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ABSTRACT
We present the largest and most detailed measurement of
online tracking conducted to date, based on a crawl of the
top 1 million websites. We make 15 types of measurements
on each site, including stateful (cookie-based) and stateless
(fingerprinting-based) tracking, the effect of browser privacy
tools, and the exchange of tracking data between different
sites (“cookie syncing”). Our findings include multiple so-
phisticated fingerprinting techniques never before measured
in the wild.

This measurement is made possible by our open-source
web privacy measurement tool, OpenWPM1, which uses an
automated version of a full-fledged consumer browser. It
supports parallelism for speed and scale, automatic recovery
from failures of the underlying browser, and comprehensive
browser instrumentation. We demonstrate our platform’s
strength in enabling researchers to rapidly detect, quantify,
and characterize emerging online tracking behaviors.

1. INTRODUCTION
Web privacy measurement — observing websites and ser-

vices to detect, characterize and quantify privacy-impacting
behaviors — has repeatedly forced companies to improve
their privacy practices due to public pressure, press cov-
erage, and regulatory action [5, 15]. On the other hand,
web privacy measurement presents formidable engineering
and methodological challenges. In the absence of a generic
tool, it has been largely confined to a niche community of
researchers.

We seek to transform web privacy measurement into a
widespread practice by creating a tool that is useful not just
to our colleagues but also to regulators, self-regulators, the
press, activists, and website operators, who are often in the
dark about third-party tracking on their own domains. We
also seek to lessen the burden of continual oversight of web
tracking and privacy, by developing a robust and modular
platform for repeated studies.

OpenWPM (Section 3) solves three key systems challenges
faced by the web privacy measurement community. It does
so by building on the strengths of past work, while avoiding
the pitfalls made apparent in previous engineering efforts.
(1) We achieve scale through parallelism and robustness by
utilizing isolated measurement processes similar to FPDetec-
tive’s platform [2], while still supporting stateful measure-
ments. We’re able to scale to 1 million sites, without having

1https://github.com/citp/OpenWPM

to resort to a stripped-down browser [31] (a limitation we
explore in detail in Section 3.3). (2) We provide compre-
hensive instrumentation by expanding on the rich browser
extension instrumentation of FourthParty [33], without re-
quiring the researcher to write their own automation code.
(3) We reduce duplication of work by providing a modular
architecture to enable code re-use between studies.

Solving these problems is hard because the web is not de-
signed for automation or instrumentation. Selenium,2 the
main tool for automated browsing through a full-fledged
browser, is intended for developers to test their own web-
sites. As a result it performs poorly on websites not con-
trolled by the user and breaks frequently if used for large-
scale measurements. Browsers themselves tend to suffer
memory leaks over long sessions. In addition, instrument-
ing the browser to collect a variety of data for later analy-
sis presents formidable challenges. For full coverage, we’ve
found it necessary to have three separate measurement points:
a network proxy, a browser extension, and a disk state mon-
itor. Further, we must link data collected from these dis-
parate points into a uniform schema, duplicating much of
the browser’s own internal logic in parsing traffic.

A large-scale view of web tracking and privacy.
In this paper we report results from a January 2016 mea-

surement of the top 1 million sites (Section 4). Our scale
enables a variety of new insights. We observe for the first
time that online tracking has a “long tail”, but we find a
surprisingly quick drop-off in the scale of individual track-
ers: trackers in the tail are found on very few sites (Sec-
tion 5.1). Using a new metric for quantifying tracking (Sec-
tion 5.2), we find that the tracking-protection tool Ghostery
(https://www.ghostery.com/) is effective, with some caveats
(Section 5.5). We quantify the impact of trackers and third
parties on HTTPS deployment (Section 5.3) and show that
cookie syncing is pervasive (Section 5.6).

Turning to browser fingerprinting, we revisit an influential
2014 study on canvas fingerprinting [1] with updated and im-
proved methodology (Section 6.1). Next, we report on sev-
eral types of fingerprinting never before measured at scale:
font fingerprinting using canvas (which is distinct from can-
vas fingerprinting; Section 6.2), and fingerprinting by abus-
ing the WebRTC API (Section 6.3), the Audio API (Section
6.4), and the Battery Status API (6.5). Finally, we show
that in contrast to our results in Section 5.5, existing pri-
vacy tools are not effective at detecting these newer and
more obscure fingerprinting techniques.

2http://www.seleniumhq.org/
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Overall, our results show cause for concern, but also en-
couraging signs. In particular, several of our results suggest
that while online tracking presents few barriers to entry,
trackers in the tail of the distribution are found on very few
sites and are far less likely to be encountered by the av-
erage user. Those at the head of the distribution, on the
other hand, are owned by relatively few companies and are
responsive to the scrutiny resulting from privacy studies.

We envision a future where measurement provides a key
layer of oversight of online privacy. This will be especially
important given that perfectly anticipating and preventing
all possible privacy problems (whether through blocking tools
or careful engineering of web APIs) has proved infeasible.
To enable such oversight, we plan to make all of our data
publicly available (OpenWPM is already open-source). We
expect that measurement will be useful to developers of pri-
vacy tools, to regulators and policy makers, journalists, and
many others.

2. BACKGROUND AND RELATED WORK
Background: third-party online tracking. As users

browse and interact with websites, they are observed by both
“first parties,” which are the sites the user visits directly, and
“third parties” which are typically hidden trackers such as
ad networks embedded on most web pages. Third parties
can obtain users’ browsing histories through a combination
of cookies and other tracking technologies that allow them
to uniquely identify users, and the “referer” header that tells
the third party which first-party site the user is currently
visiting. Other sensitive information such as email addresses
may also be leaked to third parties via the referer header.

Web privacy measurement platforms. The closest
comparisons to OpenWPM are other open web privacy mea-
surement platforms, which we now review. We consider a
tool to be a platform if is is publicly available and there is
some generality to the types of studies that can be performed
using it. In some cases, OpenWPM has directly built upon
existing platforms, which we make explicit note of.

FPDetective is the most similar platform to OpenWPM.
FPDetective uses a hybrid PhantomJS and Chromium based
automation infrastructure [2], with both native browser code
and a proxy for instrumentation. In the published study, the
platform was used for the detection and analysis of finger-
printers, and much of the included instrumentation was built
to support that. The platform allows researchers to conduct
additional experiments by replacing a script which is exe-
cuted with each page visit, which the authors state can be
easily extended for non-fingerprinting studies.

OpenWPM differs in several ways from FPDetective: (1)
it supports both stateful and stateless measurements, whereas
FPDetective only supports stateless (2) it includes generic
instrumentation for both stateless and stateful tracking, en-
abling a wider range of privacy studies without additional
changes to the infrastructure (3) none of the included instru-
mentation requires native browser code, making it easier to
upgrade to new or different versions of the browser, and (4)
OpenWPM uses a high-level command-based architecture,
which supports command re-use between studies.

Chameleon Crawler is a Chromium based crawler that uti-
lizes the Chameleon3 browser extension for detecting browser
fingerprinting. Chameleon Crawler uses similar automation

3https://github.com/ghostwords/chameleon

components, but supports a subset of OpenWPM’s instru-
mentation.

FourthParty is a Firefox plug-in for instrumenting the
browser and does not handle automation [33]. OpenWPM
has incorporated and expanded upon nearly all of Fourth-
Party’s instrumentation (Section 3).

WebXray is a PhantomJS based tool for measuring HTTP
traffic [31]. It has been used to study third-party inclusions
on the top 1 million sites, but as we show in Section 3.3,
measurements with a stripped-down browser have the po-
tential to miss a large number of resource loads.

TrackingObserver is a Chrome extension that detects track-
ing and exposes APIs for extending its functionality such as
measurement and blocking [48].

XRay [27] and AdFisher [9] are tools for running auto-
mated personalization detection experiments. AdFisher builds
on similar technologies as OpenWPM (Selenium, xvfb), but
is not intended for tracking measurements.

Common Crawl4 uses an Apache Nutch based crawler.
The Common Crawl dataset is the largest publicly available
web crawl5, with billions of page visits. However, the crawler
used does not execute Javascript or other dynamic content
during a page visit. Privacy studies which use the dataset
[49] will miss dynamically loaded content, which includes
many advertising resources.

Crowd-sourcing of web privacy and personalization mea-
surement is an important alternative to automated brows-
ing. $heriff and Bobble are two platforms for measuring per-
sonalization [35, 65]. Two major challenges are participant
privacy and providing value to users to incentivize partici-
pation.

Previous findings. Krishnarmurthy and Wills [24] pro-
vide much of the early insight into web tracking, showing the
growth of the largest third-party organizations from 10% to
20-60% of top sites between 2005 and 2008. In the following
years, studies show a continual increase in third-party track-
ing and in the diversity of tracking techniques [33, 48, 20,
2, 1, 4]. Lerner et al. also find an increase in the prevalence
and complexity of tracking, as well as an increase in the
interconnectedness of the ecosystem by analyzing Internet
Archive data from 1996 to 2016 [29]. Fruchter et al. stud-
ied geographic variations in tracking [17]. More recently,
Libert studied third-party HTTP requests on the top 1 mil-
lion sites [31], providing view of tracking across the web. In
this study, Libert showed that Google can track users across
nearly 80% of sites through its various third-party domains.

Web tracking has expanded from simple HTTP cookies to
include more persistent tracking techniques. Soltani et al.
first examined the use of flash cookies to “respawn” or re-
instantiate HTTP cookies [53], and Ayenson et al. showed
how sites were using cache E-Tags and HTML5 localStor-
age for the same purpose [6]. These discoveries led to media
backlash [36, 30] and legal settlements [51, 10] against the
companies participating in the practice. However several
follow up studies by other research groups confirmed that,
despite a reduction in usage (particularly in the U.S.), the
technique is still used for tracking [48, 34, 1].

Device fingerprinting is a persistent tracking technique
which does not require a tracker to set any state in the user’s

4https://commoncrawl.org
5https://aws.amazon.com/public-data-sets/common-
crawl/
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browser. Instead, trackers attempt to identify users by a
combination of the device’s properties. Within samples of
over 100,000 browsers, 80-90% of desktop and 81% of mobile
device fingerprints are unique [12, 26]. New fingerprinting
techniques are continually discovered [37, 43, 16], and are
subsequently used to track users on the web [41, 2, 1]. In
Section 6.1 we present several new fingerprinting techniques
discovered during our measurements.

Personalization measurement. Measurement of track-
ing is closely related to measurement of personalization,
since the question of what data is collected leads to the ques-
tion of how that data is used. The primary purpose of online
tracking is behavioral advertising — showing ads based on
the user’s past activity. Datta et al. highlight the incom-
pleteness of Google’s Ad Settings transparency page and
provide several empirical examples of discriminatory and
predatory ads [9]. Lécuyer et al. develop XRay, a system
for inferring which pieces of user data are used for personal-
ization [27]. Another system by some of the same authors is
Sunlight which improves upon their previous methodology
to provide statistical confidence of their targeting inferences
[28].

