion. Our focus in this section is on automation methods.

3.2.1 Browser and driver
The three choices for the user agent are HTTP libraries

like curl or wget, lightweight browsers like PhantomJS (an
implementation of WebKit), and full-fledged browsers. None
of the studies we examined used the first option, for obvious
reasons: the results will have little relevance to what real
users experience on the web.

Methodological question 6. How to trade-o↵ perfor-
mance, simplicity, and stability vs. fidelity and programma-
bility in driving crawls?

Lightweight and full-fledged browsers were both quite
popular. The trade-o↵ is performance vs. fidelity. Phan-
tomJS has minimal resource consumption and allows 200
parallel instances on a commodity desktop [5]. The draw-
back is that it doesn’t support plugins and may di↵er in
other unknown ways from consumer browsers. Websites
may also specifically detect stripped-down browsers and
treat them as bots. Performing various measurements us-
ing both sets of browsers and comparing the results would
yield valuable insights into the validity of using stripped-
down browsers; this hasn’t been done, to our knowledge.

There are a variety of choices to drive crawls, i.e., to in-
struct the browser to visit a set of pages (and possibly to
perform a set of actions on each). The simplest choice is
to use Javascript to launch di↵erent pages in an iframe or
a separate window [14, 34]. The main advantage of this is
engineering simplicity; further, it is platform-agnostic and
makes comparisons between di↵erent browsers easier. The
disadvantage, of course, is that there is no programmability
beyond simply instructing the browser to visit a page.

More sophisticated choices are browser automation frame-
works such as CasperJS for PhantomJS and SlimerJS or Se-
lenium for Firefox, Chrome and PhantomJS. Selenium, in
particular, is extremely popular in the studies we analyzed,
since it is a cross-platform web driver for FireFox, Chrome,
Internet Explorer, and PhantomJS. But it comes at cost
of stability and scalability, with frequent crashes, memory
leaks, and process-blocking. All these frameworks provide
programmability, but only some come with built-in support
for headless browsing (e.g., PhantomJS but not Selenium).
Our platform, described in Section 4 drives a full commercial
browser but provides the stability of the lightweight frame-
works.

Several studies used a custom browser plugin to drive the
crawl, including Mikians et al, Krishnamurthy et al and
Roesner et al [34, 21, 45]. This makes sense mainly if a plug-
in is being used for the measurement task anyway. Finally,
if the focus is on automating tasks within a page rather than
visiting di↵erent pages, iMacros is a viable choice [34].

Methodological question 7. How to avoid bot detection?

Many websites have systems in place to detect clients that
are bots. The usual intention is to prevent undesirable be-
haviors such as click fraud, spam, and content extraction

via scraping. The most common response is blocking, but
we have heard unconfirmed reports of more subtle behavior
changes by websites such as disabling personalization.
Naturally, for WPM studies to be valid the experimenter

must ensure that the targets treat the measurement browser
instances as human users rather than bots. There is no
guarantee that this can be achieved in automated studies —
the measurement instances are bots, after all. One factor in
the experimenter’s favor is that bot detection techniques are
typically intended to defend against distributed operations
of a massive scale [43]. In WPM, on the other hand, the
large scale typically arises from the need to interact with nu-
merous (frequently, thousands) of targets in a single study.
From the viewpoint of any one target, the experimenter’s
actions are at a scale which a human, albeit a very patient
one, could execute in a matter of hours or days.

3.2.2 Browser instrumentation and proxying
Most studies require some automated way of saving infor-

mation from the browser. Modifying the browser to do this
is called instrumentation.

Methodological question 8. Should instrumentation be
done using a plugin, proxy, source-code modification, or a
combination?

Instrumentation is typically done via an add-on or exten-
sion, though editing the source code of open-source browsers
such as Chromium is sometimes preferred. Perhaps the best
browser instrumentation tool is FourthParty [31] which has
been used in several studies either directly or as a forked ver-
sion [30, 29, 12, 14, 16]. Several studies used custom plug-ins
[24, 35, 40]. This strategy is particularly useful in the case
of crowdsourced studies so that the plug-in can double as a
tool to extract information, visualize results, or both.
Several studies used a proxy instead of or in addition to

browser instrumentation. Mitmproxy and Fiddler were the
two popular choices, although custom proxies were also seen
[19, 34]. When automating measurements, a proxy is essen-
tial if browser instrumentation is not done (as was the case
with Mikians et al [34]). But proxies were also used to mod-
ify tra�c to get around limitations of the instrumentation
or automation framework. In Mikians et al [34] a proxy was
used to modify DNT headers to test the impact of Do-Not-
Track, as well as to strip X-Frame-Options headers to force
sites to be framed (they needed sites to be framed because
they used Javascript to drive the crawl). An ingenious ap-
plication of a proxy is seen in Hannak et al [19] where they
used crowdsourcing but had the users route tra�c through a
proxy controlled by researchers for easy data collection.

3.2.3 Other tasks
There are various subtasks that occur frequently and

may be considered part of the infrastructure. For exam-
ple, dumps from proxies are at a raw level and don’t contain
much helpful information, so researchers must build these
heuristically. The authors of FPDetective report detecting
Flash files by looking for “magic numbers” [5].
Request hierarchy detection is a frequently encountered

task. The idea is to detect the tree of causal relationships
between all resource loads triggered by a web page. As a
simple example, if a publisher embeds an ad iframe, there
would be an edge from the top-level page URL to the iframe
URL. Of course, web pages are complex, dynamic objects,



so this is tricky. The technique in Olejnik et al [40] de-
scribes the process of detecting the browser redirection that
is evidenced in the Referer header and the ability to prove
a causal relationship between HTTP requests. While this
is a good heuristic, it is not foolproof (requests made from
JavaScript, for instance, will not display the referer of the
script provider, but rather just the visited site).

