
Independent Work Report Spring, 2014

Convenience over safety: How authentication cookies

compromise user account security on the Web

Gabriel Chen

Advised by Prof. Arvind Narayanan

Abstract

Authentication cookies allow for convenient online user authentication, but potential security prob-

lems may be encountered if a malicious adversary were able to obtain a given user’s authentication

cookie. The Firefox add-on, Firesheep, and cross-site scripting methods have demonstrated that

attackers are capable of achieving this goal. In this study, we hope to survey user logins across the

Web in order to evaluate the vulnerability of user accounts on major websites and to gain insight on

potential defenses.

Our approach consists of running two browser profile instances per site: a primary crawler and

a shadow crawler. For every website, the primary profile performs a legitimate login and saves

the persistent cookies. The secondary profile loads the cookies and visits the same website. If the

resulting webpage recognizes a user as having logged in, then the attack is considered successful.

For different tests, the shadow crawler is instantiated on either the same computer as the primary

crawler, or remotely, on a computer with a different browser fingerprint and IP address.

The findings of this study show that on a large scale, many sites do not yet implement additional

authentication factors once an authentication cookie is obtained. We see industry beginning to

develop more secure systems, and hope to encourage further progress with our results. In addition,

specialized Web security companies have emerged, using more sophisticated methods to protect

user accounts that will require investigation.



1. Introduction

Over the past fifty years, passwords have existed as the most widely accepted form of human-

computer authentication despite evidence from researchers that a more secure and user-friendly

technology is needed [2]. This model has persisted into online authentication with the rise of

online service websites. Recently, we have seen these sites make progress in the area, involving

the development of new and more complex systems for authentication. Therefore, research in the

field of online authentication is expected to evolve from the traditional approach to the topic. As a

consequence, it is important to survey the web to identify good practices and to evaluate existing

strategies.

In publishing authentication techniques, we encounter the potential ethical issue that exposing

vulnerabilities can also make it easier for attackers to succeed in gaining control of user accounts.

However, a system that is secure through obscurity is strongly discouraged [12]. The discussion of

flaws in security is intended to ultimately improve the safety of user accounts on Web by identifying

susceptibilities and encouraging sites to develop better methods.

For the typical login model, a user is required to input his or her username and password in order

to log into the site. The credentials are submitted and checked against the website’s server and a

cookie is sent in response. This cookie is then used by the site to verify the user on subsequent

visits. The authentication cookie can be either a session cookie, which expires when the browser is

closed, or a persistent cookie, which is recognized by the server even after a browser session ends,

until a given expiration date. Persistent cookies are implemented by many websites as a "remember

me" checkbox on the login page; when selected, a persistent cookie is sent to the client browser

upon login.

The user authentication cookie model gives users the convenience of not having to enter login

credentials every time a site is revisited. However, this ease of access trades off with security when

not properly implemented. We wish to show that when the authentication cookie is not correctly

protected, adversaries may be allowed to access and modify user accounts. Our evidence suggests

2



that many sites are not implementing further layers of defense once an authentication cookie is

recognized.

2. Threat Model

Two related threat models weaken user account security. The first model depends on obtaining a

user’s password, while the second depends on procurement of the authentication cookie.

2.1. Stolen Password

The most basic threat model to user accounts is the case in which an adversary directly obtains

a user’s login credentials or more specifically, his or her password. This can be achieved using a

number of well-known online and offline attacks, such as client-side malware, phishing using a

spoofed site and eavesdropping the password transmission [2]. When used, these attack strategies

can compromise a user account for a given site, along with any associated personal information.

A number of defenses against this threat have arisen in recent years. This includes the use of

multiple factor authentication, such as the requirement of entering an authentication code that is

sent to the user’s phone in addition to a password. Furthermore, most websites use HTTPS when

sending login credentials; this protects users from eavesdropping attacks.

2.2. Session Hijacking

Our threat model assumes that the attacker has a means of obtaining a user’s authentication cookie.

With the cookie, the user account is exposed to the adversary, who does not need the user’s

credentials as the authentication cookie contains all necessary information for the server to allow

account access. Although many sites securely transmit login credentials using SSL, they fail to do

the same for authentication cookies. Any authentication cookie that is not encrypted with HTTPS

can be obtained over an open networking using tools such as Firesheep. A more dated approach

exploits websites that use non-HTTP-only cookies; these sites are defenseless against the use of

cross-site scripting attacks [15].