Many other practices that raise privacy or ethical con-
cerns have been studied: price discrimination, where a site
shows different prices to different consumers for the same
product [19, 63]; steering, a gentler form of price discrimina-
tion where a product search shows differently-priced results
for different users [32]; and the filter bubble, the supposed
effect that occurs when online information systems person-
alize what is shown to a user based on what the user viewed
in the past [65].

Web security measurement. Web security studies of-
ten use similar methods as web privacy measurement, and
the boundary is not always clear. Yue and Wang modified
the Firefox browser source code in order to perform a mea-
surement of insecure Javascript implementations on the web
[67]. Headless browsers have been used in many web security
measurements, for example: to measure the amount of third-
party Javascript inclusions across many popular sites and
the vulnerabilities that arise from how the script is embed-
ded [40], to measure the presence of security seals on the top
1 million sites [62], and to study stand-alone password gener-
ators and meters on the web [60]. Several studies have used
Selenium-based frameworks, including: to measure and cat-
egorize malicious advertisements displayed while browsing
popular sites [68], to measure the presence of malware and
other vulnerabilities on live streaming websites [46], to study
HSTS deployment [21], to measure ad-injecting browser ex-
tensions [66], and to emulate users browsing malicious web
shells with the goal of detecting client-side homephoning
[55]. Other studies have analyzed Flash and Javascript el-
ements of webpages to measure security vulnerabilities and
error-prone implementations [42, 61].

3. MEASUREMENT PLATFORM
An infrastructure for automated web privacy measure-

ment has three components: simulating users, recording ob-
servations (response metadata, cookies, behavior of scripts,
etc.), and analysis. We set out to build a platform that
can automate the first two components and can ease the
researcher’s analysis task. We sought to make OpenWPM
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Figure 1: High-level overview of OpenWPM
The task manager monitors browser managers, which con-
vert high-level commands into automated browser actions.
The data aggregator receives and pre-processes data from
instrumentation.

general, modular, and scalable enough to support essentially
any privacy measurement.

OpenWPM is open source and has already been used for
measurement by several published studies. Section 3.4 in
the supplementary materials examines the advanced features
used by each study. In this paper we present, for the first
time, the design and evaluation of the platform and highlight
its strengths through several new measurements.

3.1 Design Motivations
OpenWPM builds on similar technologies as many previ-

ous platforms, but has several key design differences to sup-
ports modular, comprehensive, and maintainable measure-
ment. Our platform supports stateful measurements while
FPDetective [2] does not. Stateful measurements are im-
portant for studying the tracking ecosystem. Ad auctions
may vary based on cookie data. A stateless browser always
appears to be a new user, which skews cookie syncing mea-
surements. In addition to cookie syncing studied in this
paper, stateful measurements have allowed our platform to
be used to study cookie respawning [1] and replicate realistic
user profiles [14].

Many past platforms rely on native instrumentation code
[39, 52, 2], which have a high maintenance cost and, in some
cases a high cost-per-API monitored. In our platform, the
cost of monitoring new APIs is minimal (Section 3.3) and
APIs can be enabled or disabled in the add-on without re-
compiling the browser or rendering engine. This allows us to
monitor a larger number of APIs. Native codebase changes
in other platforms require constant merges as the upstream
codebase evolves and complete rewrites to support alterna-
tive browsers.

3.2 Design and Implementation
We divided our browser automation and data collection

infrastructure into three main modules: browser managers
which act as an abstraction layer for automating individual
browser instances, a user-facing task manager which serves
to distribute commands to browser managers, and a data
aggregator, which acts as an abstraction layer for browser in-
strumentation. The researcher interacts with the task man-
ager via an extensible, high-level, domain-specific language
for crawling and controlling the browser instance. The entire
platform is built using Python and Python libraries.



Browser driver: Providing realism and support for
web technologies. We considered a variety of choices to
drive measurements, i.e., to instruct the browser to visit a set
of pages (and possibly to perform a set of actions on each).
The two main categories to choose from are lightweight browsers
like PhantomJS (an implementation of WebKit), and full-
fledged browsers like Firefox and Chrome. We chose to use
Selenium, a cross-platform web driver for Firefox, Chrome,
Internet Explorer, and PhantomJS. We currently use Sele-
nium to drive Firefox, but Selenium’s support for multiple
browsers makes it easy to transition to others in the future.

By using a consumer browser, all technologies that a typ-
ical user would have access to (e.g., HTML5 storage op-
tions, Adobe Flash) are also supported by measurement
instances. The alternative, PhantomJS, does not support
WebGL, HTML5 Audio and Video, CSS 3-D, and browser
plugins (like Flash), making it impossible to run measure-
ments on the use of these technologies [45]. In retrospect
this has proved to be a sound choice. Without full support
for new web technologies we would not have been able to
discover and measure the use of the AudioContext API for
device fingerprinting as discussed in Section 6.4.

Finally the use of real browsers also allows us to test the
effects of consumer browser extensions. We support run-
ning measurements with extensions such as Ghostery and
HTTPS Everywhere as well as enabling Firefox privacy set-
tings such third-party cookie blocking and the new Tracking
Protection feature. New extensions can easily be supported
with only a few extra lines of code (Section 3.3). See Sec-
tion 5.3 and Section 5.5 for analyses of measurements run
with these browser settings.

Browser managers: Providing stability. During the
course of a long measurement, a variety of unpredictable
events such as page timeouts or browser crashes could halt
the measurement’s progress or cause data loss or corruption.
A key disadvantage of Selenium is that it frequently hangs
indefinitely due to its blocking API [50], as it was designed to
be a tool for webmasters to test their own sites rather than
an engine for large-scale measurements. Browser managers
provide an abstraction layer around Selenium, isolating it
from the rest of the components.

Each browser manager instantiates a Selenium instance
with a specified configuration of preferences, such as block-
ing third-party cookies. It is responsible for converting high-
level platform commands (e.g. visiting a site) into specific
Selenium subroutines. It encapsulates per-browser state, en-
abling recovery from browser failures. To isolate failures,
each browser manager runs as a separate process.

We support launching measurement instances in a “head-
less” container, by using the pyvirtualdisplay library to in-
terface with Xvfb, which draws the graphical interface of the
browser to a virtual frame buffer.

Task manager: Providing scalability and abstrac-
tion. The task manager provides a scriptable command-line
interface for controlling multiple browsers simultaneously.
Commands can be distributed to browsers either synchro-
nized or first-come-first-serve. Each command is launched
in a per-browser command execution thread.

The command-execution thread handles errors in its cor-
responding browser manager automatically. If the browser
manager crashes, times out, or exceeds memory limits, the
thread enters a crash recovery routine. In this routine, the
manager archives the current browser profile, kills all current

processes, and loads the archive (which includes cookies and
history) into a fresh browser with the same configuration.

Data Aggregator: Providing repeatability. Repeata-
bility can be achieved logging data in a standardized format,
so research groups can easily share scripts and data. We ag-
gregate data from all instrumentation components in a cen-
tral and structured location. The data aggregator receives
data during the measurement, manipulates it as necessary,
and saves it on disk keyed back to a specific page visit and
browser. The aggregator exists within its own process, and
is accessed through a socket interface which can easily be
connected to from any number of browser managers or in-
strumentation processes.

We currently support two data aggregators: a structured
SQLite aggregator for storing relational data and a Lev-
elDB aggregator for storing compressed web content. The
SQLite aggregator stores the majority of the measurement
data, including data from both the proxy and the exten-
sion (described below). The LevelDB aggregator is designed
to store de-duplicated web content, such as Javascript or
HTML files. The aggregator checks if a hash of the content
is present in the database, and if not compresses the content
and adds it to the database.

Instrumentation: Supporting comprehensive and
reusable measurement. We provide the researcher with
data access at several points: (1) raw data on disk, (2) at the
network level with an HTTP proxy, and (3) at the Javascript
level with a Firefox extension. This provides nearly full cov-
erage of a browser’s interaction with the web and the sys-
tem. Each level of instrumentation keys data with the top
level site being visited and the current browser id, making
it possible to combine measurement data from multiple in-
strumentation sources for each page visit.

Disk Access — We include instrumentation that collects
changes to Flash LSOs and the Firefox cookie database after
each page visit. This allows a researcher to determine which
domains are setting Flash cookies, and to record access to
cookies in the absence of other instrumentation

HTTP Data — After examining several Python HTTP
proxies, we chose to use Mitmproxy6 to record all HTTP Re-
quest and Response headers. We generate and load a certifi-
cate into Firefox to capture HTTPS data alongside HTTP.

Additionally, we use the HTTP proxy to dump the con-
tent of any Javascript file requested during a page visit. We
use both Content-Type and file extension checking to detect
scripts in the proxy. Once detected, a script is decompressed
(if necessary) and hashed. The hash and content are sent to
the LevelDBAggregator for de-duplication.

Javascript Access — We provide the researcher with a
Javascript interface to pages visited through a Firefox ex-
tension. Our extension expands on the work of Fourthparty
[33]. In particular, we utilize Fourthparty’s Javascript in-
strumentation, which defines custom getters and setters on
the window.navigator and window.screen interfaces7. We
updated and extended this functionality to record access to
the prototypes of the Storage, HTMLCanvasElement, Can-

vasRenderingContext2D, RTCPeerConntection, AudioCon-

text objects, as well as the prototypes of several children
of AudioNode. This records the setting and getting of all

6https://mitmproxy.org/
7In the latest public version of Fourthparty (May 2015),
this instrumentation is not functional due to API changes.

https://mitmproxy.org/


object properties and calls of all object methods for any ob-
ject built from these prototypes. Alongside this, we record
the new property values set and the arguments to all method
calls. Everything is logged directly to the SQLite aggregator.

In addition to recording access to instrumented objects,
we record the URL of the script responsible for the prop-
erty or method access. To do so, we throw an Error and
parse the stack trace after each call or property intercept.
This method is successful for 99.9% of Javascript files we
encountered, and even works for Javascript files which have
been minified or obfuscated with eval. A minor limitation is
that the function calls of a script which gets passed into the
eval method of a second script will have their URL labeled
as the second script. This method is adapted with minor
modifications from the Privacy Badger Firefox Extension8.

In an adversarial situation, a script could disable our in-
strumentation before fingerprinting a user by overriding ac-
cess to getters and setters for each instrumented object.
However, this would be detectable since we would observe
access to the define{G,S}etter or lookup{G,S}etter meth-
ods for the object in question and could investigate the
cause. In our 1 million site measurement, we only observe
script access to getters or setters for HTMLCanvasElement and
CanvasRenderingContext2D interfaces. All of these are be-
nign accesses from 47 scripts total, with the majority related
to an HTML canvas graphics library.

Example workflow.

1. The researcher issues a command to the task manager
and specifies that it should synchronously execute on all
browser managers.

2. The task manager checks all of the command execution
threads and blocks until all browsers are available to ex-
ecute a new command.