Fingerprinting detection requires behavioral analysis of
web pages, both static analysis and dynamic analysis. Mayer
and Mitchell claimed that detecting fingerprinting is infea-
sible [31]; it is a testament to how fast the field evolves that
fingerprinting detection has already been carried out on a
web-wide scale [5]. In that paper, The authors used a tool,
JPEXS, to decompile Flash objects, search for various code
strings, and performed manual analysis to look for suspi-
cious calls, including calls that could send information back
to server or opening a socket to bypass system-wide proxy
settings. For dynamic analysis, they modified the browser
(WebKit) source code. The rationale was to be able to do
an in-depth behavioral analysis. This required deeper and
more fine-grained access to the browser than the plug-in API
provides, in addition to residing at a layer that JavaScript
cannot tamper with.

Several studies executed distributed versions of their
crawls [56, 19, 34, 40]. In almost every case this was done
via PlanetLab. While several studies used only a handful
of nodes (6 in Mikians et al [34], 10 in Hannak et al [19]),
the browser plug-in Bobble used 308 PlanetLab nodes to
measure Google search results [56].

3.3 Variables and analysis
Now we get to the methodologically trickiest part of web

privacy measurement studies: varying an input parameter
while keeping others fixed, and analyzing the behavior of
the site(s) to be able to causally attribute the di↵erences to
the change in the input parameter.

3.3.1 Attributing causality
The primary tool available to the researcher to attribute

causality between input and output is being able to run ran-
domized, controlled experiments. This need is crucial; most
of the studies that used crowdsourcing (which doesn’t al-
low controlled experiments) used it either as a preliminary
data-gathering phase or as a way to observe personalization
in the wild, without attributing it to specific factors.

Methodological question 9. Is scientifically rigorous
causality attribution possible with crowdsourced data gath-
ering?

We found exactly one exception: ProPublica’s Mes-
sageMachine, a project that reverse-engineers micro-
targeting in political campaign emails [1]. The project
collects emails received by project participants from the
Obama campaign, together with participants’ demographic
attributes. It then fits a decision-tree model to this data
based on said attributes (age, sex, household income, state,
and whether the user is a likely voter), and some features
gleaned from previous emails. While this is an interest-
ing approach, we caution that this type of analysis is not
methodologically rigorous and could easily result in overfit-
ting and causal misattribution.

Even with the ability to do randomized controlled ex-
periments, there are several confounding factors. Location,

User-Agent, etc. are obvious ones. Ads and search indices
are subject to temporal variation (churn). A tricky type
variation of temporal churn is the “carry-over e↵ect” in web
searches where the search history in the last 10 minutes af-
fects results [19]. Distributed systems such as search en-
gines have small but important consistency issues between
the di↵erent nodes, so the identity of the node that is queried
a↵ects the results. Of course, the normal load-balancing ar-
chitecture of these systems hides the identity of the node
from the client, necessitating workarounds.
In studies on price discrimination, it is insu�cient to

demonstrate that changing some user attribute (say, loca-
tion) a↵ects the observed price. This is because a supply-
side variable could be a confound: perhaps the firm incurs
di↵erent costs in shipping to di↵erent locations, and these
cost di↵erences are su�cient to explain price variations.
Only one study so far has been able to convincingly at-

tribute variations to demand-side variable [53]. They showed
that the distance between the center of the user’s ZIP code
and the nearest competitor store explained 90% of price dif-
ferences. While this doesn’t mathematically prove that there
isn’t a confound, it makes it extremely unlikely. Actually ex-
hibiting a demand-side model that predicts price di↵erences
is a superior standard than considering possible supply-side
variables and arguing that they are infeasible [35].

Methodological question 10. How to handle tricky con-
founds such as A/B testing?

A/B testing is another nasty confound. While the e↵ect of
random noise can be nullified by making repeat observations
from the same profile, the e↵ect of A/B testing cannot. For
example, perhaps some search engine segments new users
into one of two categories for testing, one with and the other
without personalization.1 The only way around this is to
average across di↵erent instances of synchronized crawlers
rather than di↵erent measurements from the same instance.
Together, the studies we analyzed used a variety of tech-

niques to increase the validity of causal attribution. The
exact set of techniques necessary depends on the goals. A
very common approach was to execute di↵erent crawls in
lockstep. For distributed crawls (to measure the e↵ect of
location) this is challenging; syncing using NTP can be used
[34]. Also common was to use the same IP or subnet to con-
trol for e↵ect of location. When the e↵ect of history tracking
needed to be eliminated in Mikians et al [34], they blocked
the referer header, 3rd party cookies, flash cookies and other
stateful trackers. However this doesn’t account for browser
fingerprinting. Finally, one study found it important to use
the Google search web interface rather than the API, since
these are known to return di↵erent results.
Profile pollution is a problem that a↵ects history-based

personalization measurement [10]. Suppose we wish to mea-
sure if a history reading sports articles causes the reader to
be recommended more sports articles, regardless of the page
that the user is currently visiting (i.e., behavioral as opposed
to contextual targeting). Doing the measurements (testing
phase) involves visiting articles in various categories. Unfor-
tunately this continues to train the system, and there is no
way to avoid it. Worse, the profile consisting of only sports
articles that the system has built for the observer now gets
“diluted” with non-sports articles. This problem seriously
1Of course, web privacy measurements themselves are a form
of A/B testing, so both sides end up A/B testing each other.



limits the number of test page visits as a fraction of training
page visits, which can only be compensated for by increasing
the sample size.

Methodological question 11. How to eliminate “cross-
unit e↵ects?”

The independence assumption is implicit in most studies:
the e↵ects (say, ad categories) observed are assumed to be
independent identically distributed samples from an under-
lying distribution, so that averaging will allow approximat-
ing that distribution. A related assumption is that the e↵ect
of variables changed in one browser instance do not a↵ect
the training step of other instances, even those on the same
machine. Tschantz et al. question both these assumptions,
and provide evidence of “cross-unit e↵ects” in the measure-
ment of the diversity of Google text ads [50]. These cross-
unit e↵ects could be due to browser fingerprinting or IP-
based tracking. If confirmed for other targets, this would be
problematic for rigorous web privacy measurement. Their
solution is a minimal set of statistical assumptions that can
only detect but not quantify e↵ects. Given the goals of most
of the studies we considered, this solution is unsatisfactory.
Another possible solution is to run measurements from a
variety of machines with di↵erent IPs in the same subnet,
and average across those. This would greatly complicate the
engineering task.