Using Firesheep on an open wireless network, an attacker can obtain a user’s authentication

3



cookie for a site, which then allows the attacker to perform functions on the site on behalf of the

user without knowledge of the username or password [3]. Firesheep works by performing a passive

network attack, meaning that it eavesdrops on network communications between browser and server

without modifying the contents [9]. The only effective fix to this problem is the use of end-to-end

encryption [4].

Another related attack can be performed using cross-site scripting, in which a cookie can be

accessed through the DOM of the host site. Eight years ago, HTTP-only cookies were introduced to

prevent this attack. These cookies are implemented as an attribute in the cookie field, and a browser

that supports them will not permit a script to access its contents. The cross-site scripting attack may

be prevented by the use of HTTP-only authentication cookies, but a recent study has shown that

these cookies are still not widely used [15]. Furthermore, older browsers that do not support these

cookies remain completely unprotected.

A separate study has shown that third-party JavaScript is often allowed to run unsupervised in a

first-party context. These results further affirm the claim that the third party can access non-HTTP-

only first-party cookies and has further privacy implications [10]. This means that using JavaScript,

the third party can obtain user authentication cookies to execute the session hijacking attack. There

also exist ways of exploiting cross-site scripting that go beyond obtaining the authentication cookie,

such as capturing user keystrokes in order to determine the password, which ties back to the first

threat model in 2.1.

3. Methodology

We wish to investigate the effectiveness of the session hijacking attack on a wide array of websites,

so two requirements that we look to satisfy with our methodology are scalability and automation. In

addition, we wish to simulate the browser properties and conditions involved in a real user login

and more importantly, to ensure that the browser is able to accept authentication cookies. The

infrastructure used in this project allows for the dumping and loading of browser profiles, as well as

the automated creation of browser instances that can crawl to a large number of sites.

4



The study tests 109 of the top 200 Alexa1 sites, looking at only the sites for which user accounts

can be created. In order to examine login techniques, a fake user account needs to be created for

every site. Automated account creation is tricky due to anti-bot methods such as CAPTCHAs, so

each user account was created manually. Because every tested site has a different way of handling

user authentication, a means of logging into any given website is also required to automate the

large-scale study of site practices.

3.1. Infrastructure

The data for the experiment is collected by a web crawler that is wrapped around the Selenium

WebDriver2. WebDriver methods let us inspect page sources in order to determine the similarity

between pages. Furthermore, it allows for the identification of username and password fields and

buttons for data submission; both of the above features are critical for generic website login, which

is discussed in further detail in section 3.2. In addition to identifying the login components, the

WebDriver also provides commands for entering and submitting field data in a way that closely

simulates a real user’s data input.

In addition to the Selenium WebDriver functionality, our infrastructure adds critical features that

make it appropriate for this project. In our study, we use Selenium to drive Firefox instances; using

pyvirtualdisplay to interface with Xvfb, a virtual X display server, the crawler instances may be run

headless. This is useful for the remote tests we conduct on the Linode to simulate different browser

fingerprints and IP addresses3.

The web crawler also supports the dumping and loading of browser profiles. This allows the

crawler to visit a website, attempt a login, and then save the database of cookies associated with

the browser instance if the login succeeds. A secondary profile can then use the crawler to load

the profile data, and with it, the persistent cookies of the primary profile. The second profile can

be loaded on either the same machine or a remote one, depending on what variables are being

controlled for. Using this method, we can simulate the session hijacking attack by loading the

1http://www.alexa.com/
2http://docs.seleniumhq.org/projects/webdriver/
3Some infrastructure description used with permission from [11]

5



primary profile’s authentication cookies into the secondary profile.

3.2. Generic Login

The layout of each webpage is unique, so the placement of login fields and submission buttons

varies by site and cannot be easily found in a standardized way for each site. Furthermore, the login

flows are inconsistent between sites; some websites support login from the home page, while others

direct users to a secondary login page. This makes large-scale testing of logins difficult, because

there lacks an automated way to authenticate a test user on every website in the test. Therefore, in

order to test a large number of sites, we devised a method to log into a website by identifying login

input fields and a submission button. This routine will be referred to as Generic Login.