3. The task manager creates new command execution threads
for all browsers and sends the command and command
parameters over a pipe to the browser manager process.

4. The browser manager interprets this command and runs
the necessary Selenium code to execute the command in
the browser.

5. If the command is a “Get” command, which causes the
browser to visit a new URL, the browser manager dis-
tributes the browser ID and top-level page being visited
to all enabled instrumentation modules (extension, proxy,
or disk monitor).

6. Each instrumentation module uses this information to
properly key data for the new page visit.

7. The browser manager can send returned data (e.g. the
parsed contents of a page) to the SQLite aggregator.

8. Simultaneously, instrumentation modules send data to
the respective aggregators from separate threads or pro-
cesses.

9. Finally, the browser manager notifies the task manager
that it is ready for a new command.

3.3 Evaluation
Stability. We tested the stability of vanilla Selenium

without our infrastructure in a variety of settings. The best
average we were able to obtain was roughly 800 pages with-
out a freeze or crash. Even in small-scale studies, the lack of
recovery led to loss or corruption of measurement data. Us-
ing the isolation provided by our browser manager and task

8https://github.com/EFForg/privacybadgerfirefox

manager, we recover from all browser crashes and have ob-
served no data corruption during stateful measurements of
100,000 sites. During the course of our stateless 1 million site
measurement in January 2016 (Section 5), we observe over
90 million requests and nearly 300 million Javascript calls.
A single instrumented browser can visit around 3500 sites
per day, requiring no manual interaction during that time.
The scale and speed of the overall measurement depends on
the hardware used and the measurement configuration (See
“Resource Usage” below).

Completeness. OpenWPM reproduces a human user’s
web browsing experience since it uses a full-fledged browser.
However, researchers have used stripped-down browsers such
as PhantomJS for studies, trading off fidelity for speed.

To test the importance of using a full-fledged browser,
we examined the differences between OpenWPM and Phan-
tomJS (version 2.1.1) on the top 100 Alexa sites. We av-
eraged our results over 6 measurements of each site with
each tool. Both tools were configured with a time-out of 10
seconds and we excluded a small number of sites that didn’t
complete loading. Unsurprisingly, PhantomJS does not load
Flash, HTML5 Video, or HTML5 Audio objects (which it
does not support); OpenWPM loads nearly 300 instances of
those across all sites. More interestingly, PhantomJS loads
about 30% fewer HTML files, and about 50% fewer resources
with plain text and stream content types. Upon further ex-
amination, one major reason for this is that many sites don’t
serve ads to PhantomJS. This makes tracking measurements
using PhantomJS problematic.

We also tested PhantomJS with the user-agent string spoofed
to look like Firefox, so as to try to prevent sites from treat-
ing PhantomJS differently. Here the differences were less
extreme, but still present (10% fewer requests of html re-
sources, 15% for plain text, and 30% for stream). However,
several sites (such as dropbox.com) seem to break when
PhantomJS presents the incorrect user-agent string. This
is because sites may expect certain capabilities that Phan-
tomJS does not have or may attempt to access APIs us-
ing Firefox-specific names. One site, weibo.com, redirected
PhantomJS (with either user-agent string) to an entirely
different landing page than OpenWPM. These findings sup-
port our view that OpenWPM enables significantly more
complete and realistic web and tracking measurement than
stripped-down browsers.

Resource usage. When using the headless configura-
tion, we are able to run up to 10 stateful browser instances on
an Amazon EC2 “c4.2xlarge” virtual machine9. This virtual
machine costs around $300 per month using price estimates
from May 2016. Due to Firefox’s memory consumption,
stateful parallel measurements are memory-limited while state-
less parallel measurements are typically CPU-limited and
can support a higher number of instances. On the same
machine we can run 20 browser instances in parallel if the
browser state is cleared after each page load.

Generality. The platform minimizes code duplication
both across studies and across configurations of a specific
study. For example, the Javascript monitoring instrumenta-
tion is about 340 lines of Javascript code. Each additional
API monitored takes only a few additional lines of code. The
instrumentation necessary to measure canvas fingerprinting
(Section 6.1) is three additional lines of code, while the We-

9https://aws.amazon.com/ec2/instance-types/
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Persistent tracking mechanisms [1] 2014 • • • • • • •
FB Connect login permissions [47] 2014 • • ◦
Surveillance implications of web tracking [14] 2015 • • • •
HSTS and key pinning misconfigurations [21] 2015 • • • ◦ •
The Web Privacy Census [4] 2015 • • • •
Geographic Variations in Tracking [17] 2015 • •
Analysis of Malicious Web Shells [55] 2016 •
This study (Sections 5 & 6) 2016 • • • • • • • •

Table 1: Seven published studies which utilize our Platform.
An unfilled circle indicates that the feature was useful but application-specific programming or manual effort was still required.

bRTC measurement (Section 6.3) is just a single line of code.
Similarly, the code to add support for new extensions or pri-
vacy settings is relatively low: 7 lines of code were required
to support Ghostery, 8 lines of code to support HTTPS Ev-
erywhere, and 7 lines of codes to control Firefox’s cookie
blocking policy.

Even measurements themselves require very little addi-
tional code on top of the platform. Each configuration listed
in Table 2 requires between 70 and 108 lines of code. By
comparison, the core infrastructure code and included in-
strumentation is over 4000 lines of code, showing that the
platform saves a significant amount of engineering effort.

3.4 Applications of OpenWPM
Seven academic studies have been published in journals,

conferences, and workshops, utilizing OpenWPM to perform
a variety of web privacy and security measurements.10 Ta-
ble 1 summarizes the advanced features of the platform that
each research group utilized in their measurements.

In addition to browser automation and HTTP data dumps,
the platform has several advanced capabilities used by both
our own measurements and those in other groups. Mea-
surements can keep state, such as cookies and localStor-
age, within each session via stateful measurements, or persist
this state across sessions with persistent profiles. Persisting
state across measurements has been used to measure cookie
respawning [1] and to provide seed profiles for larger mea-
surements (Section 5). In general, stateful measurements are
useful to replicate the cookie profile of a real user for track-
ing [4, 14] and cookie syncing analysis [1] (Section 5.6). In
addition to recording state, the platform can detect tracking
cookies.

The platform also provides programmatic control over in-
dividual components of this state such as Flash cookies through
fine-grained profiles as well as plug-ins via advanced plug-in
support. Applications built on top of the platform can mon-
itor state changes on disk to record access to Flash cookies
and browser state. These features are useful in studies which
wish to simulate the experience of users with Flash enabled
[4, 17] or examine cookie respawning with Flash [1].

Beyond just monitoring and manipulating state, the plat-
form provides the ability to capture any Javascript API call

10We are aware of several other studies in progress.

with the included Javascript instrumentation. This is used
to measure device fingerprinting (Section 6).

Finally, the platform also has a limited ability to extract
content from web pages through the content extraction mod-
ule, and a limited ability to automatically log into web-
sites using the Facebook Connect automated login capabil-
ity. Logging in with Facebook has been used to study login
permissions [47].

4. WEB CENSUS METHODOLOGY
We run measurements on the homepages of the top 1 mil-

lion sites to provide a comprehensive view of web tracking
and web privacy. These measurements provide updated met-
rics on the use of tracking and fingerprinting technologies,
allowing us to shine a light onto the practices of third par-
ties and trackers across a large portion of the web. We also
explore the effectiveness of consumer privacy tools at giving
users control over their online privacy.

Measurement Configuration. We run our measure-
ments on a “c4.2xlarge” Amazon EC2 instance, which cur-
rently allocates 8 vCPUs and 15 GiB of memory per ma-
chine. With this configuration we are able to run 20 browser
instances in parallel. All measurements collect HTTP Re-
quests and Responses, Javascript calls, and Javascript files
using the instrumentation detailed in Section 3. Table 2
summarizes the measurement instance configurations. The
data used in this paper were collected during January 2016.

All of our measurements use the Alexa top 1 million site
list (http://www.alexa.com), which ranks sites based on their
global popularity with Alexa Toolbar users. Before each
measurement, OpenWPM retrieves an updated copy of the
list. When a measurement configuration calls for less than
1 million sites, we simply truncate the list as necessary. For
eash site, the browser will visit the homepage and wait until
the site has finished loading or until the 90 second timeout
is reached. The browser does not interact with the site or
visit any other pages within the site. If there is a timeout
we kill the process and restart the browser for the next page
visit, as described in Section 3.2.

Stateful measurements. To obtain a complete picture
of tracking we must carry out stateful measurements in ad-
dition to stateless ones. Stateful measurements do not clear

http://www.alexa.com
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Default Stateless 1 Million 917,261 10.58% • • • • 14 days
Default Stateful 100,000 94,144 8.23% ◦ • • • • 3.5 days
Ghostery 55,000 50,023 5.31% • • • • 0.7 days
Block TP Cookies 55,000 53,688 12.41% • • • • 0.8 days
HTTPS Everywhere 55,000 53,705 14.77% • • • • 1 day
ID Detection 1* 10,000 9,707 6.81% • • • • • • 2.9 days
ID Detection 2* 10,000 9,702 6.73% • • • • • • 2.9 days

Table 2: Census measurement configurations.
An unfilled circle indicates that a seed profile of length 10,000 was loaded into each browser instance in a parallel measurement.
“# Success” indicates the number of sites that were reachable and returned a response. A Timeout is a request which fails
to completely load in 90 seconds. *Indicates that the measurements were run synchronously on different virtual machines.

the browser’s profile between page visits, meaning cookie
and other browser storage persist from site to site. For some
measurements the difference is not material, but for others,
such as cookie syncing (Section 5.6), it is essential.

Making stateful measurements is fundamentally at odds
with parallelism. But a serial measurement of 1,000,000 sites
(or even 100,000 sites) would take unacceptably long. So we
make a compromise: we first build a seed profile which vis-
its the top 10,000 sites in a serial fashion, and we save the
resulting state. To scale to a larger measurement, the seed
profile is loaded into multiple browser instances running in
parallel. With this approach, we can approximately simulate
visiting each website serially. For our 100,000 site stateless
measurement, we used the “ID Detection 2” browser profile
as a seed profile.

This method is not without limitations. For example third
parties which don’t appear in the top sites if the seed pro-
file will have different cookies set in each of the parallel in-
stances. If these parties are also involved in cookie syncing,
the partners that sync with them (and appear in the seed
profile) will each receive multiple IDs for each one of their
own. This presents a trade-off between the size the seed pro-
file and the number of third parties missed by the profile.
We find that a seed profile which has visited the top 10,000
sites will have communicated with 76% of all third-party
domains present on more than 5 of the top 100,000 sites.

Handling errors. In presenting our results we only con-
sider sites that loaded successfully. For example, for the 1
Million site measurement, we present statistics for 917,261
sites. The majority of errors are due to the site failing to
return a response, primarily due to DNS lookup failures.
Other causes of errors are sites returning a non-2XX HTTP
status code on the landing page, such as a 404 (Not Found)
or a 500 (Internal Server Error).