3.3.2 Variables: non-user-specific
Now we consider the techniques for changing input vari-

ables. First we consider those that are not inherent user
attributes; these are easier to change.

Methodological question 12. What are realistic ways to
vary the User-Agent and location attributes?

To change the User-Agent (to simulate di↵erent browsers,
operating systems, or a combination), there are two ap-
proaches. The trivial way is to simply change the User-
Agent string [19]. A more rigorous way is to actually change
the user agent [14, 34, 28, 47, 56]. This is much harder to
do because the researchers’ automation and measurement
infrastructure may only work on some platforms/browsers.
Nevertheless, this is worth striving for: we are aware that
some sites use scripts that check for the validity of the User-
Agent string, say by fingerprinting the browser JavaScript
engine, but it is not clear how widespread their use is.

Simulating a di↵erent location generally involves running
crawls from an IP at that location. As mentioned in 3.2,
PlanetLab has been a popular choice. Additional studies
used PlanetLab to vary the IP-geolocation of a crawl [56, 19,
34]. Some used cloud hosting, but there have been reports of
EC2 instances in particular either being located at a di↵erent
place than advertised, or bugs in geo-location APIs used by
measurement targets.

One study proxied its tra�c through machines at di↵er-
ent IPs instead of running the crawler out of them [53].
The same study also found a hack that applied to their spe-
cific target, staples.com: they found the user’s inferred ZIP
code stored in a cookie, and that modifying the cookie had
an e↵ect identical to measuring from an IP in the corre-
sponding ZIP. This type of “active” as opposed to passive
measurement has potential for other targets/measurements
as well, and seems to be underutilized.

Some studies examined the e↵ect of page context [34], and
other variables [40]. Other studies looked at the e↵ect of
using privacy tools including blocking tools, opt-out cookies,
and Do Not Track [9, 16, 29, 26].

3.3.3 Variables: demographics
In terms of user attributes, demographic variables such as

name, age, gender, race/ethnicity and a✏uence are the most
basic. When these variables are explicitly input into the
system such as by editing a profile page, it is straightforward
[19, 30, 26]. But when the variables are inferred, it can
be tricky. Sweeney used white- and black-identifying first
names (i.e., names highly correlated with certain ethnicities)
as web search inputs [47].

Methodological question 13. How to create realistic
browsing histories corresponding to di↵erent demographic
and interest categories?

Especially of interest is creating browsing histories corre-
sponding to di↵erent demographics, since various systems
have been hypothesized to learn these demographic cate-
gories from browsing patterns (behavioral ads in particu-
lar). A study of price discrimination modeled histories of
“a✏uent” and “budget” shoppers based on Alexa categories
[34]. Another study used the Quantcast list of top sites with
demographic breakdowns [19]. However, this data is incom-
plete and has limitations.

3.3.4 Variables: interest categories
Since behavioral segments often represent interest cat-

egories, numerous studies simulated browsing histories of
users with topical interests [34, 40]. As a practical mat-
ter, this choice was probably driven at least as much by the
availability of data from Alexa’s categorization of websites
as by any scientific considerations. Another choice was to
use Google search results for topical keywords [34]. (Addi-
tionally, it is also possible to simulate intent: in Olejnik et al
[40] this was done by visiting product pages on e-commerce
sites.)
While “extreme profiles” of interest categories are a useful

tool for detecting personalization, it is important to ask how
relevant the results are to the di↵erences that real users may
observe. In other words, how much of a topical skew exists
between the interest categories of typical users? This is not
clear.

Methodological question 14. How to obtain browsing
histories of real users for research?

The last point brings us to an important limitation: none
of the studies obtained real users’ browsing histories for con-
trolled experimentation. Search history on a small scale was
obtained and studied in mMjumder and Shrivastava, [25];
perhaps this is viewed as less privacy sensitive than brows-
ing history. If browsing histories tagged with demographic
attributes (say, race) were available, it would allow the ex-
perimenter to repeat those histories in di↵erent browser in-
stances, controlling other variables like location, and test the
hypothesis that race is inferred by existing advertising sys-
tems based on browsing history and is used to target ads.
Whether or not the inference is explicit or a side-e↵ect of
machine learning may not be possible to infer, but the di↵er-
ence would be immaterial if one is attempting to determine
disparate impact [54].



Browsing histories aggregated by demographic category,
together with a generative model for simulating an individ-
ual history from the aggregate, would be largely su�cient for
this purpose, although perhaps not as scientifically rigorous,
since all generative models have limitations.

Individual browsing histories without demographic at-
tributes would allow testing at least the extent of person-
alization seen by real users attributable to browsing history.
This is similar to crowdsourcing studies, but with better
controls. However, this hasn’t been done either. One con-
cern with this approach, even if technically feasible, is that
revisiting the entirety of real user browsing history is ethi-
cally problematic — some URLs may incorporate capability-
based access control or may include identifying/sensitive in-
formation, and visiting them may impact the user due to
poor engineering practices.

Studies outside the web privacy measurement community
have used various datasets of real user logs for studying other
questions [17, 15, 2]. We attempted to obtain these datasets,
but they were either no longer available or prohibitively ex-
pensive.

An interesting way to obtain an approximation to real
browsing history, but without demographic attributes, ap-
peared in Liu et al [24]. This is based on the AOL search
query log dataset, which consists of the queries made by
650,000 pseudonymous users over a three month period
(March–May 2006). For a subset of users, they submitted
each user’s search query to Bing and visited the top 5 results
returned. Of course, only a subset of real users’ web brows-
ing results from web searches. Nevertheless, such profiles
model two important aspects of real browsing histories: the
distribution of popularity of web pages visited, and the topi-
cal interest distribution of real users. The reason to recreate
the users’ searches on a current search engine rather than
simply using the sites visited by the AOL users (which are
recorded in the AOL dataset) is that the distribution of web-
sites visited by real users changes over time as websites rise
and fade in popularity, whereas the distribution of users’
interests can be expected to be more stable over time.

Finally, it is possible to obtain an approximation to real
browsing histories (tagged with demographic attributes)
from Twitter, under the assumption that Twitter users post
links that are a random sample of the pages they visit, and
using various heuristics to infer demographic characteristics
from user profiles. These heuristics were suggested in Mis-
love et al [36].