3.2.1 Identifying Login Inputs

Despite the numerous possibilities for page layouts and login flows, many input fields, buttons and

links associated to logging in share characteristics between sites. Generic Login looks for input

HTML tags with attributes that match regular expressions to identify the fields. Username and

password fields are typically easy to identify and work with because of the universal nomenclature

of the words "username" or "email" and "password." Furthermore, given a set of multiple fields that

we suspect to be a username field, we enter the username in all of those fields. The same applies to

password fields, although another check is necessary to ensure that the sets are disjoint, as we do

not want to enter both types of data into the same field. As long as the correct submission button is

identified, it is not problematic if data is entered in incorrect fields.

The success of Generic Login hinges upon the correct identification of a submission button, as we

only enter input once per page. If multiple submit buttons are found, only one is chosen arbitrarily,

so a potential improvement on the success rate would be to try all identified submission buttons.

This may also lengthen the runtime of the experiment, because data entry needs to be repeated for

each potential button.

Several of our tests involve the dumping and loading of browser profiles between crawler instances.

The profiles only store persistent cookies, so Generic Login needs to ensure that persistent cookies

6



are created. This is done by inspecting the webpage for persistent cookie checkboxes using the

same regular expression matching as above. Depending on the site, the checkbox may be selected

by default, but otherwise, for every checkbox identified that is not selected, the WebDriver selects it

prior to submitting login information.

3.2.2 Identifying Successful Logins

Figure 1: Differentiating between a successful and unsuccessful login on the same crawler instance
using the login-required URL

Another problem with logging into different sites is determining if a login has been successfully

executed. Merely checking whether or not data is entered and submitted is insufficient, as the

identified button may be incorrect. Testing similarity between a webpage before and after the login

is one solution, given that the appropriate webpage is chosen. In order to address this problem, we

use a login-required URL associated with each tested site.

All tested websites support user authentication, so we assume that each provides a webpage for

its users to change passwords or edit account-specific information. A login-required URL is such a

webpage that is only viewable by an authenticated user and is typically used to edit personal data.

A manual pass over all sites confirms the existence of such a URL for each site to be tested. The

fact that an unauthenticated user cannot view the contents of the login-required page implies that

this URL has an important property that allows us to determine login success. Figure 1 presents

7



further detail on the difference between login success and failure. An additional reason for using

login-required URL is that it emphasizes the severity of the session hijacking attack, demonstrating

that personal information may be accessed and in some cases, accounts passwords may even be

changed.

3.2.3 Three Tier Login

Figure 2: After 2nd and 3rd attempts, return to login-required URL, performing test from Figure 1

In attempting the login to a given site, we identify login inputs in three stages. First, we visit

the login-required URL. Most sites redirect visitors who are not logged in to a login page when a

login-required URL is accessed. If the login is unsuccessful on this page, we return to the main

page of the site.

Here, we use a regular expression to determine the existence of a secondary page for login; we

found that most sites choose not to support login from the main page, so finding a secondary page

is a natural second tier. If such a page exists, the crawler is redirected to that page and a login is

attempted using the login input identification described above.

Finally, if the login is unsuccessful on both the login-required URL redirect page and the

secondary page, the login is attempted on the main page.

3.3. Experiment Design and Variables

For every tested site in this experiment, we use two crawler instances to test the efficacy of

session hijacking and whether or not it uses the IP address or related defenses. The primary

crawler represents the user, while the secondary represents an adversary that is utilizing the user’s

authentication cookies to gain access to account information.

In each test in this study, the primary crawler is initialized and makes a request to the login-

required URL. The page source at this URL is saved as a control source or basis of comparison for

8



determining login success. A Generic Login is attempted and if it is successful, the primary crawler

stores the relevant cookies and profile metadata for the secondary to load.

Data collected for each test includes the cosine similarity value between the secondary profile

and the primary profile, as well as whether or not the two pages are deemed similar, as dictated by a

given threshold. The corresponding HTML page sources are also saved for each site and each run

of the experiment, allowing for manual inspection of select pages.

3.3.1 Variables

After initialization of the experiment, there are a number of variables that websites may be using

with regard to secure user authentication that can be tested. Our main target of study is the use of

various types of cookies that facilitate user convenience by not requiring that a user enter his or

her username and password during every login; these include both session and persistent cookies.