Detecting ID cookies. Detecting cookies that store
unique user identifiers is a key task that enables many of the
results that we report in Section 5. We build on the methods
used in previous studies [1, 14]. Browsers store cookies in a
structured key-value format, allowing sites to provide both
a name string and value string. Many sites further structure
the value string of a single cookie to include a set of named
parameters. We parse each cookie value string assuming the
format:

(name1 =)value1|...|(nameN =)valueN
where | represents any character except a-zA-Z0-9 -=. We

determine a (cookie-name, parameter-name, parameter-value)
tuple to be an ID cookie if it meets the following criteria: (1)
the cookie has an expiration date over 90 days in the future
(2) 8 ≤ length(parameter-value) ≤ 100, (3) the parameter-
value remains the same throughout the measurement, (4)
the parameter-value is different between machines and has a
similarity less than 66% according to the Ratcliff-Obershelp
algorithm [7]. For the last step, we run two synchronized
measurements (see Table 2) on separate machines and com-
pare the resulting cookies, as in previous studies.

What makes a tracker? Every third party is potentially
a tracker, but for many of our results we need a more con-
servative definition. We use two popular tracking-protection
lists for this purpose: EasyList and EasyPrivacy. Including
EasyList allows us to classify advertising related trackers,
while EasyPrivacy detects non-advertising related trackers.
The two lists consist of regular expressions and URL sub-
strings which are matched against resource loads to deter-
mine if a request should be blocked.

Alternative tracking-protection lists exist, such as the list
built into the Ghostery browser extension and the domain-
based list provided by Disconnect11. Although we don’t use
these lists to classify trackers directly, we evaluate their per-
formance in several sections.

Note that we are not simply classifying domains as track-
ers or non-trackers, but rather classify each instance of a
third party on a particular website as a tracking or non-
tracking context. We consider a domain to be in the tracking
context if a consumer privacy tool would have blocked that
resource. Resource loads which wouldn’t have been blocked
by these extensions are considered non-tracking.

While there is agreement between the extensions utiliz-
ing these lists, we emphasize that they are far from perfect.
They contain false positives and especially false negatives.
That is, they miss many trackers — new ones in particu-
lar. Indeed, much of the impetus for OpenWPM and our
measurements comes from the limitations of manually iden-
tifying trackers. Thus, tracking-protection lists should be
considered an underestimate of the set of trackers, just as
considering all third parties to be trackers is an overestimate.

Limitations. The analysis presented in this paper has
several methodological and measurement limitations. Our
platform did not interact with sites in ways a real user might;
we did not log into sites nor did we carry out actions such

11https://disconnect.me/trackerprotection

a-zA-Z0-9_-=
https://disconnect.me/trackerprotection


as scrolling or clicking links during our visit. While we have
performed deeper crawls of sites (and plan to make this data
publicly available), the analyses presented in the paper per-
tain only to homepages.

For comparison, we include a preliminary analysis of a
crawl which visits 4 internal pages in addition to the home-
page of the top 10,000 sites. The analyses presented in this
paper should be considered a lower bound on the amount of
tracking a user will experience in the wild. In particular, the
average number of third parties per site increases from 22
to 34. The 20 most popular third parities embedded on the
homepages of sites are found on 6% to 57% more sites when
internal page loads are considered. Similarly, fingerprinting
scripts found in Section 6 were observed on more sites. Can-
vas fingerprinting increased from 4% to 7% of the top sites
while canvas-based font fingerprinting increased from 2% to
2.5%. An increase in trackers is expected as each additional
page visit within a site will cycle through new dynamic con-
tent that may load a different set of third parties. Addition-
ally, sites may not embed all third-party content into their
homepages.

The measurements presented in this paper were collected
from an EC2 instance in Amazon’s US East region. It is
possible that some sites would respond differently to our
measurement instance than to a real user browsing from
residential or commercial internet connection. That said,
Fruchter, et al. [17] use OpenWPM to measure the varia-
tion in tracking due to geographic differences, and found no
evidence of tracking differences caused by the origin of the
measurement instance.

Although OpenWPM’s instrumentation measures a di-
verse set of tracking techniques, we do not provide a com-
plete analysis of all known techniques. Notably absent from
our analysis are non-canvas-based font fingerprinting [2],
navigator and plugin fingerprinting [12, 33], and cookie respawn-
ing [53, 6]. Several of these javascript-based techniques are
currently supported by OpenWPM, have been measured
with OpenWPM in past research [1], and others can be eas-
ily added (Section 3.3). Non-Javascript techniques, such as
font fingerprinting with Adobe Flash, would require addi-
tional specialized instrumentation.

Finally, for readers interested in further details or in repro-
ducing our work, we provide further methodological details
in the Appendix: what constitutes distinct domains (13.1),
how to detect the landing page of a site using the data col-
lected by our Platform (13.2), how we detect cookie syncing
(13.3), and why obfuscation of Javascript doesn’t affect our
ability to detect fingerprinting (13.4).

5. RESULTS OF 1-MILLION SITE CENSUS

5.1 The long but thin tail of online tracking
During our January 2016 measurement of the Top 1 mil-

lion sites, our tool made over 90 million requests, assembling
the largest dataset on web tracking to our knowledge. Our
large scale allows us to answer a rather basic question: how
many third parties are there? In short, a lot: the total num-
ber of third parties present on at least two first parties is
over 81,000.

What is more surprising is that the prevalence of third
parties quickly drops off: only 123 of these 81,000 are present
on more than 1% of sites. This suggests that the number
of third parties that a regular user will encounter on a daily

basis is relatively small. The effect is accentuated when we
consider that different third parties may be owned by the
same entity. All of the top 5 third parties, as well as 12
of the top 20, are Google-owned domains. In fact, Google,
Facebook, Twitter, and AdNexus are the only third-party en-
tities present on more than 10% of sites.
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Figure 2: Top third parties on the top 1 million sites. Not
all third parties are classified as trackers, and in fact the
same third party can be classified differently depending on
the context. (Section 4).

Further, if we use the definition of tracking based on
tracking-protection lists, as defined in Section 4, then track-
ers are even less prevalent. This is clear from Figure 2, which
shows the prevalence of the top third parties (a) in any con-
text and (b) only in tracking contexts. Note the absence or
reduction of content-delivery domains such as gstatic.com,
fbcdn.net, and googleusercontent.com.

We can expand on this by analyzing the top third-party
organizations, many of which consist of multiple entities.
As an example, Facebook and Liverail are separate entities
but Liverail is owned by Facebook. We use the domain-to-
organization mappings provided by Libert [31] and Discon-
nect[11]. As shown in Figure 3, Google, Facebook, Twitter,
Amazon, AdNexus, and Oracle are the third-party organi-
zations present on more than 10% of sites. In comparison
to Libert’s [31] 2014 findings, Akamai and ComScore fall
significantly in market share to just 2.4% and 6.6% of sites.
Oracle joins the top third parties by purchasing BlueKai and
AddThis, showing that acquisitions can quickly change the
tracking landscape.
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Figure 3: Organizations with the highest third-party pres-
ence on the top 1 million sites. Not all third parties are clas-
sified as trackers, and in fact the same third party can be
classified differently depending on the context. (Section 4).

Larger entities may be easier to regulate by public-relations
pressure and the possibility of legal or enforcement actions,
an outcome we have seen in past studies [1, 6, 34].

gstatic.com
fbcdn.net
googleusercontent.com


5.2 Prominence: a third party ranking metric
In Section 5.1 we ranked third parties by the number of

first party sites they appear on. This simple count is a good
first approximation, but it has two related drawbacks. A ma-
jor third party that’s present on (say) 90 of the top 100 sites
would have a low score if its prevalence drops off outside the
top 100 sites. A related problem is that the rank can be sen-
sitive to the number of websites visited in the measurement.
Thus different studies may rank third parties differently.

We also lack a good way to compare third parties (and
especially trackers) over time, both individually and in ag-
gregate. Some studies have measured the total number of
cookies [4], but we argue that this is a misleading metric,
since cookies may not have anything to do with tracking.

To avoid these problems, we propose a principled met-
ric. We start from a model of aggregate browsing behavior.
There is some research suggesting that the website traffic fol-
lows a power law distribution, with the frequency of visits
to the N th ranked website being proportional to 1

N
[3, 22].

The exact relationship is not important to us; any formula
for traffic can be plugged into our prominence metric below.

Definition:.

Prominence(t) = Σedge(s,t)=1
1

rank(s)
where edge(s, t) indicates whether third party t is present
on site s. This simple formula measures the frequency with
which an“average”user browsing according to the power-law
model will encounter any given third party.

The most important property of prominence is that it
de-emphasizes obscure sites, and hence can be adequately
approximated by relatively small-scale measurements, as shown
in Figure 4. We propose that prominence is the right metric
for:

1. Comparing third parties and identifying the top third
parties. We present the list of top third parties by promi-
nence in Table 14 in the Appendix. Prominence rank-
ing produces interesting differences compared to rank-
ing by a simple prevalence count. For example, Content-
Distribution Networks become less prominent compared
to other types of third parties.

2. Measuring the effect of tracking-protection tools, as we
do in Section 5.5.

3. Analyzing the evolution of the tracking ecosystem over
time and comparing between studies. The robustness of
the rank-prominence curve (Figure 4) makes it ideally
suited for these purposes.
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Figure 4: Prominence of third party as a function of promi-
nence rank. We posit that the curve for the 1M-site mea-
surement (which can be approximated by a 50k-site mea-
surement) presents a useful aggregate picture of tracking.

Firefox 47

Chrome 47

HTTPS HTTP
HTTPS w\ Passive

Mixed Content

Figure 5: Secure connection UI for Firefox Nightly 47 and
Chrome 47. Clicking on the lock icon in Firefox reveals
the text “Connection is not secure” when mixed content is
present.

55K Sites 1M Sites

HTTP Only 82.9% X
HTTPS Only 14.2% 8.6%
HTTPS Opt. 2.9% X

Table 3: First party HTTPS support on the top 55K and
top 1M sites. “HTTP Only” is defined as sites which fail
to upgrade when HTTPS Everywhere is enabled. ‘HTTPS
Only” are sites which always redirect to HTTPS. “HTTPS
Optional” are sites which provide an option to upgrade,
but only do so when HTTPS Everywhere is enabled. We
carried out HTTPS-everywhere-enabled measurement for
only 55,000 sites, hence the X’s.

5.3 Third parties impede HTTPS adoption
Table 3 shows the number of first-party sites that sup-

port HTTPS and the number that are HTTPS-only. Our
results reveal that HTTPS adoption remains rather low de-
spite well-publicized efforts [13]. Publishers have claimed
that a major roadblock to adoption is the need to move
all embedded third parties and trackers to HTTPS to avoid
mixed-content errors [57, 64].

Mixed-content errors occur when HTTP sub-resources are
loaded on a secure site. This poses a security problem, lead-
ing to browsers to block the resource load or warn the user
depending on the content loaded [38]. Passive mixed con-
tent, that is, non-executable resources loaded over HTTP,
cause the browser to display an insecure warning to the user
but still load the content. Active mixed content is a far
more serious security vulnerability and is blocked outright
by modern browsers; it is not reflected in our measurements.