3.3.5 The use of machine learning.
Machine learning is useful in personalization measurement

in a few ways. First, if the experiments are not randomized
and controlled, it is the only way to determine the e↵ect
of the input on the output [1]. Second, even in controlled
experiments, in order to study the combined impact of more
than one variable learning may be necessary [55].

A quite di↵erent use appears in Guha et al [18] and
Franklin [16]. If the output is not a single variable or distri-
bution (say, the number of ads in each category), it becomes
tricky to determine if there is any impact of the input on the
output. In other words, if the experimenter does not have
a specific hypothesis for how the output is a↵ected by the
input, there is no test to apply. Machine learning can help:
showing that the input, framed as a hidden variable, can be
learned from the output demonstrates the existence of an ef-

fect, although it still doesn’t help determine what the e↵ect
is. We explore this further in Appendix A.

3.4 Engineering pitfalls and challenges
In our own experimental work and in discussions with

other researchers, we were struck by how often we face sim-
ilar engineering problems in getting these measurements to
work and to scale. To surface knowledge of these common
pitfalls and challenges, we reached out to nine groups of re-
searchers from our survey. Broadly, the responses fell into
four categories: (i) di�culties in automating crawls, espe-
cially due to instability of available tools (ii) limitations of
instrumentation tools and information extraction from web
pages, (iii) limitations of APIs and rate limits, and (iv) eth-
ical concerns. Appendix C has the details.

4. MEASUREMENT PLATFORM
By examining the challenges faced by other researchers,

we determined that our WPM platform should be flexible in
its ability to manage a wide variety of large-scale, automated
studies. This core vision translated into a few key design
requirements.

4.1 Requirements
WPM experiments consist of three major tasks. The first

task is mapping high-level commands, such as visiting URLs
or extracting news articles from websites, into automated
browser actions. The second task is collecting and consol-
idating crawl data, such as cookies set by the browser and
JavaScript calls, in a unified manner. The last task is to
create automated tools to perform specific analyses on the
data in order to answer individual research questions.
While the third component is study-specific, the browser

automation and measurement components are designed to
be general-purpose by adhering to the following principles.
Scalability. The primary advantage of browser automa-

tion is that it enables researchers to repeatedly visit sites at
a rate infeasible for humans. Hence, despite the potential
for page freezes, the platform should ensure steady progress
throughout a crawl and, potentially, increased speed through
browser parallelization.
Stability. During the course of a long crawl, a variety

of unpredictable events, such as page timeouts or browser
crashes, could halt the crawl’s progress or, even worse, cor-
rupt the data. The browser automation framework should
recover from such events gracefully, quickly and intact.
Abstraction layer. The platform’s automation API

should serve as a user-friendly abstraction, hiding the com-
plexities involved in performing browser tasks such as find-
ing and clicking buttons on a page. Keeping commands at
a high-level reduces the complexity of the scripts used for
driving experiments.
Modularity. In the course of actually implementing our

platform, we had to choose specific libraries for tasks such as
driving the browser. However, adopting a modular design
will enable us to easily switch the underlying tools in our
platform as new technologies emerge.
Realism. Our automation framework should mimic a

real person surfing the web as closely as possible—both in
terms of the underlying browsing technology and the way in
which the platform interacts with page. Websites detecting
automated browsers may act in a pathological manner, thus
weakening experimental results.



Figure 1: Generalized WPM framework
The task manager ensures crawls are robust, the browser
manager converts high-level commands into automated
browser actions and the data aggregator robustly receives
and pre-processes data from browser instrumentation tools.

Repeatability. To promote scientific rigor, the platform
should enable researchers to easily reproduce experiments.
It should also log as much data as possible in a standard-
ized format so research groups can easily run their analysis
scripts on data created by other teams to verify results.

4.2 Design and Implementation
We divided our browser automation and data collection

infrastructure into three main modules: browser managers
which act as an abstraction layer for automating individual
browser instances, a user-facing task manager which serves
to distribute commands to browser managers and a data
aggregator which acts as an abstraction layer for browser in-
strumentation. We implemented the entire WPM platform
using Python. A high-level diagram of our WPM platform
is contained in Figure 1.

Browser managers. Requiring browser managers as an
abstraction layer stems from our choice to use Selenium for
automation. In terms of its advantages, Selenium imple-
ments the WebDriver API for driving the major commercial
browsers (i.e. Firefox, Chrome, and Internet Explorer) and
support an extensive range of web technologies, such as plu-
gins, addons, HTML5 features. By leveraging pyvirtualdis-
play to interface with Xvfb and support headless browsing,
we increased the number of parallel browser instances that
can be run on a machine using Selenium and enabled crawls
to be executed on remote machines. Beyond not support-
ing various web standards, lightweight alternatives, such as
CasperJS-driven PhantomJS instances, are more suscepti-
ble to bot detection due to the underlying JavaScript engine
and edge cases in simulating browser behaviors [3].

Browser managers wrap around Selenium—instantiating
browser drivers given a configuration of user preferences (e.g.
turning on Do Not Track) as well as mapping high-level com-
mands (e.g. visiting a site) into specific Selenium subrou-
tines. Despite its advantages, Selenium frequently crashes
or hangs indefinitely due to its blocking API [7] as it was
designed to be a tool for webmasters to test their own sites
rather than an engine for automated crawls. Since each
browser manager exists within it own process, this abstrac-
tion layer protects other platform components from browser
failures and provides a clean interface for graceful recoveries.