Traditional cookies are specific to the browser profile that stores the cookies. In order to test this

variable, we load in the secondary instance of the crawler the profile of the primary crawler.

A second factor in authentication is recognition of a set of frequently used IP addresses. A website

may choose to save the normal IP address of a user in order to distinguish between a legitimate login

and an attacker login. The website may enforce greater security by checking the IP address even

when a user has an authentication cookie, but it may also check IP address only when a secondary

login is attempted without one. Both variations are tested using a remote headless instance of the

secondary crawler that is run on a Linode cloud server. To test without the cookie, Generic Login is

performed on both the primary and secondary crawlers, while a test considering the authentication

loads the primary profile into the remote secondary profile.

Finally, some websites may examine the user-agent string, browser fingerprint or local shared

objects4 (LSOs) of a user in order to distinguish one browser or one machine from another. Each

of these potential factors are not isolated in this project, but all three differ along with IP address

for the remote tests. The following sections provide further detail as to how the other variables are

tested.
4http://www.adobe.com/security/flashplayer/articles/lso/

9



3.3.2 Authentication Cookies, same IP, machine and browser

In this test, both crawlers are run on the same computer, a Mac OS X 10.9, on a Firefox browser

instance driven by Selenium. The experiment is conducted using the browser profile model described

in 3.1, so the cookies stored in the primary crawler’s profile are loaded by the secondary crawler,

which then visits the login-required URL to compare the resulting page sources. The success of the

secondary crawler depends on whether persistent cookies are stored on the primary crawler.

3.3.3 Dual Generic Login, different IP, machine and browser

In this test, after the primary crawler successfully executes a Generic Login on the OS X computer, a

remote call is made using the python paramiko5 ssh client, which connects to a Linux Ubuntu 13.10

computer. The call executes a script that instantiates a headless secondary profile and performs a

second Generic Login on the same site. Both crawlers are directed to the login-required URL and

the page sources are compared.

The goal here is to determine whether or not sites recognize user logins from different locations,

as evidenced by manual testing of select sites. This corresponds with the stolen password threat.

3.3.4 Authentication Cookies, different IP, machine and browser

The setup for this test is the same as above, except instead of performing a Generic Login on the

secondary crawler, the primary profile is loaded onto the secondary crawler. We use sshfs6 in order

to mount the remote file system onto the primary machine, as the profile is dumped in the context

of the primary crawler’s machine but must be loaded in a remote context. Both crawlers are again

directed to the login-required URL and the page sources are examined.

Of the three tests, this test most closely simulates an actual session hijacking attack, where the

adversary is on a different machine than the victim.

3.4. Testing Page Similarity

Testing similarity or dissimilarity between two pages is a key subproblem of both Generic Login

and the overarching user authentication cookie experiments. We store the page sources of each
5https://github.com/paramiko/paramiko
6http://osxfuse.github.io/

10



Figure 3: Differentiating between a successful and unsuccessful session hijacking attack across
two crawlers using the login-required URL

website for manual inspection, but we also use an automated solution that relies on cosine similarity,

which has been proven to be an effective way of comparing two texts [13]. Each webpage source is

converted to a bag of words, a vector of words on the page and the number of appearances associated

with it. Using the cosine similarity formula, we can compute the angle between the vectors and

therefore determine if two page sources are alike.

For Generic Login, it is necessary to determine whether a legitimate login succeeds or not on any

website. We achieve this by comparing whether or not the login-required URL page is different

before and after the login attempt, as in Figure 1. Comparing just any page, such as the home page,

does not always yield correct results, due to the dynamic nature of some pages or the minimal

changes a logged in user sees for certain pages. The unique properties of the login-required URL

discussed in 3.2.2 make it an appropriate basis of comparison for testing success.

For each of the experiments, the method for determining whether or not a secondary profile has

successfully logged in relies on comparing the page source of the secondary profile to that of the

primary profile, either after parallel Generic Login attempts or after cookies are loaded into the

secondary browser profile. Again, we use the login-required URL to ensure a reliable comparison.