Third-party support for HTTPS. To test the hypoth-
esis that third parties impede HTTPS adoption, we first
characterize the HTTPS support of each third party. If a
third party appears on at least 10 sites and is loaded over
HTTPS on all of them, we say that it is HTTPS-only. If
it is loaded over HTTPS on some but not all of the sites,
we say that it supports HTTPS. If it is loaded over HTTP
on all of them, we say that it is HTTP-only. If it appears
on less than 10 sites, we do not have enough confidence to
make a determination.

Table 4 summarizes the HTTPS support of third party
domains. A large number of third-party domains are HTTP-
only (54%). However, when we weight third parties by
prominence, only 5% are HTTP-only. In contrast, 94% of
prominence-weighted third parties support both HTTP and
HTTPS. This supports our thesis that consolidation of the
third-party ecosystem is a plus for security and privacy.

Impact of third-parties. We find that a significant
fraction of HTTP-default sites (26%) embed resources from
third-parties which do not support HTTPS. These sites would
be unable to upgrade to HTTPS without browsers display-



HTTPS Support Percent
Prominence
weighted %

HTTP Only 54% 5%
HTTPS Only 5% 1%
Both 41% 94%

Table 4: Third party HTTPS support. “HTTP Only” is
defined as domains from which resources are only requested
over HTTP across all sites on our 1M site measurement.
‘HTTPS Only” are domains from which resources are
only requested over HTTPS. “Both” are domains which
have resources requested over both HTTP and HTTPS.
Results are limited to third parties embedded on at least
10 first-party sites.

Class

Top 1M

% FP

Top 55k

% FP

Own 25.4% 24.9%
Favicon 2.1% 2.6%
Tracking 10.4% 20.1%
CDN 1.6% 2.6%
Non-tracking 44.9% 35.4%
Multiple causes 15.6% 6.3%

Table 5: A breakdown of causes of passive mixed-content
warnings on the top 1M sites and on the top 55k sites.
“Non-tracking” represents third-party content not classified
as a tracker or a CDN.

ing mixed content errors to their users, the majority of which
(92%) would contain active content which would be blocked.

Similarly, of the approximately 78,000 first-party sites that
are HTTPS-only, around 6,000 (7.75%) load with mixed pas-
sive content warnings. However, only 11% of these warnings
(around 650) are caused by HTTP-only third parties, sug-
gesting that many domains may be able to mitigate these
warnings by ensuring all resources are being loaded over
HTTPS when available. We examined the causes of mixed
content on these sites, summarized in Table 5. The major-
ity are caused by third parties, rather than the site’s own
content, with a surprising 27% caused solely by trackers.

5.4 News sites have the most trackers
The level of tracking on different categories of websites

varies considerably — by almost an order of magnitude. To
measure variation across categories, we used Alexa’s lists of
top 500 sites in each of 16 categories. From each list we
sampled 100 sites (the lists contain some URLs that are not
home pages, and we excluded those before sampling).

In Figure 6 we show the average number of third parties
loaded across 100 of the top sites in each Alexa category.
Third parties are classified as trackers if they would have
been blocked by one of the tracking protection lists (Sec-
tion 4).

Why is there so much variation? With the exception of
the adult category, the sites on the low end of the spectrum
are mostly sites which belong to government organizations,
universities, and non-profit entities. This suggests that web-
sites may be able to forgo advertising and tracking due to the
presence of funding sources external to the web. Sites on the
high end of the spectrum are largely those which provide ed-
itorial content. Since many of these sites provide articles for
free, and lack an external funding source, they are pressured
to monetize page views with significantly more advertising.
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Figure 6: Average # of third parties in each Alexa category.

5.5 Does tracking protection work?
Users have two main ways to reduce their exposure to

tracking: the browser’s built in privacy features and exten-
sions such as Ghostery or uBlock Origin.

Contrary to previous work questioning the effectiveness
of Firefox’s third-party cookie blocking [14], we do find the
feature to be effective. Specifically, only 237 sites (0.4%)
have any third-party cookies set during our measurement
set to block all third-party cookies (“Block TP Cookies” in
Table 2). Most of these are for benign reasons, such as redi-
recting to the U.S. version of a non-U.S. site. We did find ex-
ceptions, including 32 that contained ID cookies. For exam-
ple, there are six Australian news sites that first redirect to
news.com.au before re-directing back to the initial domain,
which seems to be for tracking purposes. While this type of
workaround to third-party cookie blocking is not rampant,
we suggest that browser vendors should closely monitor it
and make changes to the blocking heuristic if necessary.

Another interesting finding is that when third-party cookie
blocking was enabled, the average number of third parties
per site dropped from 17.7 to 12.6. Our working hypothesis
for this drop is that deprived of ID cookies, third parties cur-
tail certain tracking-related requests such as cookie syncing
(which we examine in Section 5.6).
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Figure 7: Fraction of third parties blocked by Ghostery as
a function of the prominence of the third party. As defined
earlier, a third party’s prominence is the sum of the inverse
ranks of the sites it appears on.

We also tested Ghostery, and found that it is effective at
reducing the number of third parties and ID cookies (Fig-
ure 11 in the Appendix). The average number of third-party
includes went down from 17.7 to 3.3, of which just 0.3 had
third-party cookies (0.1 with IDs). We examined the promi-
nent third parties that are not blocked and found almost all
of these to be content-delivery networks like cloudflare.com
or widgets like maps.google.com, which Ghostery does not
try to block. So Ghostery works well at achieving its stated
objectives.

However, the tool is less effective for obscure trackers
(prominence < 0.1). In Section 6.6, we show that less promi-

cloudflare.com
maps.google.com


nent fingerprinting scripts are not blocked as frequently by
blocking tools. This makes sense given that the block list
is manually compiled and the developers are less likely to
have encountered obscure trackers. It suggests that large-
scale measurement techniques like ours will be useful for tool
developers to minimize gaps in their coverage.

5.6 How common is cookie syncing?
Cookie syncing, a workaround to the Same-Origin Policy,

allows different trackers to share user identifiers with each
other. Besides being hard to detect, cookie syncing enables
back-end server-to-server data merges hidden from public
view, which makes it a privacy concern.

Our ID cookie detection methodology (Section 4) allows
us to detect instances of cookie syncing. If tracker A wants
to share its ID for a user with tracker B, it can do so in one of
two ways: embedding the ID in the request URL to tracker
B, or in the referer URL. We therefore look for instances
of IDs in referer, request, and response URLs, accounting
for URL encoding and other subtleties. We describe the full
details of our methodology in the Appendix (Section 13.3),
with an important caveat that our methodology captures
both intentional and accidental ID sharing.

Most third parties are involved in cookie syncing.
We run our analysis on the top 100,000 site stateful mea-
surement. The most prolific cookie-syncing third party is
doubleclick.net — it shares 108 different cookies with 118
other third parties (this includes both events where it is a
referer and where it is a receiver). We present details of the
top cookie-syncing parties in Appendix 13.3.

More interestingly, we find that the vast majority of top
third parties sync cookies with at least one other party: 45
of the top 50, 85 of the top 100, 157 of the top 200, and
460 of the top 1,000. This adds further evidence that cookie
syncing is an under-researched privacy concern.

We also find that third parties are highly connected by
synced cookies. Specifically, of the top 50 third parties that
are involved in cookie syncing, the probability that a ran-
dom pair will have at least one cookie in common is 85%.
The corresponding probability for the top 100 is 66%.

Implications of “promiscuous cookies” for surveil-
lance. From the Snowden leaks, we learnt that that NSA
“piggybacks” on advertising cookies for surveillance and ex-
ploitation of targets [56, 54, 18]. How effective can this
technique be? We present one answer to this question. We
consider a threat model where a surveillance agency has
identified a target by a third-party cookie (for example, via
leakage of identifiers by first parties, as described in [14, 23,
25]). The adversary uses this identifier to coerce or com-
promise a third party into enabling surveillance or targeted
exploitation.

We find that some cookies get synced over and over again
to dozens of third parties; we call these promiscuous cook-
ies. It is not yet clear to us why these cookies are synced
repeatedly and shared widely. This means that if the ad-
versary has identified a user by such a cookie, their ability
to surveil or target malware to that user will be especially
good. The most promiscuous cookie that we found belongs
to the domain adverticum.net; it is synced or leaked to 82
other parties which are collectively present on 752 of the top
1,000 websites! In fact, each of the top 10 most promiscuous
cookies is shared with enough third parties to cover 60% or
more of the top 1,000 sites.

6. FINGERPRINTING: A 1-MILLION SITE
VIEW

OpenWPM significantly reduces the engineering require-
ment of measuring device fingerprinting, making it easy to
update old measurements and discover new techniques. In
this section, we demonstrate this through several new fin-
gerprinting measurements, two of which have never been
measured at scale before, to the best of our knowledge. We
show how the number of sites on which font fingerprinting
is used and the number of third parties using canvas finger-
printing have both increased by considerably in the past few
years. We also show how WebRTC’s ability to discover lo-
cal IPs without user permission or interaction is used almost
exclusively to track users. We analyze a new fingerprinting
technique utilizing AudioContext found during our investi-
gations. Finally, we discuss the use of the Battery API by
two fingerprinting scripts.

Our fingerprinting measurement methodology utilizes data
collected by the Javascript instrumentation described in Sec-
tion 3.2. With this instrumentation, we monitor access to
all built-in interfaces and objects we suspect may be used
for fingerprinting. By monitoring on the interface or object
level, we are able to record access to all method calls and
property accesses for each interface we thought might be
useful for fingerprinting. This allows us to build a detection
criterion for each fingerprinting technique after a detailed
analysis of example scripts.

Although our detection criteria currently have negligible
low false positive rate, we recognize that this may change as
new web technologies and applications emerge. However, in-
strumenting all properties and methods of an API provides
a complete picture of each application’s use of the interface,
allowing our criteria to also be updated. More importantly,
this allows us to replace our detection criteria with machine
learning, which is an area of ongoing work (Section 7).

% of First-parties
Rank Interval Canvas Canvas Font WebRTC

[0, 1K) 5.10% 2.50% 0.60%
[1K, 10K) 3.91% 1.98% 0.42%
[10K, 100K) 2.45% 0.86% 0.19%
[100K, 1M) 1.31% 0.25% 0.06%

Table 6: Prevalence of fingerprinting scripts on different
slices of the top sites. More popular sites are more likely to
have fingerprinting scripts.

6.1 Canvas Fingerprinting
Privacy threat. The HTML Canvas allows web appli-

cation to draw graphics in real time, with functions to sup-
port drawing shapes, arcs, and text to a custom canvas el-
ement. In 2012 Mowery and Schacham demonstrated how
the HTML Canvas could be used to fingerprint devices [37].
Differences in font rendering, smoothing, anti-aliasing, as
well as other device features cause devices to draw the im-
age differently. This allows the resulting pixels to be used
as part of a device fingerprint.