Task manager. The task manager distributes user
commands to browser managers given the assumption that
crashes and freezes are inevitable over long crawls. The task
manager monitors the browser managers, restarting one if
it detects a crash or failure to complete a command within
a time limit (which can be set on a per-command basis).
In order to ensure that the individual browsers appear to
originate from the same user, the task manager passes user
preferences to restarted browser managers and copies over
user data such as cookie and history databases. As will be
discussed in the next subsection, the platform has native
support for di↵erent methods of issuing commands to mul-
tiple browser managers.
Data aggregator. In Section 3, browser automation and

instrumentation are presented as separate issues; however,
one of these two components crashing can fatally disrupt the
other. Since instrumentation tools often write data as well
as collect it, browser crashes (or instrumentation failures)
can severely corrupt data.
The data aggregator, which exists within its own process,

receives data during the course of the crawl, manipulates it
as necessary and writes it to a central SQLite database. By
exposing a socket interface to all browser instances, it serial-
izes data from an arbitrary number of browsers without the
need for database access on a per-browser basis. Further-
more, isolating the data aggregator behind a network inter-
face ensures that browser crashes in other process do not
corrupt the data. As opposed to client-server databases,
local databases do not require end-user setup and enable
researchers to easily share data. However, socket connec-
tions to the data aggregator easily provide support for other
frameworks such as MySQL as studies grow in scale.
We experimented with di↵erent instrumentation options,

including FourthParty and mitmproxy, primarily leveraging
the latter to drive our platform’s instrumentation. When
compared to plugin-based instrumentation, proxies reduce
the computational requirements placed on the browser itself,
enabling faster browsing.
As an example workflow, the browser manager receives

a command from the task manager to extract information
from a given news site. The manager translates it into a
series of low-level commands that instruct the browser driver
to visit the site and perform various actions on the page.
Browser instrumentation tools parse the page content and
send the relevant data (in this case, headlines) to the data
aggregator, which logs to the central database.

4.3 Advanced capabilities
Beyond implementing the core functionality required to

drive scalable crawls, we drew from the lessons of previous
WPM research to add additional features useful for conduct-
ing measurement studies in a rigorous and general manner.
Native multiprocessing support. Dividing a crawl

across multiple browsers speeds up the course of a mea-
surement while running multiple crawls in a synchronized
manner enables multiple measurements of the same object
without variation from temporal e↵ects. The Task Manager
API exposes four options for issuing commands to multi-
ple browser managers: (i) on a first-come-first serve basis,
(ii) to individual browser managers and to all browsers (iii)
synchronously or iv. asynchronously.
Bot detection mitigation. While intended to thwart

click-fraud and undesired web scraping, bot detection



threatens the validity of web measurement results. In order
to simulate real user behavior, we implemented countermea-
sures such as simulated mouse movements, screen scrolling
and randomized delays when loading pages.

Browser fingerprinting mitigation. For researchers
running multiple browsers from the same machine, exper-
iments may su↵er from cross-unit e↵ects if online trackers
link these browsers together through browser fingerprinting.
As a countermeasure, our platform enables researchers to
randomize browser settings or explicitly configure the user-
agent string, extensions pre-loaded into the browser and
screen resolution. Since Nikiforakis et al [37] note that ran-
domizing user-agent can cause a browser to receive HTML
designed for another type, adopting their suggestion for sup-
porting subtle variations in properties implemented at the
browser-level is one future direction in fingerprint mitiga-
tion.

Better profile support. As online tracking largely de-
pends on a variety of client-side persistent storage vectors to
the extent that these vectors have been observed respawn-
ing each other [46, 33], maintaining a persistent browsing
profile the includes these additional vectors is essential for
consistently simulating a user. Beyond adding support for
transferring browser preferences and storage vectors, such as
HTTP cookies, HTML5 localStorage, HTML5 Indexed DB
and Adobe Flash objects, between browser managers within
a crawl, we provide a simple interface for saving and loading
these profiles between crawls to enable simulating a specific
user over longer studies.

Log and replay architecture. In order to pro-
mote experiment reproducibility, the platform logs all user-
configurable parameters as well as the task master command
history, complete with timestamps and whether given com-
mands executed successfully. Following the public release of
our platform, researchers can use the history logs in order to
replay studies using an actual instance of the infrastructure.

Towards a distributed infrastructure. Drawing from
[56, 19, 34, 40], we have implemented measures to move
the platform to a distributed framework. First, further de-
coupling the task manger from the browser managers would
easily enable us to move browsers to remote machines given
an e↵ective means of inter-machine location. Expanding the
socket communication interface, already used for sending in-
formation to the data aggregator, in order to isolate compo-
nents of the platform is a clear next step for transitioning
to a fully-distributed platform.

4.4 Evaluation
Already, we have leveraged the new WPM platform to

conduct multiple large-scale experiments, including the news
personalization in the next section. We now present an
overview of our platform’s empirical performance, especially
with respect to our original design goals.

Stability. When running a light wrapper around Sele-
nium, without the isolation provided by a browser manager
and task manager, the stability was continually poor. Iso-
lating Selenium in a separate process allows us to detect
and handle all hangs or crashes and preserve a consistent
profile with which to continue crawling. Without process
isolation and a timeout of 40 seconds, the best average we
were able to obtain was 800 pages without a freeze or crash.
Even in small scale studies, the lack of recovery led to loss of
training profiles and measurement data. With isolation we

recover from all browser crashes and have observed no data
corruption during crawls of 10,000 pages while retaining a
continuous browsing profile. During the course of our news
personalization study described in Section 5, we successfully
crawled 281,494 pages and recovered from 2,252 failed page
loads.
Resource usage. When using the headless configura-

tion, we are able to run up to 20 browser instances on a
16GB, i7 quad-core commodity desktop. Due to Firefox’s
memory consumption, parallel crawls that require contin-
uous browsing history are memory limited while parallel
crawls which require a fresh browser with each page load
are typically CPU limited and can support a higher number
of instances. On the same machine we can run 35 browser
instances in parallel if the browser state is cleared after each
page load.
Generality. For the news crawls described in Section 5,

the browsing and measurement was completely automated
with the exception of writing custom template scripts for ex-
tracting headlines. Our platform was able to reduce the lines
of code (LOC) required to automate the experiment by 70%
over running the study on a a previously coded lightweight
Selenium wrapper. This reduction in LOC was comple-
mented by the modularity of the platform, where general
methods (e.g., link extraction) were included as a module
that can be shared across many experiments.
Modularity. Our platform abstracts away the details

of the automation framework and trivially supports other
browser/driver configurations, although thus far we have
only done large crawls with Firefox/Selenium. We support
di↵erent measurement options (instrumentation via Fourth-
Party, or proxying via mitmproxy) and have successfully
tested both in isolation and in combination.
Study reproducibility. A unified, open source plat-