However, the differentiation between profiles is used instead of contrasting the before and after

11



sources of the login-required URL because a site that detects an unusual activity may direct a user

to a page different from the login-required URL, which still represents a failed attack. In more

detail, the approach differs from the one described above for Generic Login in that instead of the

dissimilarity between the control page and the post login page, we look for the similarity between

the primary and secondary profiles’ sources, as shown in Figure 3. This ensures that if an additional

factor is used, such that a website detects the misuse of authentication cookies by an attacker, a

different page would not result in a false positive.

4. Results

For comprehensive results for each website, see A.1. For each of the following tests, we identify

sites for which a secondary crawler login is possible under corresponding variable conditions.

4.1. Generic Login Success Rate

Using Generic Login, we succeed in logging into 55 out of 109 sites. The tool is most effective on

static webpages that do not rely heavily on JavaScript to load hidden elements, so that login inputs

can be easily identified. Being able to log in on the primary crawler is essential for our tests, so

websites for which Generic Login fails are excluded from this study.

4.2. Authentication Cookies, same IP, machine and browser

In this test, both the primary and secondary crawlers are run on the same machine, using separate

browser profiles. Of the 55 sites for which Generic Login was successful, 42 allowed the secondary

crawler to log in using the loaded profile from the primary crawler. This means that at least 42

sites give complete control to a visitor with an authentication cookie. However, according to our

threat model, session hijacking is conducted by a party on a different computer with a different

browser fingerprint, in the case of Firesheep, or by a party with a different IP address, in the case of

cross-site scripting. The conditions in this test do not model the attack realistically, so this result is

primarily used to compare the effects of other variables in subsequent simulations.

With regard to persistent cookies, we obtain another important interpretation of this result. For

12



this test, the success of the secondary profile in using the primary profile’s authentication cookies

depends on whether or not persistent cookies are created. In other words, we know a primary

crawler that visits the aforementioned 42 sites correctly dumps persistent cookies. For the remaining

13 sites, either persistent cookies are not supported on the site, identification of the "remember me"

box fails, or the site is using an uncommon heuristic for deterring user authentication cookie login,

even if the attack is conducted on the same computer. An explanation for why the cookie login

failed can be concluded without further manual inspection.

4.3. Dual Generic Login, different IP, machine and browser

In this test, the secondary crawler is run on a remote machine, but both crawlers perform Generic

Logins and do not rely on cookies. The goal is to identify whether any sites identify users by IP

address or other browser conditions in order to recognize the more standard stolen password attack.

Of 55 sites that Generic Login succeeded on using the primary crawler, 52 were also successful on

the secondary crawler with no distinction given due to a different IP address. Login failed remotely

for the remaining 3 sites. For two of these sites, we are unable to conclude whether IP address

played a role, or if Generic Login failed for other reasons. This is explained in more detail in 5.2.

Further analysis of the third site, linkedin.com, is in 4.5.

4.4. Authentication Cookies, different IP, machine and browser

This test adds several variables that are held constant between the crawlers in 4.2. Given that only

42 of 55 persistent cookie attacks were guaranteed by the earlier test, we expect fewer successful

results here. Of 55 sites that Generic Login succeeded on, 33 allowed logins on the secondary

profile when the site is visited on a remote headless crawler. From A.1, we see that for these 33

sites, a visit from the secondary crawler using database cookies succeeds regardless of whether or

not it is run remotely.

As with the other tests, it is difficult to determine the cause of failure without further testing. It is

possible that of the 22 sites, there exist sites that are checking factors such as browser fingerprint,

user-agent string and IP address. The failures may also be attributed to complications in the remote

13



testing methodology.

4.5. An Idiosyncratic Result

Figure 4: An email received when a remote generic login was attempted

A manual inspection of the email inbox associated with test user accounts on many websites revealed

the above message. The finding corresponds with the data obtained from the automated experiment

involving a dual generic login, as seen in 4.3 and A.1. Here, it is evident that linkedin.com is

likely using an IP address-based heuristic to identify suspicious activity, an effective defense against

the stolen password attack. The user is required to enter an identification code sent via email in

addition to his or her password in order to complete the login. However, as shown by the site’s

results for the other two tests, possession of the user authentication cookie is enough to bypass

this security check. Although not included in this study, yammer.com is known to use the same

technique.