Detection methodology. We build on a 2014 measure-
ment study by Acar et.al. [1]. Since that study, the canvas
API has received broader adoption for non-fingerprinting
purposes, so we make several changes to reduce false pos-
itives. In our measurements we record access to nearly all of
properties and methods of the HTMLCanvasElement interface



and of the CanvasRenderingContext2D interface. We filter
scripts according to the following criteria:
1. The canvas element’s height and width properties must

not be set below 16 px.12

2. Text must be written to canvas with least two colors or
at least 10 distinct characters.

3. The script should not call the save, restore, or addE-

ventListener methods of the rendering context.
4. The script extracts an image with toDataURL or with a

single call to getImageData that specifies an area with a
minimum size of 16px × 16px.

This heuristic is designed to filter out scripts which are
unlikely to have sufficient complexity or size to act as an
identifier. We manually verified the accuracy of our detec-
tion methodology by inspecting the images drawn and the
source code. We found a mere 4 false positives out of 3493
scripts identified on a 1 million site measurement. Each of
the 4 is only present on a single first-party.

Results. We found canvas fingerprinting on 14,371 (1.6%)
sites. The vast majority (98.2%) are from third-party scripts.
These scripts come from about 3,500 URLs hosted on about
400 domains. Table 7 shows the top 5 domains which serve
canvas fingerprinting scripts ordered by the number of first-
parties they are present on.

Domain # First-parties

doubleverify.com 7806
lijit.com 2858
alicdn.com 904
audienceinsights.net 499
boo-box.com 303
407 others 2719
TOTAL 15089 (14371 unique)

Table 7: Canvas fingerprinting on the Alexa Top 1 Million
sites. For a more complete list of scripts, see Table 11 in
the Appendix.

Comparing our results with a 2014 study [1], we find three
important trends. First, the most prominent trackers have
by-and-large stopped using it, suggesting that the public
backlash following that study was effective. Second, the
overall number of domains employing it has increased con-
siderably, indicating that knowledge of the technique has
spread and that more obscure trackers are less concerned
about public perception. As the technique evolves, the im-
ages used have increased in variety and complexity, as we de-
tail in Figure 12 in the Appendix. Third, the use has shifted
from behavioral tracking to fraud detection, in line with the
ad industry’s self-regulatory norm regarding acceptable uses
of fingerprinting.

6.2 Canvas Font Fingerprinting
Privacy threat. The browser’s font list is very useful

for device fingerprinting [12]. The ability to recover the list
of fonts through Javascript or Flash is known, and existing
tools aim to protect the user against scripts that do that [41,
2]. But can fonts be enumerated using the Canvas interface?
The only public discussion of the technique seems to be a Tor
Browser ticket from 201413. To the best of our knowledge,
we are the first to measure its usage in the wild.

12The default canvas size is 300px × 150px.
13https://trac.torproject.org/projects/tor/ticket/13400

Detection methodology. The CanvasRenderingCon-

text2D interface provides a measureText method, which re-
turns several metrics pertaining to the text size (including
its width) when rendered with the current font settings of
the rendering context. Our criterion for detecting canvas
font fingerprinting is: the script sets the font property to
at least 50 distinct, valid values and also calls the measure-

Text method at least 50 times on the same text string. We
manually examined the source code of each script found this
way and verified that there are zero false positives on our 1
million site measurement.

Results. We found canvas-based font fingerprinting present
on 3,250 first-party sites. This represents less than 1% of
sites, but as Table 6 shows, the technique is more heavily
used on the top sites, reaching 2.5% of the top 1000. The
vast majority of cases (90%) are served by a single third
party, mathtag.com. The number of sites with font finger-
printing represents a seven-fold increase over a 2013 study
[2], although they did not consider Canvas. See Table 12 in
the Appendix for a full list of scripts.

6.3 WebRTC-based fingerprinting
Privacy threat. WebRTC is a framework for peer-to-

peer Real Time Communication in the browser, and acces-
sible via Javascript. To discover the best network path be-
tween peers, each peer collects all available candidate ad-
dresses, including addresses from the local network inter-
faces (such as ethernet or WiFi) and addresses from the
public side of the NAT and makes them available to the
web application without explicit permission from the user.
This has led to serious privacy concerns: users behind a
proxy or VPN can have their ISP’s public IP address ex-
posed [59]. We focus on a slightly different privacy concern:
users behind a NAT can have their local IP address revealed,
which can be used as an identifier for tracking. A detailed
description of the discovery process is given in Appendix
Section 11.

Detection methodology. To detect WebRTC local IP
discovery, we instrument the RTCPeerConnection interface
prototype and record access to its method calls and property
access. After the measurement is complete, we select the
scripts which call the createDataChannel and createOffer

APIs, and access the event handler onicecandidate14. We
manually verified that scripts that call these functions are
in fact retrieving candidate IP addresses, with zero false
positives on 1 million sites. Next, we manually tested if
such scripts are using these IPs for tracking. Specifically, we
check if the code is located in a script that contains other
known fingerprinting techniques, in which case we label it
tracking. Otherwise, if we manually assess that the code
has a clear non-tracking use, we label it non-tracking. If
neither of these is the case, we label the script as ‘unknown’.
We emphasize that even the non-tracking scripts present a
privacy concern related to leakage of private IPs.

Results. We found WebRTC being used to discover lo-
cal IP addresses without user interaction on 715 sites out
of the top 1 million. The vast majority of these (659) were
done by third-party scripts, loaded from 99 different loca-
tions. A large majority (625) were used for tracking. The

14Although we found it unnecessary for current scripts,
instrumenting localDescription will cover all possible IP
address retrievals.

doubleverify.com
lijit.com
alicdn.com
audienceinsights.net
boo-box.com
https://trac.torproject.org/projects/tor/ticket/13400
mathtag.com


top 10 scripts accounted for 83% of usage, in line with our
other observations about the small number of third parties
responsible for most tracking. We provide a list of scripts in
Table 13 in the Appendix.

The number of confirmed non-tracking uses of unsolicited
IP candidate discovery is small, and based on our analysis,
none of them is critical to the application. These results
have implications for the ongoing debate on whether or not
unsolicited WebRTC IP discovery should be private by de-
fault [59, 8, 58].

Classification # Scripts # First-parties
Tracking 57 625 (88.7%)
Non-Tracking 10 40 (5.7%)
Unknown 32 40 (5.7%)

Table 8: Summary of WebRTC local IP discovery
on the top 1 million Alexa sites.

6.4 AudioContext Fingerprinting
The scale of our data gives us a new way to systemati-

cally identify new types of fingerprinting not previously re-
ported in the literature. The key insight is that fingerprint-
ing techniques typically aren’t used in isolation but rather
in conjunction with each other. So we monitor known track-
ing scripts and look for unusual behavior (e.g., use of new
APIs) in a semi-automated fashion. Using this approach we
found several fingerprinting scripts utilizing AudioContext

and related interfaces.
In the simplest case, a script from the company Liverail15

checks for the existence of an AudioContext and Oscilla-

torNode to add a single bit of information to a broader fin-
gerprint. More sophisticated scripts process an audio signal
generated with an OscillatorNode to fingerprint the device.
This is conceptually similar to canvas fingerprinting: audio
signals processed on different machines or browsers may have
slight differences due to hardware or software differences be-
tween the machines, while the same combination of machine
and browser will produce the same output.

Figure 8 shows two audio fingerprinting configurations
found in three scripts. The top configuration utilizes an
AnalyserNode to extract an FFT to build the fingerprint.
Both configurations process an audio signal from an Oscil-

latorNode before reading the resulting signal and hashing
it to create a device audio fingerprint. Full configuration
details are in Appendix Section 12.

We created a demonstration page based on the scripts,
which attracted visitors with 18,500 distinct cookies as of
this submission. These 18,500 devices hashed to a total of
713 different fingerprints. We estimate the entropy of the fin-
gerprint at 5.4 bits based on our sample. We leave a full eval-
uation of the effectiveness of the technique to future work.

We find that this technique is very infrequently used as
of March 2016. The most popular script is from Liverail,
present on 512 sites. Other scripts were present on as few
as 6 sites. This shows that even with very low usage rates,
we can successfully bootstrap off of currently known finger-
printing scripts to discover and measure new techniques.

6.5 Battery API Fingerprinting
As a second example of bootstrapping, we analyze the

Battery Status API, which allows a site to query the browser

15https://www.liverail.com/
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Figure 8: AudioContext node configuration used to gen-
erate a fingerprint. Top: Used by www.cdn-net.com/cc.js
in an AudioContext. Bottom: Used by client.a.pxi.
pub/*/main.min.js and js.ad-score.com/score.min.js in an
OfflineAudioContext. Full details in Appendix 12.
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Figure 9: Visualization of processed Oscilla-
torNode output from the fingerprinting script
https://www.cdn-net.com/cc.js for three different browsers
on the same machine. We found these values to remain
constant for each browser after several checks.

for the current battery level or charging status of a host
device. Olejnik et al. provide evidence that the Battery
API can be used for tracking [43]. The authors show how
the battery charge level and discharge time have a sufficient
number of states and lifespan to be used as a short-term
identifier. These status readouts can help identify users who
take action to protect their privacy while already on a site.
For example, the readout may remain constant when a user
clears cookies, switches to private browsing mode, or opens
a new browser before re-visiting the site. We discovered two
fingerprinting scripts utilizing the API during our manual
analysis of other fingerprinting techniques.

One script, https://go.lynxbroker.de/eat heartbeat.js, re-
trieves the current charge level of the host device and com-
bines it with several other identifying features. These fea-
tures include the canvas fingerprint and the user’s local IP
address retrieved with WebRTC as described in Section 6.1
and Section 6.3. The second script, http://js.ad-score.com/
score.min.js, queries all properties of the BatteryManager

interface, retrieving the current charging status, the charge
level, and the time remaining to discharge or recharge. As
with the previous script, these features are combined with
other identifying features used to fingerprint a device.

https://www.liverail.com/
www.cdn-net.com/cc.js
client.a.pxi.pub/*/main.min.js
client.a.pxi.pub/*/main.min.js
js.ad-score.com/score.min.js
https://www.cdn-net.com/cc.js
https://go.lynxbroker.de/eat_heartbeat.js
http://js.ad-score.com/score.min.js
http://js.ad-score.com/score.min.js


6.6 The wild west of fingerprinting scripts
In Section 5.5 we found the various tracking protection

measures to be very effective at reducing third-party track-
ing. In Table 9 we show how blocking tools miss many of the
scripts we detected throughout Section 6, particularly those
using lesser-known techniques. Although blocking tools de-
tect the majority of instances of well-known techniques, only
a fraction of the total number of scripts are detected.