form for web measurement presents an excellent opportunity
for measurement reproducibility and research transparency.
Ideally, a researcher can branch o↵ a stable version of the
repository, implement the relevant study-specific changes
and share the links to that repository to allow other re-
searchers to review the code used during measurement. In
addition, any bug-fixes or new platform features added can
be pulled back upstream to the platform repository for the
benefit of other researchers pursuing similar studies. The
combination of an open, stable forked release and a full com-
mand database could be used as an input to conduct a replay
of a crawl to verify a given set of results. Furthermore, our
platform also saves the browser settings used during an ex-
periment to ensure fingerprint consistency between sessions
or replays.
We have built a platform that allows us to quickly launch

new WPM experiments (we present such a case study in the
next section) and there are many possible studies that could
benefit from utilizing our infrastructure. We are eager to
collaborate with other researchers on such tasks as well as
new WPM studies, and avoid duplication of e↵ort. We plan
to open-source our platform at the earliest opportunity.

5. NEWS PERSONALIZATION
The level of personalization occurring on news outlets is a

concern often raised in the discussion of privacy, filter bub-
bles and their potential e↵ects. However, the current level
of measurement equates to anecdotal evidence or manual
study [48]. As proof-of-concept of the e↵ectiveness of our



Figure 2: News Personalization Measurement
Code for experiments run on OpenWPM communicate with
the Task Manager. We also implemented a module to per-
form custom tasks specific to our news study.

generalized infrastructure, we present an automated, rigor-
ous measurement of history based personalization of article
topics on several major news sites conducted using our in-
frastructure (see Figure 2).

5.1 Measurement Procedure
Training phase. Measuring news personalization re-

quired creating a variety of profiles that mimic the past
browsing behavior of users interested in specific topics. In
order to maximize the likelihood of observing personaliza-
tion, we created extreme profiles of users who browse one
specific topic (e.g., sports) within each news publisher. We
also maintained a control profile which contained no history
or cookies at initialization and was not configured to prevent
cookie setting or caching.

To create extreme profiles, we first collected links to news
articles within each publisher. This was done by crawling
and parsing sitemap XML files. We then utilized a text
classification service, Aylien, to classify each news article.
For each URL uploaded to the service, it returns the In-
ternational Press Telecommunications Council (IPTC) sub-
ject code and relevancy score for the article located at the
link. We then mapped each IPTC code to its first-level
subject code (i.e., sport/basketball/NBA would be mapped
to simply sport). Utilizing a common classifier across all
publishers is important as separate publishers have the po-
tential to categorize similar article content in di↵erent cat-
egories. Through manual inspection, we verified our classi-
fier to be subjectively accurate when using publisher-specific
categories as ground truth.

With a database containing publishers and classified ar-
ticles, we created profiles for the five categories that con-
tained the largest number of links for a given publisher and
category. To accumulate browsing history over time, we au-
tomated profile generation to execute daily. For each of the
six categories (five IPTC categories and one control with
no history), we simulated eight users browsing to fifty ran-
domly chosen links within each respective category. These
432 user profiles browsed over 450 links each during the
training phase that spanned two weeks.

Measurement targets. We focused our e↵orts on nine
of the most prominent news websites: Fox News, CNN,

BBC, USA Today, Daily Mail, Hu�ngton Post, Time, The
Guardian, and NBC News2. We sought to measure person-
alization stemming from browsing content entirely within a
given publisher (intrasite personalization).
We extracted headlines from content areas on these pub-

lisher sites, both on the front page and on article pages,
based on a visual inspection to identify content areas that
might possibly show topic-wise personalization. On arti-
cle pages, the bulk of these content areas turned out to be
from third-party recommendation boxes run by Taboola3

and Outbrain4, two large content recommendation and de-
livery engines which are found on many mainstream news
publishers. These third-party providers track user inter-
action with the news publisher in order to provide recom-
mended content both from within the publisher and across
the web to sponsored articles. The content areas we stud-
ied can be broken down down into groups served by content
recommendation engines. Taboola serves Daily Mail, USA
Today, Hu�ngton Post, and Time while Outbrain serves
CNN, Fox News, The Guardian, and NBC News. BBC pro-
vides only native recommendations.
Measurement phase. For each (profile, publisher) pair,

we initialize a browser instance with the corresponding pro-
file and visit the front page of the publisher followed by a set
of randomly selected articles from that publisher which are
stored in our database. We then collect the headlines and
links for those articles located in a “Latest Headlines” box.
This list of articles contains links to content recently added
to the publisher within a variety of categories. Note that
each publisher labels this list with slight variations (e.g.,
“Recent Headlines”).

On each article page visit, we collect links from two types
of content boxes. “More From [Publisher]” is a list presenting
recommended content that is hosted within the publisher.
If no third-party content recommendation provider is used,
this is the only list presented to the user. “Around the Web”
provides links to articles on other publisher sites.
Preventing Confounds. To mitigate cross-unit e↵ects,

we randomized the user-agent and extensions used for each
browser instance, and disabled Flash content, to ensure that
di↵erent instances appear to be di↵erent users.5 To prevent
skew from churn of site contents, we synchronized all the
browser instances (control and training) by exercising the
native multiprocessing capability a↵orded by our platform.
We ensured that each instance visits the same set of links
at the same time during the measurement phase. Lastly,
during manual inspection of the collected data we observed
A/B testing of article headlines (di↵erent headlines for the
same article), but since we classify based on article text this
has no e↵ect on measurement.

5.2 Experiments
Personalization. We run crawls on each publisher using

browser instances trained by browsing on the same pub-
lisher’s site. The training is done by visiting a set of 50 arti-
cles per interest category (e.g. technology articles) on each

2We omitted the New York Times and the Wall Street Jour-
nal sites because of their paywalls
3
http://www.taboola.com

4
http://www.outbrain.com

5We checked the Flash content of several pilot crawls to
verify that no unique identifiers are stored for the publishers
or content recommendation services studied.



site, every day or two over a span of two weeks. In the mea-
surement phase of the study, each profile visits the front page
of its respective publisher as well as 50 articles pages cho-
sen randomly from any category. With a per-profile training
phase consisting of over 450 article visits and a measurement
phase consisting of 50 article visits, we maintained a ratio
of at least 9 to 1 training to measurement URLs traversed.