5. Discussion

In the following discussion, we will treat successful logins on the secondary crawler as positive

results, and failed attacks as negative results. In general, results show that sites do not defend

against session hijacking during this stage of the attack; whether or not end-to-end encryption or

HTTP-only cookies are used is a part of the study, but may be surveyed with further testing.

14



5.1. False Positives

One priority of our project is to minimize and eliminate false positives, where an unsuccessful login

is counted as a positive result. This is significant in both the treatment of Generic Login results as

well as the experimental methodology.

For Generic Login, in choosing the threshold for cosine similarity comparisons, we choose a

value low enough such that every positive result is correctly recorded. A low similarity threshold

imposes a strict requirement on the test described in Figure 1, so that the login-required URL page

contents must differ significantly after the login from before the attempt. For every site in A.1, valid

results are dependent on correct Generic Login results, because the similarity between page sources

of two failed attempts is high; this result must be distinguishable from the case where both crawler

attempts are successful, and the page sources are also similar.

As a consequence, the Generic Login tool’s reported success rate is lower than its actual rate,

and the experiments can be fine-tuned further to incorporate more sites into the study. Sites that

are excluded have login-required URL pages that are similar in source before and after a legitimate

login is performed. These webpages typically rely on scripting to conditionally load elements of the

page, so that the HTML source is not easily distinguishable.

For each test, the similarity threshold between primary and secondary login-required URL pages

is chosen to be high, in order to ensure that the two pages are truly highly similar before drawing

conclusions. Both this threshold and the Generic Login thresholds should be adjusted in a more

rigorous manner in future experiments.

Finally, whenever either the primary or secondary crawler exits without having successfully

completed its computation, the result is also treated as negative. This can be due to more secure

practices, but can also be due to inconsistencies in the infrastructure and WebDriver.

In our presentation of the results, we are hesitant to conclude that a site with negative results is

using additional authentication factors. However, we would like to emphasize that the identification

of positive results is necessary in encouraging the development of better systems. The false positive

approach is an essential requirement for correct analysis.

15



5.2. Limitations

A few limitations of the study are evident from the methodology and the treatment of false positives.

The results contain a large number of negative or inconclusive observations for the user authenti-

cation cookie tests. Causes for failure are not easily determined in both the single machine and

the remote experiments, and more variables need to be controlled for in order to identify specific

techniques. Additional constraints include the inability to test certain types of high-security sites.

For the single machine tests, failure to find a "remember me" box and thus the inability to dump

persistent cookies is not distinguishable from a failure to log in due to heightened site security.

Potential improvements to the methodology include better heuristics for guaranteeing persistent

cookie acquisition, such as an improved regular expression for checkbox matching. The reopening

of the same browser profile and access of the website can also be used to reveal whether or not

persistent cookie storage has been completed.

A limitation of the remote profile loading experiment is that factors for an unsuccessful remote

result are not isolated. The negative results can be attributed to either IP address, fingerprint,

user-agent, flash cookies. These results may also be due to remote failure of the WebDriver and

crawler infrastructure. Further testing with different controls needs to be conducted in order to

ascertain which user authentication factors are being used, if at all. Another problem with the

methodology for remote testing is associated with the repeated execution of remote tests. Sites that

use learning techniques to identify regular behavior may recognize the remote address as one that is

frequently used, which could be detrimental to some positive results.

A related factor that is not automatically examined is the identification of emails or text messages

such as the one from linkedin.com in 4.5. One potential implementation of the test is to parse

inbox data in order to identify relevant messages by timestamp. A final aspect of user authenti-

cation that is also omitted is the consideration of session cookies. A test for session cookies was

implemented early in the study using WebDriver methods, but these methods restrict the copyable

cookies by domain. This method proved to be unreliable, for google.com was found to rely on

cookies from separate domains. A comprehensive automated test was not conducted, but it could

16



potentially reveal interesting results.

The last restriction to mention is derived from the scalability requirement and the information

associated with a fake user account. For the purposes of testing every site, we use a manufactured

identity, which does not have access to information such as a phone number, credit card or other

sensitive data. As a result, high-security websites, specifically banking websites, are excluded from

this study. Disclosure of information from these sites can result in serious harm to its users, so many

claim to be using more sophisticated fraud-prevention technology. A study of these authentication

security methods may be informative. Nonetheless, much of the user information on the sites in this

study is private and can still have negative implications on the user if an adversary is to access it.