Disconnect EL + EP
Technique % Scripts % Sites % Scripts % Sites

Canvas 17.6% 78.5% 25.1% 88.3%
Canvas Font 10.3% 97.6% 10.3% 90.6%
WebRTC 1.9% 21.3% 4.8% 5.6%
Audio 11.1% 53.1% 5.6% 1.6%

Table 9: Percentage of fingerprinting scripts blocked by
Disconnect or the combination of EasyList and EasyPrivacy
for all techniques described in Section 6. Included is the
percentage of sites with fingerprinting scripts on which
scripts are blocked.

Fingerprinting scripts pose a unique challenge for manu-
ally curated block lists. They may not change the rendering
of a page or be included by an advertising entity. The script
content may be obfuscated to the point where manual in-
spection is difficult and the purpose of the script unclear.
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Figure 10: Fraction of fingerprinting scripts with promi-
nence above a given level blocked by Disconnect, EasyList,
or EasyPrivacy on the top 1M sites.

OpenWPM’s active instrumentation (see Section 3.2) de-
tects a large number of scripts not blocked by the current
privacy tools. Disconnect and a combination of EasyList
and EasyPrivacy both perform similarly in their block rate.
The privacy tools block canvas fingerprinting on over 78%
of sites, and block canvas font fingerprinting on over 90%.
However, only a fraction of the total number of scripts uti-
lizing the techniques are blocked (between 10% and 25%)
showing that less popular third parties are missed. Lesser-
known techniques, like WebRTC IP discovery and Audio
fingerprinting have even lower rates of detection.

In fact, fingerprinting scripts with a low prominence are
blocked much less frequently than those with high promi-
nence. Figure 10 shows the fraction of scripts which are
blocked by Disconnect, EasyList, or Easyprivacy for all tech-
niques analyzed in this section. 90% of scripts with a promi-
nence above 0.01 are detected and blocked by one of the
blocking lists, while only 35% of those with a prominence
above 0.0001 are. The long tail of fingerprinting scripts are
largely unblocked by current privacy tools.

7. CONCLUSION AND FUTURE WORK
Web privacy measurement has the potential to play a key

role in keeping online privacy incursions and power imbal-
ances in check. To achieve this potential, measurement tools
must be made available broadly rather than just within the
research community. In this work, we’ve tried to bring this
ambitious goal closer to reality.

The analysis presented in this paper represents a snapshot
of results from ongoing, monthly measurements. OpenWPM
and census measurements are two components of the broader
Web Transparency and Accountability Project at Princeton.
We are currently working on two directions that build on the
work presented here. The first is the use of machine learning
to automatically detect and classify trackers. If successful,
this will greatly improve the effectiveness of browser pri-
vacy tools. Today such tools use tracking-protection lists
that need to be created manually and laboriously, and suf-
fer from significant false positives as well as false negatives.
Our large-scale data provide the ideal source of ground truth
for training classifiers to detect and categorize trackers.

The second line of work is a web-based analysis platform
that makes it easy for a minimally technically skilled ana-
lyst to investigate online tracking based on the data we make
available. In particular, we are aiming to make it possible
for an analyst to save their analysis scripts and results to
the server, share it, and for others to build on it.
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Figure 11: Third-party trackers on the top 55k sites with
Ghostery enabled. The majority of the top third-party
domains not blocked are CDNs or provide embedded
content (such as Google Maps).

Figure 12: Three sample canvas fingerprinting images
created by fingerprinting scripts, which are subsequently
hashed and used to identify the device.

10. MIXED CONTENT CLASSIFICATION
To classify URLs in the HTTPS mixed content analysis,

we used the block lists described in Section 4. Additionally,
we include a list of CDNs from the WebPagetest Project16.
The mixed content URL is then classfied according to the
first rule it satisfies in the following list:
1. If the requested domain matches the landing page do-

main, and the request URL ends with favicon.ico clas-
sify as a “favicon”.

2. If the requested domain matches the landing page do-
main, classify as the site’s “own content”.

16https://github.com/WPO-Foundation/webpagetest
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3. If the requested domain is marked as “should block” by
the blocklists, classify as “tracker”.

4. If the requested domain is in the CDN list, classify as
“CDN”.

5. Otherwise, classify as “non-tracking” third-party content.

11. ICE CANDIDATE GENERATION
It is possible for a Javascript web application to access

ICE candidates, and thus access a user’s local IP addresses
and public IP address, without explicit user permission. Al-
though a web application must request explicit user permis-
sion to access audio or video through WebRTC, the frame-
work allows a web application to construct an RTCDataChan-

nel without permission. By default, the data channel will
launch the ICE protocol and thus enable the web application
to access the IP address information without any explicit
user permission. Both users behind a NAT and users behind
a VPN/proxy can have additional identifying information
exposed to websites without their knowledge or consent.

Several steps must be taken to have the browser gener-
ate ICE candidates. First, a RTCDataChannel must be cre-
ated as discussed above. Next, the RTCPeerConnection.c-

reateOffer() must be called, which generates a Promise

that will contain the session description once the offer has
been created. This is passed to RTCPeerConnection.setLo-

calDescription(), which triggers the gathering of candi-
date addresses. The prepared offer will contain the sup-
ported configurations for the session, part of which includes
the IP addresses gathered by the ICE Agent.17 A web appli-
cation can retrieve these candidate IP addresses by using the
event handler RTCPeerConnection.onicecandidate() and
retrieving the candidate IP address from the RTCPeerConnect-
ionIceEvent.candidate or, by parsing the resulting Session
Description Protocol (SDP)18 string from RTCPeerConnec-

tion.localDescription after the offer generation is com-
plete. In our study we only found it necessary to instru-
ment RTCPeerConnection.onicecandidate() to capture all
current scripts.

12. AUDIO FINGERPRINT CONFIGURATION
Figure 8 in Section 6.4 summarizes one of two audio fin-

gerprinting configurations found in the wild. This configura-
tion is used by two scripts, (client.a.pxi.pub/*/main.min.js
and http://js.ad-score.com/score.min.js). These scripts use
an OscillatorNode to generate a sine wave. The output
signal is connected to a DynamicsCompressorNode, possibly
to increase differences in processed audio between machines.
The output of this compressor is passed to the buffer of an
OfflineAudioContext. The script uses a hash of the sum of
values from the buffer as the fingerprint.

A third script, *.cdn-net.com/cc.js, utilizes AudioContext
to generate a fingerprint. First, the script generates a tri-
angle wave using an OscillatorNode. This signal is passed
through an AnalyserNode and a ScriptProcessorNode. Fi-
nally, the signal is passed into a through a GainNode with
gain set to zero to mute any output before being connect to
the AudioContext’s destination (e.g. the computer’s speak-
ers). The AnalyserNode provides access to a Fast Fourier

17https://w3c.github.io/webrtc-pc/#widl-
RTCPeerConnection-createOffer-Promise-
RTCSessionDescription--RTCOfferOptions-options

18https://tools.ietf.org/html/rfc3264

Content-Type Count

binary/octet-stream 8
image/jpeg 12664
image/svg+xml 177
image/x-icon 150
image/png 7697
image/vnd.microsoft.icon 41
text/xml 1
audio/wav 1
application/json 8
application/pdf 1
application/x-www-form-urlencoded 8
application/unknown 5
audio/ogg 4
image/gif 2905
video/webm 20
application/xml 30
image/bmp 2
audio/mpeg 1
application/x-javascript 1
application/octet-stream 225
image/webp 1
text/plain 91
text/javascript 3
text/html 7225
video/ogg 1
image/* 23
video/mp4 19
image/pjpeg 2
image/small 1
image/x-png 2

Table 10: Counts of responses with given Content-Type
which cause mixed content errors. NOTE: Mixed content
blocking occurs based on the tag of the initial request (e.g.
image src tags are considered passive content), not the
response Content-Type. Thus it is likely that the Javascript
and other active content loads listed above are the result of
misconfigurations and mistakes that will be dropped by the
browser. For example, requesting a Javascript file with an
image tag.

Transform (FFT) of the audio signal, which is captured us-
ing the onaudioprocess event handler added by the Script-
ProcessorNode. The resulting FFT is fed into a hash and
used as a fingerprint.

13. ADDITIONAL METHODOLOGY
All measurements are run with Firefox version 41. The

Ghostery measurements use version 5.4.10 set to block all
possible bugs and cookies. The HTTPS Everywhere mea-
surement uses version 5.1.0 with the default settings. The
Block TP Cookies measurement sets the Firefox setting to
“block all third-party cookies”.

client.a.pxi.pub/*/main.min.js
http://js.ad-score.com/score.min.js
*.cdn-net.com/cc.js
https://w3c.github.io/webrtc-pc/##widl-RTCPeerConnection-createOffer-Promise-RTCSessionDescription--RTCOfferOptions-options
https://w3c.github.io/webrtc-pc/##widl-RTCPeerConnection-createOffer-Promise-RTCSessionDescription--RTCOfferOptions-options
https://w3c.github.io/webrtc-pc/##widl-RTCPeerConnection-createOffer-Promise-RTCSessionDescription--RTCOfferOptions-options
https://tools.ietf.org/html/rfc3264


13.1 Classifying Third-party content
In order to determine if a request is a first-party or third-

party request, we utilize the URL’s “public suffix + 1” (or
PS+1). A public suffix is “is one under which Internet users
can (or historically could) directly register names. [Exam-
ples include] .com, .co.uk and pvt.k12.ma.us.” A PS+1 is the
public suffix with the section of the domain immediately pro-
ceeding it (not including any additional subdomains). We
use Mozilla’s Public Suffix List19 in our analysis. We con-
sider a site to be a potential third-party if the PS+1 of
the site does not match the landing page’s PS+1 (as de-
termined by the algorithm in the supplementaary materials
Section 13.2). Throughout the paper we use the word “do-
main” to refer to a site’s PS+1.

13.2 Landing page detection from HTTP data
Upon visiting a site, the browser may either be redirected

by a response header (with a 3XX HTTP response code or
“Refresh” field), or by the page content (with javascript or a
“Refresh” meta tag). Several redirects may occur before the
site arrives at its final landing page and begins to load the
remainder of the content. To capture all possible redirects
we use the following recursive algorithm, starting with the
initial request to the top-level site. For each request:

1. If HTTP redirect, following it preserving referrer details
from previous request.

2. If the previous referrer is the same as the current we as-
sume content has started to load and return the current
referrer as the landing page.

3. If the current referrer is different from the previous refer-
rer, and the previous referrer is seen in future requests,
assume it is the actual landing page and return the pre-
vious referrer.

4. Otherwise, continue to the next request, updating the
current and previous referrer.

This algorithm has two failure states: (1) a site redirects,
loads additional resources, then redirects again, or (2) the
site has no additional requests with referrers. The first fail-
ure mode will not be detected, but the second will be. From
manual inspection, the first failure mode happens very in-
frequently. For example, we find that only 0.05% of sites
are incorrectly marked as having HTTPS as a result of this
failure mode. For the second failure mode, we find that we
can’t correctly label the landing pages of 2973 first-party
sites (0.32%) on the top 1 million sites. For these sites we
fall back to the requested top-level URL.