Contextual recommendation. We run crawls on each
publisher without building any browsing history to make a
measurement of contextual recommendation. For each (pub-
lisher, category) pair, a clean browser instance is loaded and
a single visit to an article in that category is made. This
measurement is repeated up to 50 times per category.

5.3 Analysis
We measure personalization by computing the skew in ob-

served article categories toward or away from the training
category. For example, a browser instance trained on sports
articles might see an overall increase in the number of sports-
related articles recommended, or it might see a decrease and
a corresponding increase in other categories. For each mea-
surement we apply the binomial test for statistical signifi-
cance of an increase or decrease, as opposed to the null hy-
pothesis that there is no di↵erence in the expected number
of recommended articles in the training category compared
to control instances. Each displayed article is considered to
be an independent trial and a success is defined as an article
belonging to the same category as the training profile.

To summarize our results, we found no statistically signifi-
cant deviations of trained instances from control instances in
article category distribution for front page visits. As such,
the remainder of the analysis will focus on di↵erences of
headlines displayed on article pages.

On the article pages of both the Outbrain and Taboola
news publishers we find statistically significant levels of per-
sonalization in many of the news boxes, as summarized in
Table 2 in the Appendix.6 However, the levels of personal-
ization are quantitatively small, with a level of change be-
tween the control and measurement set of articles ranging
from 3.1% and 19.2%. To be able to estimate these small
sample sizes and reject the null hypothesis, we used large
sample sizes amounting to thousands of article views for
each publisher/category pair. We also limit our analysis to
categories which comprise at least 10% of the overall num-
ber of links seen by the control. Our statistical confidence
is reflected in the p-values.

The results for which we measure a statistically signifi-
cant level of contextual recommendation are shown in Ap-
pendix 3. The levels of contextual recommendation are rela-
tively consistent across publishers with most having between
20% and 40% increase in the number of articles that match
the category of the host article over average. These results
show that contextual recommendation is a very strong e↵ect
in the absence of browsing history. Note that the presence of
strong contextual recommendation does not influence per-
sonalization measurements presented earlier as each set of
measurements occurs on the same set of articles and there-
fore experienced the same contextual e↵ects.

Aside from its contribution to the “filter bubble”dialogue,

6We tested for and rejected the hypothesis that our results
could be skewed by other types of personalization like pub-
lishers not recommending an article that the simulated user
has already read.

this study further underscores the potential for our platform.
WPM studies previously executed were often limited in scale
due to frequent crashes and data corruption which often re-
quired some amount of periodic manual intervention. Illus-
trating the scale of studies that are possible with our plat-
form, our news study created 432 user profiles trained on
255,790 page visits and conducted a measurement of 25,704
articles with 14 synchronized browser instances at a time -
something that would have simply been previously infeasi-
ble. Furthermore, personalization is di�cult to detect and
requires rigorous experiment methods which our platform
provides support for out of the box.

5.4 Limitations
It is important to point out several limitations of our case

study, and to clarify that we do not claim to have conclu-
sively proved the absence of a filter bubble. First, we only
looked for history-based personalization and not location-
based or other types of personalization. Of course, news
websites have local editions and possibly other types of lo-
calized customization, but this is not as much of a privacy
concern as history-based personalization since it doesn’t re-
quire tracking of users.
Second, we used human judgment to determine which con-

tent areas of news websites had any possibility of history-
based personalization based on the description. It is possible
that we have missed some. Future work focuses on obtain-
ing all the links on a page in an attempt to measure the
topic skew over all articles presented to the user. However,
our discussions with publishers revealed a rationale for serv-
ing personalized content within limited areas: server-side
caching limitations would e↵ectively prevent a large-scale
implementation of site-wide dynamic content. Personalizing
entire pages for every site visitor would be impractical.

6. CONCLUSION
Web privacy measurement has the potential to play a key

role in helping academics, journalists and other neutral par-
ties keep online privacy incursions and power imbalances in
check. To achieve this potential, WPM needs scientific rigor
as well as improvements in the ability to design and run ex-
periments on a wide scale. In this work, we’ve taken steps to
unify the field conceptually, methodologically, and by pre-
senting a flexible experimental platform. We are keen to
collaborate and are planning to open-source our platform as
well as share data from our crawls.
As an agenda for the field, we present four key items.

First, applying machine learning based information extrac-
tion techniques so that WPM research can be carried out
on a web-wide scale instead of focusing on specific sites,
providers, or trackers. Second, continuing improvements to
the infrastructure, in particular, adding “high-level capabili-
ties”such as logging into websites with a given username and
password. Third, a central repository for sharing crawl data
as well as other lists such as XPaths, templates, or regular
expressions for extracting relevant information from pages.
Finally, automated, longitudinal measurements so that pri-
vacy practices of various entities can be monitored over time
— a “web privacy census.”
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APPENDIX
A. MACHINE LEARNING AND FAIRNESS

Determining if a personalization algorithm that uses ma-
chine learning is “fair,” i.e., ethical, raises unresolved con-
ceptual and empirical questions. For example, suppose that
we agree that targeting/personalization by race is unfair.
But what if the personalization algorithm uses a latent fac-
tor model and one of the latent factors that gets learned
is strongly correlated with race? In other words, a su�-
ciently complex personalization system may behave as if it
discriminates against a certain group of users, even if such
behavior was not intentionally programmed into the system.
In fact, this phenomenon does happen in practice and was
the subject of one of the studies we analyzed [47].

Typically the personalization system is a black box, and
the experimenter must be content with uncover such rela-
tionships, and will not be able to ascribe intent. Even this is
tricky, in the absence of a hypothesis for just how the sensi-
tive attribute a↵ects the observed output. Here we present
a generic methodology for this task.