5.3. Future work

To summarize, this project can be taken further in several directions to address its limitations. More

variables can be controlled for in the remote authentication cookie test in order to identify specific

user login methods. Improvements can be made to Generic Login and other infrastructure methods.

Finally, a small scale study can be conducted on high-security websites such as commercial banking

sites. Each of these potential projects will enhance our results and allow for deeper and more

comprehensive analysis of how user authentication cookies are implemented across the Web.

6. Related Work

This project is relevant to several recent advancements in industry and adds security implications to

many existing studies in academia.

6.1. Industry Research

We see the beginnings of industry progress in the development and improvement of authentication

systems in some of the websites surveyed in this study. Most of these sites are online service sites

promising account security to attract more users, so authentication techniques are implemented for

private site use.

A market is also emerging for companies that provide fraud detection and prevention services to

17



other websites. For example, the company 41st Parameter relies on device recognition to prevent

account takeover [1]. Related companies such as Kount and ThreatMetrix also work on detecting

fraudulent logins and claim to be using techniques similar to ones discussed in this study [7, 14].

These companies market their products to websites that need to protect sensitive client data; in

their product descriptions, they claim to implement defenses against stolen credentials and session

hijacking attacks [14].

Given an overview of the defenses that each company has to offer, it is clear that relevant research

results are being produced in the private sector. However, these techniques are highly proprietary

and as a result are obscure. More academic work in the field needs to be conducted in order for

wider adoption of well-designed Web user authentication systems.

6.2. Academic Research

This project uses techniques similar to those used in the field of web privacy measurement, building

upon a common infrastructure for scalability and automation. However, instead of considering

privacy threats, we consider methods of security enhancement, which may be achieved by similar

means of user identification such as IP tracking and browser fingerprinting.

Past studies have examined device and browser fingerprinting through a privacy lens. One paper

evaluates browser uniqueness by taking its fingerprint from Panopticlick7, viewing the technology

as a privacy concern [6]. Another study examines several companies that claim to be using device

fingerprinting techniques in their products, including ThreatMetrix, which is also mentioned above.

Another inspected company, BlueCava8, does not use fingerprinting for security but appears to use

it as a marketing solution. This survey of commercial fingerprinting identifies several fingerprinting

techniques, such as the use of browser plugins and the detection of system fonts [8].

Sometimes published works make distinctions between third-party and first-party tracking. Above,

we see general evaluations of browser fingerprinting and its privacy implications. A few studies

point out that user tracking can be much more concerning if the ability of the third party to access

7panopticlick.eff.org
8http://bluecava.com/

18



first-party data is considered.

Concerning user authentication, research has been conducted with respect to the stolen credential

attack and its relevant defenses [2]. Other relevant work includes the identification of the attack

as demonstrated by Firesheep and several studies on cross-site scripting; these two initial security

breaches spurred our investigation of authentication cookie-based attacks. Other research groups

propose solutions to the session hijacking attack, such as the use of one-time cookies and yet others

evaluate the use of certain types of authentication cookies over the Web [5, 15].

Although work has been done in device identification and its privacy concerns as well as user

authentication security, few studies have put the two together. It appears that there is a potential

tradeoff between privacy and security, in that the first-party use of device tracking may infringe

upon user privacy but can also help identify fraudulent users. Here, it can be agreed upon that

third-party tracking is detrimental to both security and privacy.

7. Conclusion

Our study sought to perform a large-scale study of user authentication practices on the Web. In

order to achieve this, we built upon an existing web measurement infrastructure and developed a

Generic Login strategy to automate user authentication. Using this method, we conducted several

experiments to evaluate existing authentication techniques, specifically examining the identification

of a remote machine and other security checks given the possession of an authentication cookie.

Results from our study show that many of these online service sites do not employ sophisticated

systems for user authentication that protect accounts from this particular type of session hijacking.

When a user authentication cookie is presented, these major websites often display sensitive account

information to the corresponding browser, giving an attacker that has procured the cookie complete

access to the account. Select websites appear to perform some user identification, using the IP

address as a proxy for location; for linkedin.com, this strategy is only present in the defense of

the stolen credentials attack and does not resurface in the remote authentication cookie test.