13.3 Detecting Cookie Syncing
We consider two parties to have cookie synced if a cookie

ID appears in specific locations within the referrer, request,
and location URLs extracted from HTTP request and re-
sponse pairs. We determine cookie IDs using the algorithm
described in Section 4. To determine the sender and re-
ceiver of a synced ID we use the following classification, in
line with previous work [44, 1]:

• If the ID appears in the request URL: the requested do-
main is the recipient of a synced ID.
• If the ID appears in the referrer URL: the referring do-

main is the sender of the ID, and the requested domain is
the receiver.

19https://publicsuffix.org/

• If the ID appears in the location URL: the original re-
quested domain is the sender of the ID, and the redirected
location domain is the receiver.
This methodology does not require reverse engineering

any domain’s cookie sync API or URL pattern. An im-
portant limitation of this generic approach is the lack of
discrimination between intentional cookie syncing and acci-
dental ID sharing. The latter can occur if a site includes a
user’s ID within its URL query string, causing the ID to be
shared with all third parties in the referring URL.

The results of this analysis thus provide an accurate rep-
resentation of the privacy implications of ID sharing, as a
third party has the technical capability to use an uninten-
tionally shared ID for any purpose, including tracking the
user or sharing data. However, the results should be in-
terpreted only as an upper bound on cookie syncing as the
practice is defined in the online advertising industry.

13.4 Detection of Fingerprinting
Javascript minification and obfuscation hinder static anal-

ysis. Minification is used to reduce the size of a file for tran-
sit. Obfuscation stores the script in one or more obfuscated
strings, which are transformed and evaluated at run time
using eval function. We find that fingerprinting and track-
ing scripts are frequently minified or obfuscated, hence our
dynamic approach. With our detection methodology, we
intercept and record access to specific Javascript objects,
which is not affected by minification or obfuscation of the
source code.

The methodology builds on that used by Acar, et.al. [1]
to detect canvas fingerprinting. Using the Javascript calls
instrumentation described in Section 3.2, we record access
to specific APIs which have been found to be used to fin-
gerprint the browser. Each time an instrumented object is
accessed, we record the full context of the access: the URL
of the calling script, the top-level url of the site, the prop-
erty and method being accessed, any provided arguments,
and any properties set or returned. For each fingerprint-
ing method, we design a detection algorithm which takes
the context as input and returns a binary classification of
whether or not a script uses that method of fingerprinting
when embedded on that first-party site.

When manual verification is necessary, we have two ap-
proaches which depend on the level of script obfuscation. If
the script is not obfuscated we manually inspect the copy
which was archived according to the procedure discussed in
Section 3.2. If the script is obfuscated beyond inspection, we
embed a copy of the script in isolation on a dummy HTML
page and inspect it using the Firefox Javascript Deobfusca-
tor20 extension. We also occasionally spot check live versions
of sites and scripts, falling back to the archive when there
are discrepancies.

20https://addons.mozilla.org/en-US/firefox/addon/
javascript-deobfuscator/

https://publicsuffix.org/
https://addons.mozilla.org/en-US/firefox/addon/javascript-deobfuscator/
https://addons.mozilla.org/en-US/firefox/addon/javascript-deobfuscator/


Fingerprinting Script Count

cdn.doubleverify.com/dvtp src internal24.js 4588
cdn.doubleverify.com/dvtp src internal23.js 2963
ap.lijit.com/sync 2653
cdn.doubleverify.com/dvbs src.js 2093
rtbcdn.doubleverify.com/bsredirect5.js 1208
g.alicdn.com/alilog/mlog/aplus v2.js 894
static.audienceinsights.net/t.js 498
static.boo-box.com/javascripts/embed.js 303
admicro1.vcmedia.vn/core/fipmin.js 180
c.imedia.cz/js/script.js 173
ap.lijit.com/www/delivery/fp 140
www.lijit.com/delivery/fp 127
s3-ap-southeast-1.amazonaws.com/af-bdaz/bquery.js 118
d38nbbai6u794i.cloudfront.net/*/platform.min.js 97
voken.eyereturn.com/ 85
p8h7t6p2.map2.ssl.hwcdn.net/fp/Scripts/PixelBundle.js 72
static.fraudmetrix.cn/fm.js 71
e.e701.net/cpc/js/common.js 56
tags.bkrtx.com/js/bk-coretag.js 56
dtt617kogtcso.cloudfront.net/sauce.min.js 55
685 others 1853

TOTAL
18283

14371 unique1

Table 11: Canvas fingerprinting scripts on the top Alexa 1 Million sites.
**: Some URLs are truncated for brevity.
1: Some sites include fingerprinting scripts from more than one domain.

Fingerprinting script # of sites Text drawn into the canvas

mathid.mathtag.com/device/id.js

mathid.mathtag.com/d/i.js 2941 mmmmmmmmmmlli
admicro1.vcmedia.vn/core/fipmin.js 243 abcdefghijklmnopqr[snip]

*.online-metrix.net1 75 gMcdefghijklmnopqrstuvwxyz0123456789
pixel.infernotions.com/pixel/ 2 mmmmmmmmmMMMMMMMMM=llllIiiiiii‘’.
api.twisto.cz/v2/proxy/test* 1 mmmmmmmmmmlli
go.lynxbroker.de/eat session.js 1 mimimimimimimi[snip]

TOTAL
3263

(3250 unique2) -

Table 12: Canvas font fingerprinting scripts on the top Alexa 1 Million sites.
**: Some URLs are truncated for brevity.
1: The majority of these inclusions were as subdomain of the first-party site, where the DNS record points to a subdomain
of online-metrix.net.
2: Some sites include fingerprinting scripts from more than one domain.

cdn.doubleverify.com/dvtp_src_internal24.js
cdn.doubleverify.com/dvtp_src_internal23.js
ap.lijit.com/sync
cdn.doubleverify.com/dvbs_src.js
rtbcdn.doubleverify.com/bsredirect5.js
g.alicdn.com/alilog/mlog/aplus_v2.js
static.audienceinsights.net/t.js
static.boo-box.com/javascripts/embed.js
admicro1.vcmedia.vn/core/fipmin.js
c.imedia.cz/js/script.js
ap.lijit.com/www/delivery/fp
www.lijit.com/delivery/fp
s3-ap-southeast-1.amazonaws.com/af-bdaz/bquery.js
d38nbbai6u794i.cloudfront.net/*/platform.min.js
voken.eyereturn.com/
p8h7t6p2.map2.ssl.hwcdn.net/fp/Scripts/PixelBundle.js
static.fraudmetrix.cn/fm.js
e.e701.net/cpc/js/common.js
tags.bkrtx.com/js/bk-coretag.js
dtt617kogtcso.cloudfront.net/sauce.min.js
mathid.mathtag.com/device/id.js
mathid.mathtag.com/d/i.js
admicro1.vcmedia.vn/core/fipmin.js
*.online-metrix.net
pixel.infernotions.com/pixel/
api.twisto.cz/v2/proxy/test*
go.lynxbroker.de/eat_session.js
online-metrix.net


Fingerprinting Script First-party Count Classification

cdn.augur.io/augur.min.js 147 Tracking
click.sabavision.com/*/jsEngine.js 115 Tracking
static.fraudmetrix.cn/fm.js 72 Tracking
*.hwcdn.net/fp/Scripts/PixelBundle.js 72 Tracking
www.cdn-net.com/cc.js 45 Tracking
scripts.poll-maker.com/3012/scpolls.js 45 Tracking
static-hw.xvideos.com/vote/displayFlash.js 31 Non-Tracking
g.alicdn.com/security/umscript/3.0.11/um.js 27 Tracking
load.instinctiveads.com/s/js/afp.js 16 Tracking
cdn4.forter.com/script.js 15 Tracking
socauth.privatbank.ua/cp/handler.html 14 Tracking
retailautomata.com/ralib/magento/raa.js 6 Unknown
live.activeconversion.com/ac.js 6 Tracking
olui2.fs.ml.com/publish/ClientLoginUI/HTML/cc.js 3 Tracking
cdn.geocomply.com/101/gc-html5.js 3 Tracking
retailautomata.com/ralib/shopifynew/raa.js 2 Unknown
2nyan.org/animal/ 2 Unknown
pixel.infernotions.com/pixel/ 2 Tracking
167.88.10.122/ralib/magento/raa.js 2 Unknown
80 others present on a single first-party 80 -
TOTAL 705 -

Table 13: WebRTC Local IP discovery on the Top Alexa 1 Million sites.
**: Some URLs are truncated for brevity.

Site Prominence # of FP Rank Change

doubleclick.net 6.72 447,963 +2
google-analytics.com 6.20 609,640 −1
gstatic.com 5.70 461,215 −1
google.com 5.57 397,246 0
facebook.com 4.20 309,159 +1
googlesyndication.com 3.27 176,604 +3
facebook.net 3.02 233,435 0
googleadservices.com 2.76 133,391 +4
fonts.googleapis.com 2.68 370,385 −4
scorecardresearch.com 2.37 59,723 +13
adnxs.com 2.37 94,281 +2
twitter.com 2.11 143,095 −1
fbcdn.net 2.00 172,234 −3
ajax.googleapis.com 1.84 210,354 −6
yahoo.com 1.83 71,725 +5
rubiconproject.com 1.63 45,333 +17
openx.net 1.60 59,613 +7
googletagservices.com 1.52 39,673 +24
mathtag.com 1.45 81,118 −3
advertising.com 1.45 49,080 +9

Table 14: Top 20 third-parties on the Alexa top 1 million, sorted by prominence. The number of first-party sites
each third-party is embedded on is included. Rank change denotes the change in rank between third-parties ordered
by first-party count and third-parties ordered by prominence.

cdn.augur.io/augur.min.js
click.sabavision.com/*/jsEngine.js
static.fraudmetrix.cn/fm.js
*.hwcdn.net/fp/Scripts/PixelBundle.js
www.cdn-net.com/cc.js
scripts.poll-maker.com/3012/scpolls.js
static-hw.xvideos.com/vote/displayFlash.js
g.alicdn.com/security/umscript/3.0.11/um.js
load.instinctiveads.com/s/js/afp.js
cdn4.forter.com/script.js
socauth.privatbank.ua/cp/handler.html
retailautomata.com/ralib/magento/raa.js
live.activeconversion.com/ac.js
olui2.fs.ml.com/publish/ClientLoginUI/HTML/cc.js
cdn.geocomply.com/101/gc-html5.js
retailautomata.com/ralib/shopifynew/raa.js
2nyan.org/animal/
pixel.infernotions.com/pixel/
167.88.10.122/ralib/magento/raa.js
doubleclick.net
google-analytics.com
gstatic.com
google.com
facebook.com
googlesyndication.com
facebook.net
googleadservices.com
fonts.googleapis.com
scorecardresearch.com
adnxs.com
twitter.com
fbcdn.net
ajax.googleapis.com
yahoo.com
rubiconproject.com
openx.net
googletagservices.com
mathtag.com
advertising.com
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