We assume that we are able to generate training and con-
trol browser instances that simulate users who di↵er only
in the attribute of interest X (in the study cited above,
this translated to generating names that are highly statisti-
cally correlated to white and black individuals respectively).
Then we follow the paradigm considered throughout this pa-
per, and carry out the training and measurement phases of
the experiment, in each case generating a vector of observ-
ables Y (for example, a set of ads seen). Finally, we frame
our task as a learning problem to see if X can be learned from
Y. If the learning task succeeds with an AUC of over 50%
(for a binary variable), we can assert that the personaliza-
tion system behaves as if it personalizes on the basis of the
sensitive attribute X. This methodology is a generalization
of the one considered in [16].

B. PUBLISHER CATEGORIES STUDIED
The full list of categories by publisher included within our

study is included below.

• Fox News - Sport; Politics; Religion and Belief; Un-
rest, Conflicts and War; Disaster and Accident

• CNN - Religion and Belief; Politics; Sport; Disaster
and Accident; Unrest, Conflicts, and War

• Daily Mail - Sport; Religion and Belief; Arts, Culture,
and Entertainment; Health; Human Interest

• BBC - Sport; Politics; Unrest, Conflicts, and War;
Economy, Business, and Finance; Lifestyle and Leisure

• The Guardian - Arts, Culture, and Entertainment;
Economy, Business, and Finance; Religion and Belief;
Sport; Politics

• NBC - Politics; Unrest, Conflicts, and War; Economy,
Business, and Finance; Disaster and Accident; Religion
and Belief

• Time - Politics; Arts, Culture, and Entertainment;
Economy, Business, and Finance; Religion and Belief;
Health

• USA Today - Politics; Economy, Business, and Fi-
nance; Unrest, Conflicts, and War; Religion and Belief;
Health

• Hu�ngton Post - Religion and Belief; Health; Arts,
Culture, and Entertainment; Politics; Sport

C. ENGINEERING CHALLENGES
In our own experimental work and in discussions with

other researchers, we were struck by how often we face sim-
ilar engineering problems in getting these measurements to
work and to scale. Published studies emphasize the design
and the results, omitting the “tricks-of-the-trade”.
To surface knowledge of these common pitfalls and chal-

lenges, we reached out to nine groups of researchers from
our survey. All responded. Since many publications share
one or more authors, this represents the majority of studies
that use browser automation. Even though we asked for “a
paragraph or two,” to our surprise we received quite detailed
responses without exception. A few respondents expressed
gratitude for our e↵ort, and one even described the opportu-
nity to write about these engineering pitfalls as “cathartic.”
Browser automation. Several groups experienced

crashes and bugs with Selenium. One group was forced to
abandon using MSIE with Selenium because of crashing is-
sues. Selenium has several other issues including di�culty
of obtaining third-party cookies in earlier versions. Another
near-universal di�culty is not being able to know when a
page is fully loaded; the typical solution is to wait some
number of seconds and hope that it is su�cient. Di�culties
with getting Selenium to run headless were also encountered.
Instrumentation and data extraction. Here the chal-

lenges are more task-specific since they relate to data extrac-
tion from web pages. A frequent problem is generating sta-
ble references to page elements, given that page templates
are dynamic and often change. When <id> tags aren’t
available, XPaths need to be used, but these require re-
peated manual re-engineering. Some instrumentation tools
had limitations and had di�culty examining nested iframes.
Generally researchers used more heuristic than principled
approaches. One group even tried screen captures with hu-
man coders, but this failed because screen captures were
often blank when running via Selenium.
Due to automation and instrumentation di�culties, many

studies that had started out in an ambitious manner ended
up focusing on a small number of browser/client configura-
tions or websites.
Request bottlenecks and API limitations. Multi-

ple groups ran into rate limits for di↵erent websites and saw
their IPs blacklisted, and so had to throttle their crawling to
stay under these limits. They also distributed their infras-
tructure between di↵erent IPs for this reason, and/or used
Tor. Many APIs also have rate limits, and in addition were
unreliable so researchers found web scraping to be a better
option.
Ethical concerns. In addition to the ethics of potential

ToS violations inherent in web crawling, researchers pointed
out a number of ethical and legal issues. Many studies on
the ad ecosystem face the limitation of not being able to
access ad landing pages since that would constitute click
fraud. Inferring information about the ad without doing this
is di�cult. One group had the workaround of feeding URLs
to Google AdWords and looking at the keywords returned.



This is a legal gray zone since it forces Google to click on
the ad. Crowdsourced studies were limited by privacy con-
cerns of participants. While it is tempting to over-collect
instrumentation data and filter it on the server, this would
violate privacy.

D. CONTEXTUAL RECOMMENDATION
RESULTS
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Figure 3: Contextual Recommendation
MF = More From [Publisher], AW = Around the Web
USA-MF* is an extra More From [Publisher] box which

recommends a single link

This plot shows the percentage change in the number of
articles matching the context of the host article over the
average number of articles of that category seen in all host
articles. Each point represents a category of a publisher and
each column is a publisher, location combination.

E. NEWS PERSONALIZATION RESULTS

Loc. Pub/Cat Control Trained(Change) P-Value

AW

CNN/R 257/2281 390/2266(+5.9%) < 0.01
DM/E 322/1463 179/1439(-9.6%) < 0.01
DM/H 561/1463 653/1334(+10.6%) < 0.01
FN/S 763/2263 846/2236(+4.1%) < 0.01
NBC/R 74/583 95/585(+3.5%) < 0.05
GUA/R 48/322 63/317(+5.0%) < 0.05
TIME/H 92/289 58/279(-11.0%) < 0.01

MF

FN/R 516/2409 428/2404(-3.6%) < 0.01
NBC/F 69/566 149/567(+14.1%) < 0.01
TIME/H 108/966 70/871(-3.1%) < 0.01
TIME/P 378/966 178/895(-19.2%) < 0.01

Table 2: News Site Personalization

Change in the count of the number of article links matching
the browsing profile compared to the amount seen by the
control.

Publishers: DM - Daily Mail, FN - Fox News, NBC -
NBC News, GUA - The Guardian, TIME - Time

Categories: R - Religion and Belief, E - Arts, Cul-
ture, and Entertainment, H - Health, S - Sport, F -
Economy, Business, and Finance, P - Politics

F. OVERVIEW OF STUDIES ANALYZED
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