This study is important because it identifies security implications of third-party tracking, adding

19



to existing privacy violations and highlighting the severity of this attack. It is also highly relevant to

other discussions about user tracking and identifies a tradeoff between security and privacy in the

use of these techniques. The testing infrastructure can be improved upon to perform similar studies

on a wide array of sites, and more variables about browser fingerprinting and device identification

can be tested using the same two crawler methodology.

We hope that our findings will prove beneficial to users by increasing awareness of session

hijacking attacks and how they might be defended against. Websites need to understand that security

considerations arise when using the standard cookie authentication model. Ultimately, we wish to

encourage further development of secure user authentication systems for online service websites

and to make these techniques easier to study.

References
[1] 41stParameter. (2014) Fraud prevention for account takeover. [Online]. Available: http://www.the41.com/

solutions/account-takeover
[2] J. Bonneau et al., “The past, present, and future of password-based authentication on the web,” 2014.
[3] E. Butler. (2010) Firesheep. Available: http://codebutler.com/firesheep/
[4] E. Butler. (2010) Firesheep, a day later. Available: http://codebutler.com/firesheep-a-day-later/
[5] I. Dacosta et al., “One-time cookies: Preventing session hijacking attacks with disposable credentials,” 2011.
[6] P. Eckersley, “How unique is your web browser?” 2010.
[7] Kount. (2014) Applications - account takeover. Available: http://www.kount.com/use-cases/account-takeover
[8] N. Nikiforakis et al., “Cookieless monster: Exploring the ecosystem of web-based device fingerprinting,” 2013.
[9] C. Palmer and Y. Zhu. (2010) How to deploy https correctly. Available: https://www.eff.org/https-everywhere/

deploying-https
[10] D. Reisman, “Cookie crumbs and unwelcome javascript: Evaluating the hidden privacy threats posed by the

mashed-up web,” 2014.
[11] D. Reisman et al., “Cookies that give you away: Evaluating the surveillance implications of web tracking,” 2014.
[12] K. Scarfone, W. Jansen, and M. Tracy, “Guide to general server security,” 2008.
[13] A. Singhal, “Modern information retrieval: A brief overview,” IEEE Data Eng. Bull., vol. 24, no. 4, pp. 35–43,

2001.
[14] ThreatMetrix, “Prevent account takeover,” 2014.
[15] Y. Zhou and D. Evans, “Why aren’t http-only cookies more widely deployed?” 2010.

20

http://www.the41.com/solutions/account-takeover
http://www.the41.com/solutions/account-takeover
http://codebutler.com/firesheep/
http://codebutler.com/firesheep-a-day-later/
http://www.kount.com/use-cases/account-takeover
https://www.eff.org/https-everywhere/deploying-https
https://www.eff.org/https-everywhere/deploying-https


A. Appendix

A.1. Results For Each Website

Fi
gu

re
5:

Fi
lle

d
bo

xe
s

in
di

ca
te

su
cc

es
sf

ul
se

co
nd

ar
y

cr
aw

le
r

lo
gi

n.
E

m
pt

y
bo

xe
s

ar
e

in
co

nc
lu

si
ve

re
su

lts
.

Th
e

ro
w

s
re

m
ot

e_
pr

o
fi

le
,

re
m

ot
e_

lo
gi

n
an

d
pr

o
fi

le
co

rr
es

po
nd

to
4.

4,
4.

3
an

d
4.

2,
re

sp
ec

tiv
el

y.

21


	Introduction
	Threat Model
	Stolen Password
	Session Hijacking

	Methodology
	Infrastructure
	Generic Login
	Identifying Login Inputs
	Identifying Successful Logins
	Three Tier Login

	Experiment Design and Variables
	Variables
	Authentication Cookies, same IP, machine and browser
	Dual Generic Login, different IP, machine and browser
	Authentication Cookies, different IP, machine and browser

	Testing Page Similarity

	Results
	Generic Login Success Rate
	Authentication Cookies, same IP, machine and browser
	Dual Generic Login, different IP, machine and browser
	Authentication Cookies, different IP, machine and browser
	An Idiosyncratic Result

	Discussion
	False Positives
	Limitations
	Future work

	Related Work
	Industry Research
	Academic Research

	Conclusion
	Appendix
	Results For Each Website


